Pyramidi 3 Geometria tehtävien ratkaisut sivu a)
|
|
- Markus Jokinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen sks perusteella. b) C C D Ei ole olemassa sellaista kolmioiden yhtenevyyslausetta, jossa olisi pelkkiä kulmia. Kolmiot ovat samanmuotoiset, mutta eivät välttämättä samankokoiset, eivätkä siis yhtenevät. F D E E c) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näistä sivuista toisten vastaiset kulmat ovat yhtä suuret. Tämä viittaa lauseeseen ssk. Kuitenkaan ei ole sanottu, ovatko toisten yhtä pitkien sivujen vastaiset kulmat teräviä vai tylppiä. Kuvassa on esitetty tapaus, jossa toinen näistä kulmista on terävä ja toinen tylppä. Kolmiot eivät siis ole yhteneviä. d) C C F D D F Kolmiossa C kaksi yhtä suurta kulmaa kuin kolmiossa DEF ja näiden kulmien väliset sivut ovat yhtä pitkät, joten kolmiot ovat yhtenevät yhtenevyyslauseen ksk perusteella. E
2 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) C b) C Koska D C C (Tasakylkinen kolmio C) D D (CD on mediaani) CD yhteinen sivu, niin DC DC (sss). Tällöin vastinkulmat ovat yhtä suuret, joten. Koska C C (Tasakylkinen kolmio C) CD DC (CD kulman C puolittaja) CD yhteinen sivu, niin D DC DC (sks) Tällöin vastinkulmat ovat yhtä suuret, joten.
3 Pyramidi 3 Geometria tehtävien ratkaisut sivu 86 c) C 503 Väite: Todistus: Suunnikkaan vastakkaiset sivut ovat yhtä pitkät. D Koska C C (Tasakylkinen kolmio C) CD yhteinen sivu < DC < DC (Korkeusjana kohtisuorassa kantaa vastaan) Koska lisäksi yhteisen sivun CD vastaiset kulmat CD ja CD ovat molemmat teräviä niin DC DC (ssk) Tällöin vastinkulmat ovat yhtä suuret, joten. Piirretään suunnikkaalle CD lävistäjä C. Kolmiossa C ja CD on C CD samankohtaiset kulmat, sillä CD C CD samankohtaiset kulmat, sillä C D Sivu C on yhteinen Tällöin C CD (ksk). Yhtenevien kolmioiden vastinosina CD ja CD, joten suunnikkaiden vastakkaiset sivut ovat keskenään yhtä pitkät.
4 Pyramidi 3 Geometria tehtävien ratkaisut sivu Väite: Neljäkkään lävistäjät ovat kohtisuorassa toisiaan vastaan. Väite: Kulmanpuolittajan jokainen piste on yhtä etäällä kulman kyljistä. Todistus: Todistus: Merkitään lävistäjien leikkauspistettä kirjaimella E. E CE CDE DE C CD D E ED ja E EC (sss) neljäkäs suunnikkaan lävistäjät puolittavat toisensa E on vastinkulma yhtenevissä kolmioissa. Merkitään E α. α 360 α 90 joten E 90 kaikissa kolmioissa. Siis C D, joten neljäkkään lävistäjät ovat kohtisuorassa toisiaan vastaan. Valitaan kulman P puolittajalta mielivaltainen piste R ja piirretään pisteen R kautta kulman P kyljille normaalit. Normaalit leikkaavat kulman kyljet pisteissä S ja T. Kolmioissa PSR ja PTR PTR PSR normaalit TPR SPR kulman puolitus Sivu PR on yhteinen Tällöin PSR PTR (kks). Yhtenevien kolmioiden vastinosina RT RS. Koska R on mielivaltainen kulmanpuolittajalla sijaitseva piste, on kulmanpuolittajan jokainen piste yhtä etäällä kulman kyljistä.
5 Pyramidi 3 Geometria tehtävien ratkaisut sivu Mediaanit eli keskijanat puolittavat kolmion sivut. Koska tasasivuisen kolmion keskijanat ovat yhtä pitkät, merkitään osia kirjaimella x. 507 a) Väite: Todistus: Tangenttikulman kärjen ja ympyrän keskipisteen yhdysjana puolittaa tangenttikulman. Mediaanien leikkauspiste jakaa mediaanit :1 kärjestä lukien. Koska tasasivuisen kolmion mediaanit ovat keskenään yhtä pitkät (symmetrisyys), merkitään mediaanin osia y ja y. Pienet kuusi kolmiota ovat keskenään yhteneviä sss-yhtenevyyslauseen mukaan. Piirretään tangenttikulman kärjen P ja ympyrän keskipisteen K yhdysjana PK. Kolmioissa PKR ja PKS on KR KS säde sivu KP on yhteinen R S ( 90 ) ja sivuja KR ja KS vastapäätä olevat kulmat ovat teräviä. Tällöin PKR PKS (ssk). Yhtenevien kolmioiden vastinosina SPK RPK, joten yhdysjana KP puolittaa tangenttikulman SPR.
6 Pyramidi 3 Geometria tehtävien ratkaisut sivu 89 b) Väite: Todistus: Tangenttikulman kyljet ovat yhtä pitkät. 508 Kolmioissa C ja CD on Piirretään tangenttikulman kärjen P ja ympyrän keskipisteen K yhdysjana PK. Kolmioissa SKP ja RKP on KR KS säde sivu KP on yhteinen R S ( 90 ) ja sivuja KR ja KS vastapäätä olevat kulmat ovat teräviä. Tällöin SKP RKP (ssk). Siis 1) C yhteinen ) C DC 90 3) C DC oletus C CD (ksk), joten CD. Näin ollen pylväät ovat yhtä korkeat. Yhtenevien kolmioiden vastinosina PRPS, joten tangenttikulman kyljet ovat yhtä pitkät.
7 Pyramidi 3 Geometria tehtävien ratkaisut sivu Pölypunkki ja siitä mikroskoopilla otettu kuva ovat keskenään yhdenmuotoiset. Merkitään punkin kokoa kirjaimella x. Koska mittakaava on vastinosien pituuksien suhde, saadaan verranto Tapaus 1. Piste P ei ole janalla. Olkoon piste C janan keskipiste. Osoitetaan, että α 90, jolloin suora PC on janan keskinormaali. Koska PP (Piste P on yhtä kaukana janan päätepisteistä) CC (C on janan keskipiste) PC yhteinen niin CP CP (sss). Tällöin vastinkulmat ovat yhtä suuret, joten CP CP α. Saadaan CP + CP 180 α + α 180 α 180 α 90 Tapaus. Piste P on janalla. Väite on triviaali, koska piste P on tällöin janan keskipiste. x x 9 x 0,03 ( cm) Pölypunkin koko on 0,3 mm.
8 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Mittakaava on 1,5 cm 1,5 cm 1 k 5 83 km cm b) Olkoon x Kitisen pituus. Saadaan verranto 139 cm 1 x x cm x cm x 78 km a) 1: b)78 km 51 Tapa 1 Yhdenmuotoisten kuvioiden vastinjanojen suhde on vakio, joten h a h' a' a 3,8 cm ah' a' h,3cm h h' 3,6cm 3,8 3,6 a' 5,7 (cm),3 Tapa Kuvioiden mittakaava k on h, k h' 3,6 3 Siis vastinjanojen suhde on a a' 3 a' a 3,8 5,7 (cm) 3 3 Tontin kanta on 5,7 cm. Merkitään tunnettuja osia kirjaimilla a, h ja h sekä kysyttyä kantaa kirjaimella a.
9 Pyramidi 3 Geometria tehtävien ratkaisut sivu Kolmioiden vastinosien suhde on 8:3. Saadaan verranto 51 a) Vastaavasti x 1 8 x 3 y y 9 8 y Suurennetun kolmion kateetit ovat ja 3. Hypotenuusa on Kolmion sivut ovat, 3 ja 0. Ei voida, sillä ei ole olemassa yhdenmuotoisuuslausetta ss. Kuvassa on esimerkki, joka täyttää annetut ehdot, mutta kolmiot eivät ole yhdenmuotoiset. b) C C E F Kyllä, kolmiossa C on kaksi yhtä suurta kulmaa kuin kolmiossa DEF, joten kolmiot ovat yhdenmuotoiset lauseen kk perusteella. F D D E
10 Pyramidi 3 Geometria tehtävien ratkaisut sivu 93 c) D 515 Koska C DE (kk, yhteinen kulma ja suora kulma), saadaan yhtälö C E F x 1, x 1 1,8 1 1,8 x, (m) 6 Kolmioissa C ja DEF kaksi sivua ovat verrannolliset ja näistä sivuista toisten vastaiset kulmat ovat yhtä suuret. Tällöin kolmiot ovat yhdenmuotoiset, jos toisten verrannollisten sivujen C ja EF vastaiset kulmat ovat samaa tyyppiä eli joko teräviä, suoria tai tylppiä. Pylvään korkeus on, m. Kulmat C ja DEF ovat tylppiä. Jos kolmiossa on tylppä kulma, on kaikkien muiden kulmien oltava teräviä, koska kolmion kulmien summa on 180º. Tällöin myös kulmat C ja FDE ovat molemmat teräviä, eli ne ovat teräviä. Kolmiot ovat siis yhdenmuotoiset lauseen ssk perusteella.
11 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Koska niin FD FE (ristikulmat) DF FE (samankohtaiset kulmat ja D C) FD EF (kk) Tällöin vastinsivut ovat suoraan verrannolliset, joten F D C FD F E x FD C 3x F FD E D E C 1 3 F: FD 1: 3 Todistus: Kolmioissa C ja DEC on C DC sivun keskipiste C yhteinen CEC sivun keskipiste joten C DEC (sks). Yhdenmuotoisissa kolmioissa vastinkulmat ovat yhtä suuret, joten C CDE C CED Samankohtaiset kulmat ovat keskenään yhtä suuret, joten DE. ja DE CD CE 1 1, joten DE. C C Siis kolmion sivujen keskipisteiden yhdysjana on kolmannen suuntainen ja pituudeltaan puolet siitä.
12 Pyramidi 3 Geometria tehtävien ratkaisut sivu 95 b) 518 a) Piirretään mallikuva ja siihen janat ja ED x 13 E D x C a)-kohdan tuloksen perusteella kysytyn yhdysjanan pituus on puolet kolmion toisen kateetin pituudesta. Merkitään kolmion toista kateettia kirjaimella x. Pythagoraan lauseen avulla saadaan yhtälö x x x x 1 x ± 1 x> 0 x 1 Siis kysytyn yhdysjana pituus on 1 6. a) Pikkukolmion ala on 16 % alkuperäisen kolmion alasta. b) Yhdysjanan pituus on 6. Kolmioissa C ja EDC C ECD ristikulmat C DEC samaa kaarta vastaavat kehäkulmat Tällöin kolmiot C ja EDC ovat yhdenmuotoiset (kk) Kolmioiden vastinosista saadaan yhtälö x 7 3 3x x 9 3 3
13 Pyramidi 3 Geometria tehtävien ratkaisut sivu 96 b) 519 a) Mittakaava 7,5 cm 3 k 5cm Koska E samaa kaarta vastaavat kehäkulmat C on yhteinen niin CD EC (kk) Saadaan verranto x ( x + 3) 1 3x x 5 5 x 3 b) ' k ' k 9 ' Kuinka monta prosenttia on suurempi kuin? 5 5 ' 100 % 100% 15% a) 3: b) 15 % a) 1 9 b) 1 3 3
14 Pyramidi 3 Geometria tehtävien ratkaisut sivu Merkitään alkuperäisen suorakulmion sivuja kuvan mukaisesti kirjaimilla x ja y. 36 a) Suorakulmion sivuja pienennettiin 36% eli suhteessa 6:100 eli 16:5. Vastinosien suhde on siis 16 : 5. Saadaan yhtälö Vastaavasti x 5 16x x 56,5 56 (mm) x 5 16x x 75 (mm) 16 x y b) Suorakulmion alaa pienennettiin 36% eli suhteessa 6:100 eli 16:5. Koska pinta-alojen suhde on mittakaavan neliö, saadaan yhtälö 16 k 5 k ± k > 0 5 k 5 Vastinosien suhde on siis : 55. Saadaan yhtälö 36 x 5 x x 5 (mm) Vastaavasti 8 x 5 x 0 x 60 (mm) a)75 mm ja 56 mm b)60 mm ja 5 mm
15 Pyramidi 3 Geometria tehtävien ratkaisut sivu Mittakaava on 70 cm 7 0 cm Tilavuuksien suhde on V V jalkapallo tennispallo 3 7,875 3 Jalkapallon tilavuus on 3-kertainen. 5 Vastinosien pituuksien suhde on mittakaava 8cm 8 k 11 cm 11 Pinta-alojen suhde on 98 cm ' k 8 k 11 ' k 8 ' 98cm 11 ' 157, cm ' 158cm Tilavuuksien suhde on V,8 dl V ' 3 k 8 V k 11 3 V' k V 8 V ',8dl 11 V ' 1,86... dl V ' 1,8dl 3 Pienemmän rasian ala on 158 cm ja tilavuus 1,8 dl.
16 Pyramidi 3 Geometria tehtävien ratkaisut sivu l 75 cm k 1: R 600 km r 15 cm Mittakaava r 15 cm k R cm 6 ' k ' ' ' , km ' , cm ' 1, cm 1,9 cm 1,9 cm 1 Olkoon pyöräilylenkin pituus luonnossa x. Saadaan yhtälö l k x 1 75cm x x cm x cm Pekka polki siis 15 km. Koska pyöräily kesti puolitoista tuntia, keskivauhti oli v matka 15 km 10 km/h aika 1,5 h Matka oli 15 km ja keskinopeus 10 km/h.
17 Pyramidi 3 Geometria tehtävien ratkaisut sivu Olkoon uuden lakanan pituus 100 x. Tällöin pestyn lakanan pituus on 9 x. Lakanoiden mittakaava on lojen suhde on 9x 7 k 100x Neliön ala neliö 9. Olkoon neliön sivu x. x 9 x ± 3 ( ) 88 % ' 7 100% 100% 50 88,36% 88% C DEC (kk), sillä 1) C on yhteinen ) E, samankohtaiset kulmat ja DE h DE h 3 5 h 3 h 3 5( h 3) 3h 5h 15 3h h h Kolmion ala kolmio
18 Pyramidi 3 Geometria tehtävien ratkaisut sivu 101 Prosentteina 57 neliö kolmio 100% 8 % 9 100% % 75 8% h h 1 h h eli h h eli h h Siis h3 h1 h1 19 mm 7 7 h mm 9 38,77... mm 39 mm 39 mm
19 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Kartan mittakaava on 1cm 1cm 1cm k 1: km m cm Matka luonnossa on, (km). : a) Mittakaava on 1: b) Tapaaminen Mäntässä, jonne on linnuntietä Turusta noin 10 km. b) Piirretään kolmio, jonka kärkinä ovat Turku, Lappeenranta ja Nivala. Kärjistä on yhtä pitkä matka paikkaan, jossa kolmion keskinormaalit leikkaavat. Piirretään kolmiolle keskinormaalit. Keskinormaalit leikkaavat paikassa, josta on matkaa kärkiin noin,1 cm.
20 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Kun pienennetään 3-paperi kokoon, pinta-ala pienenee puoleen eli pinta-alojen suhde on 1:. Koska pinta-alojen suhde on mittakaavan neliö, saadaan yhtälö 1 k 1 k ± k > 0 1 k ( 0, ) Tällöin pienennetyn pohjapiirroksen mittakaava on :50 1: b) Olohuoneen todelliset mitat ovat 65 mm 70,7 600 mm,6 m ja 5 mm 70, mm 3,7 m : a) noin 1:71 b),6 m ja 3,7 m 530 Kolmioissa R ja RDC on R CRD CD D joten R RDC (kk). ristikulmat samaa kaarta vastaavat kehäkulmat Koska yhdenmuotoisten kolmioiden vastinsivut ovat suoraan verrannolliset, saadaan yhtälö RD RC R R a b b a a b b 00 a 00 : 00 a 00 a 00 a 00 (m) Polun pituus on 5a 5 00m 1000 m 1 km Toisen polun pituus on 1 km.
21 Pyramidi 3 Geometria tehtävien ratkaisut sivu C DEC Mittakaava on k. 5 Pinta-alojen suhde on pikku iso 100% 16% 5 k 5 5 Pikkukolmion ala on 16 % alkuperäisen kolmion alasta. Koska D (samankohtaiset kulmat ja DE ) ja kulma C on yhteinen, niin DEC C (kk). Tällöin 1 h 1 ' ' a' k eli iso h a 1 1 iso 1 1 iso iso iso iso 1 iso iso iso 1:3
22 Pyramidi 3 Geometria tehtävien ratkaisut sivu a C D 5 Kolmiot C ja CD ovat yhdenmuotoiset lauseen kk perusteella, koska molemmissa on suora kulma ja lisäksi kulma on yhteinen. Vastinsivujen suhteesta saadaan yhtälö C C D 9 a a a 36 a± 6 a> 0 a 6 b Koska kolmio C on suorakulmainen, saadaan Pythagoraan lauseen avulla yhtälö a + b b 81 b 5 b ± 5 b> 0 b 9 5 b 3 5 : Kateetit ovat 6 ja 3 5.
23 Pyramidi 3 Geometria tehtävien ratkaisut sivu Olkoon ympyrän säde r. C h-r Pythagoraan lauseen avulla saadaan ensin ratkaistua h: h h h h ± b> 0 h E F Tällöin Kolmiot EOC ja DC ovat yhdenmuotoiset (kk), sillä kummassakin on suora kulma ja kulma C on yhteinen. Verrannollisista vastinosista saadaan yhtälö 3 r r O 3 r r 3 5 5r 3 ( r) 5r 1 3r 8r 1 1 r 1 r OC 3 C OC h r C 5 Ympyrän säde on 1 1. r h r 3 5
24 Pyramidi 3 Geometria tehtävien ratkaisut sivu Ympyrän halkaisija: Jakosuhde on 15 a: 1 a 15:1 8 8 ( ) a ) a d ( ± ) a a 16a a 15a a d 15 Puoliympyrän sisältämä kehäkulma on suora, joten CD 90. C DC (kk), C on yhteinen ja 90π D Vastinjanojen avulla saadaan verranto Suhteessa 15:1 huipusta lukien. C C CD x CD C d a x d ax d a d x a a a ) D a a a
M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset
Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
LisätiedotC. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
LisätiedotC. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
LisätiedotMonikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155.
Monikulmiot 1. Kulmia 1. a) Kulman ovat vieruskulmia, joten α = 180 5 = 155. b) Kulmat ovat ristikulmia, joten α = 8.. Kulma α ja 47 kulma ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia,
Lisätiedot5 TASOGEOMETRIA. ALOITA PERUSTEISTA 190A. Muunnetaan 23,5 m eri yksiköihin. 23,5 m = 235 dm = 2350 cm = mm ja 23,5 m = 0,0235 km
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 30.7.018 5 TASOGEOMETRIA ALOITA PERUSTEISTA 190A. Muunnetaan 3,5 m eri yksiköihin. 3,5 m = 35 dm = 350 cm = 3 500 mm ja 3,5 m = 0,035
LisätiedotGeometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio
Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun
Lisätiedot5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva.
5 Kertaus: Geometria 5.1 Kurssin keskeiset asiat 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva. 4x 3x 10 cm Muodostetaan Pythagoraan lause ja ratkaistaan sen avulla x. (3 x) (4 x)
LisätiedotMAA3 TEHTÄVIEN RATKAISUJA
MAA3 TEHTÄVIEN RATKAISUJA 1. Piirretään kulman kärki keskipisteenä R-säteinen ympyränkaari, joka leikkaa kulman kyljet pisteissä A ja B. Nämä keskipisteenä piirretään samansäteiset ympyräviivat säde niin
Lisätiedota) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.
Tekijä MAA3 Geometria 14.8.2016 1 a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. b) Pirttiniemenkatu ja Tenholankatu eivät ole yhdensuuntaisia. Väite ei siis pidä paikkaansa.
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
LisätiedotTekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5
Tekijä Pitkä matematiikka 3 1.10.016 176 a) p = πr r = 4,5 = π 4,5 = 8,7... 8 piiri on 8 cm A = πr r = 4,5 b) = π 4,5 = 63,617... 64 Ala on 64 cm p = πd d = 5,0 = π 5,0 = 15,7... 16 piiri on 16 cm r =
LisätiedotTarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m
MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista
Lisätiedot2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite
2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite Tämän päivän lukiogeometrian sisältöjä on melkoisesti supistettu siitä, mitä ne olivat joku vuosikymmen sitten. Sisällöistä ei enää kasata sellaista rakennelmaa,
LisätiedotKertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli
Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat
LisätiedotGEOMETRIAN PERUSTEITA. Maria Lehtonen. Pro gradu -tutkielma Joulukuu 2007 MATEMATIIKAN LAITOS TURUN YLIOPISTO
GEOMETRIN PERUSTEIT Maria Lehtonen Pro gradu -tutkielma Joulukuu 2007 MTEMTIIKN LITOS TURUN YLIOPISTO Sisältö 1 Johdanto 1 2 Peruskäsitteitä 3 2.1 Piste, suora ja taso........................ 3 2.2 Etäisyys..............................
LisätiedotKolmion merkilliset pisteet ja kulman puolittajalause
Kolmion mekilliset pisteet ja kulman puolittajalause GOMTRI M3 iiettäessä kolmioille kulmanpuolittajia, sivujen keskinomaaleja, kokeusjanoja tai mediaaneja eli keskijanoja, niin osoittautuu, että näiden
Lisätiedot2 MONIKULMIOIDEN GEOMETRIAA
Huippu 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14.9.016 MONIKULMIOIDEN GEOMETRIAA POHDITTAVAA 1. a) Lattia päällystetään neliöillä. Laatoitukseen syntyvä toistuva kuvio on b) Lattia
Lisätiedot4.3 Kehäkulma. Keskuskulma
4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet
Lisätiedot3 Ympyrä ja kolmion merkilliset pisteet
3 Ympyrä ja kolmion merkilliset pisteet Ennakkotehtävät. a) Matkapuhelimen etäisyys tukiasemasta A on 5 km. Piirretään ympyrä, jonka keskipiste on tukiasema A ja säde 5 km (5 ruudun sivua). Matkapuhelin
Lisätiedot302 Nelikulmion kulmien summa on ( 4 2) 301 a) Ainakin yksi kulma yli 180. , joten nelikulmio on olemassa. a) = 280 < 360
Pyramidi Geometria tetävien ratkaisut sivu 01 a) Ainakin yksi kulma yli 180. 0 Nelikulmion kulmien summa on ( 4 ) 180 = 60. a) 90 + 190 = 80 < 60, joten nelikulmio on olemassa. Hamotellaan kuvaaja, joon
Lisätiedot203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.
Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Lisätiedot2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
Lisätiedotα + β = 90º β = 62,5º α + β = 180º β 35º+β = 180º +35º β = 107,5º Tekijä MAA3 Geometria Kulma α = β 35º.
K1 Kulma α = β 35º. Tekijä MAA3 Geometria.8.016 a) Komplementtikulmien summa on 90º. α + β = 90º β 35º+β = 90º +35º β = 15º : β = 6,5º Tällöin α = 6,5º 35º= 7,5º. b) Suplementtikulmien summa on 180º. α
LisätiedotVastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa
Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi
LisätiedotValitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!
5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit
Lisätiedot( ) ( ) 1.1 Kulmia ja suoria. 1 Peruskäsitteitä. 1. a) epätosi b) tosi c) tosi d) epätosi e) tosi. 2. a) Kulmat ovat vieruskulmia, joten
1 Peruskäsitteitä 1.1 Kulmia ja suoria 1. a) epätosi b) tosi c) tosi d) epätosi e) tosi. a) Kulmat ovat vieruskulmia, joten α 180 5 155 b) Kulmat ovat ristikulmia, joten α 8. a) Kuvan kulmat ovat ristikulmia,
LisätiedotKlassinen geometria. An elegant weapon for a more civilized age. - Obi-Wan Kenobi. Ville Tilvis, Esa Vesalainen,
Klassinen geometria n elegant weapon for a more civilized age. - Obi-Wan Kenobi Ville Tilvis, Esa Vesalainen, Olli Hirviniemi, leksis Koski, Topi Talvitie 8. marraskuuta 2015 Sisältö Johdanto 1 1 Teoreettiset
LisätiedotMAA03.3 Geometria Annu
1 / 8 2.2.2018 klo 11.49 MAA03.3 Geometria Annu Kokeessa on kolme (3) osaa; Monivalinnat 1 ja 2 ovat pakollisia (6 p /tehtävä, yht. 12 p) B1 osa Valitse kuusi (6) mieleisintä tehtävää tehtävistä 3-10.
Lisätiedot2 Kuvioita ja kappaleita
Kuvioita ja kappaleita.1 Suorakulmaisen kolmion geometriaa 97. a) Kolmion kateettien pituudet ovat 5 ja 39. Hypotenuusan pituutta on merkitty kirjaimella. Sijoitetaan arvot Pythagoraan lauseeseen. 5 (
LisätiedotTekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
LisätiedotPituus on positiivinen, joten kateetin pituus on 12.
Tekijä Pitkä matematiikka 3 10.10.2016 94 Pythagoraan lauseella saadaan yhtälö 15 2 = 9 2 + a 2 a 2 = 15 2 9 2 = 225 81 = 144 a = ± 144 a = 12 tai a = 12 Pituus on positiivinen, joten kateetin pituus on
LisätiedotA-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
LisätiedotYmpyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
LisätiedotHilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen
LisätiedotMAA3 HARJOITUSTEHTÄVIÄ
MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden
LisätiedotGeometriaa kuvauksin. Siirto eli translaatio
Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.
LisätiedotTasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotLukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN
alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä
LisätiedotKolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.
1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.
Lisätiedot[MATEMATIIKKA, KURSSI 8]
2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...
LisätiedotApua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
Lisätiedot15. Suorakulmaisen kolmion geometria
15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen
LisätiedotSumma 9 Opettajan materiaali Ratkaisut
Sisällysluettelo Laskutoimituksia Laskutoimitukset luvuilla Lausekkeiden sieventäminen 8 Yhtälöitä ja prosenttilaskentaa Ensimmäisen ja toisen asteen yhtälö Prosenttilaskenta Tasogeometriaa Tasogeometrian
LisätiedotMuodostetaan vastinpituuksien välinen verrantoyhtälö ja ratkaistaan x. = = : 600
Tekijä 3 Geometria 7.10.016 47 Kartta on yhdenmuotoinen kuva maastosta, jolloin kartan pituudet ja maaston pituudet ovat suoraan verrannollisia keskenään. Merkitään reitin pituutta kartalla kirjaimella
LisätiedotGEOMETRIAN PERUSTEITA
GEOMETRIAN PERUSTEITA POHDITTAVAA. 2. Suurennoksen reunat ovat epäteräviä bittikarttakuvassa mutta teräviä vektorigrafiikkakuvassa.. Peruskäsitteitä ALOITA PERUSTEISTA 0. Kulma α on yli 80. Kulma β on
LisätiedotKERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.
KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )
Lisätiedot2 = 31415,92... 2 31 000 m
Pyamidi Geometia tehtävien atkaisut sivu 6 40 Ympyän halkaisija d 00 m ja säde 00 m. a) kehän pituus p π d d 00 m π 68,... 60 ( m) b) pinta-ala π 00 m π 00 45,9... 40 a) ( ) 000 m a) kehän pituus 60 m
LisätiedotTasokuvioita. Monikulmio: Umpinainen eli suljettu, itseään leikkaamaton murtoviivan rajaama tason osa on monikulmio. B
Tasokuvioita GOMTRI M3 Murtoviiva: Sanotaan, että kaksi janaa on liitetty toisiinsa, jos niiden toinen päätypiste on sama. Peräkkäin toisiinsa liitettyjen janojen muodostamaa viivaa kutsutaan murtoviivaksi,
LisätiedotTYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)
Lisätiedot4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotAvaruusgeometrian perusteita
Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotKun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.
Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =
LisätiedotJuuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Vektorit. Vektori LUVUN. YDINTEHTÄVÄT 0. Piste P jakaa janan BC suhteessa : eli kahteen yhtä suureen osaan. Siten CP CB u ja DP DC CP DC CBv u u v. Vastaavasti DQ DA AQ DA ABu v. 7 7 0. a) Pisteen koordinaatit
Lisätiedot33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
LisätiedotVastaus: Komplementtikulma on 23 ja suplementtikulma on 113. 404. Nelikulmion kulmien summa on 360.
9. Särmiä pitkin matka on a. Avaruuslävistäjää pitkin matka on a + a + a a a Matkojen suhde on 0,577, eli avaruuslävistäjää pitkin kuljettu matka on a 00 % 57,7 % 4, % lyhyempi. Vastaus: 4, % 0. Tilavuus
LisätiedotTYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Valitse Näkymät->Geometria PIIRRETÄÄN KOLMIOITA: suorakulmainen kolmio keksitkö, miten korostat suoraa kulmaa? tasakylkinen kolmio keksitkö,
Lisätiedot7.lk matematiikka. Geometria 3. Hatanpään koulu 7B ja 7C Kevät 2017 Janne Koponen
7.lk matematiikka Hatanpään koulu 7B ja 7C Kevät 2017 Janne Koponen 2 Sisällys 15. Kolmio... 4 16. Nelikulmiot... 8 17. Monikulmiot... 12 18. Pituuksien ja pinta-alojen muutokset... 16 19. Pinta aloja
Lisätiedot1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
LisätiedotRatkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
Lisätiedot{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +
9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +
LisätiedotHUOLTOMATEMATIIKKA 2, MATERIAALI
1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen
LisätiedotHelsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
Lisätiedot1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
Lisätiedot1 Kertausta geometriasta
1 Kertausta geometriasta 1.1 Monikulmiota 1. a) Kolmion kulmien summa on 180. Koska tiedetään kaksi kulmaa, kulma x voidaan laskea. 180 x 35 80 x 180 35 80 x 65 b) Suunnikkaan vastakkaiset kulmat ovat
Lisätiedot11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa.
11. Geometria Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11.1 Valikot ja näppäintoiminnot Kun valitset päävalikosta Geometry, näyttö tyhjenee ja näkyviin ilmestyy uusi painikevalikko
LisätiedotMonikulmiot 1/5 Sisältö ESITIEDOT: kolmio
Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.
LisätiedotTehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
LisätiedotMb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1
Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit
LisätiedotKenguru 2019 Student Ratkaisut
sivu 0 / 22 3 pistettä TEHTÄVÄ 1 2 3 4 5 6 7 8 VASTAUS C B D C B E C A 4 pistettä TEHTÄVÄ 9 10 11 12 13 14 15 16 VASTAUS B B E D A E A A 5 pistettä TEHTÄVÄ 17 18 19 20 21 22 23 24 VASTAUS E E D D C C B
Lisätiedota b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
Lisätiedot1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
LisätiedotGeometriaa GeoGebralla Lisätehtäviä nopeasti eteneville
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä
Lisätiedota) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 01 Arkkitehtimatematiikan koe, 1..01, Ratkaisut (Sarja A) 1. Anna kohdissa a), b) ja c) vastaukset tarkkoina arvoina. a) Mitkä reaaliluvut x toteuttavat
LisätiedotKartio ja pyramidi
Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota
LisätiedotGEOMETRIA MAA3 Geometrian perusobjekteja ja suureita
GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
Lisätiedot10. Jänteiden keskinormaalit kulkevat ympyrän keskipisteen kautta.
Vastaukset: 1. tasasivuisessa kolmiossa on kaikki sivut yhtä pitkiä, tasakylkisessä kolmiossa on kaksi yhtä pitkää sivua. 1. Piirretään kolmion yksi sivu eli jana AB.. Otetaan jana AB säteeksi ja piirretään
Lisätiedot3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan.
KOKEIT KURSSI 2 Matematiikan koe Kurssi 2 () 1. Nimeä kulmat ja mittaa niiden suuruudet. a) c) 2. Mitkä kuvion kulmista ovat a) suoria teräviä c) kuperia? 3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden
Lisätiedot