Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Koko: px
Aloita esitys sivulta:

Download "Pyramidi 3 Geometria tehtävien ratkaisut sivu a)"

Transkriptio

1 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen sks perusteella. b) C C D Ei ole olemassa sellaista kolmioiden yhtenevyyslausetta, jossa olisi pelkkiä kulmia. Kolmiot ovat samanmuotoiset, mutta eivät välttämättä samankokoiset, eivätkä siis yhtenevät. F D E E c) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näistä sivuista toisten vastaiset kulmat ovat yhtä suuret. Tämä viittaa lauseeseen ssk. Kuitenkaan ei ole sanottu, ovatko toisten yhtä pitkien sivujen vastaiset kulmat teräviä vai tylppiä. Kuvassa on esitetty tapaus, jossa toinen näistä kulmista on terävä ja toinen tylppä. Kolmiot eivät siis ole yhteneviä. d) C C F D D F Kolmiossa C kaksi yhtä suurta kulmaa kuin kolmiossa DEF ja näiden kulmien väliset sivut ovat yhtä pitkät, joten kolmiot ovat yhtenevät yhtenevyyslauseen ksk perusteella. E

2 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) C b) C Koska D C C (Tasakylkinen kolmio C) D D (CD on mediaani) CD yhteinen sivu, niin DC DC (sss). Tällöin vastinkulmat ovat yhtä suuret, joten. Koska C C (Tasakylkinen kolmio C) CD DC (CD kulman C puolittaja) CD yhteinen sivu, niin D DC DC (sks) Tällöin vastinkulmat ovat yhtä suuret, joten.

3 Pyramidi 3 Geometria tehtävien ratkaisut sivu 86 c) C 503 Väite: Todistus: Suunnikkaan vastakkaiset sivut ovat yhtä pitkät. D Koska C C (Tasakylkinen kolmio C) CD yhteinen sivu < DC < DC (Korkeusjana kohtisuorassa kantaa vastaan) Koska lisäksi yhteisen sivun CD vastaiset kulmat CD ja CD ovat molemmat teräviä niin DC DC (ssk) Tällöin vastinkulmat ovat yhtä suuret, joten. Piirretään suunnikkaalle CD lävistäjä C. Kolmiossa C ja CD on C CD samankohtaiset kulmat, sillä CD C CD samankohtaiset kulmat, sillä C D Sivu C on yhteinen Tällöin C CD (ksk). Yhtenevien kolmioiden vastinosina CD ja CD, joten suunnikkaiden vastakkaiset sivut ovat keskenään yhtä pitkät.

4 Pyramidi 3 Geometria tehtävien ratkaisut sivu Väite: Neljäkkään lävistäjät ovat kohtisuorassa toisiaan vastaan. Väite: Kulmanpuolittajan jokainen piste on yhtä etäällä kulman kyljistä. Todistus: Todistus: Merkitään lävistäjien leikkauspistettä kirjaimella E. E CE CDE DE C CD D E ED ja E EC (sss) neljäkäs suunnikkaan lävistäjät puolittavat toisensa E on vastinkulma yhtenevissä kolmioissa. Merkitään E α. α 360 α 90 joten E 90 kaikissa kolmioissa. Siis C D, joten neljäkkään lävistäjät ovat kohtisuorassa toisiaan vastaan. Valitaan kulman P puolittajalta mielivaltainen piste R ja piirretään pisteen R kautta kulman P kyljille normaalit. Normaalit leikkaavat kulman kyljet pisteissä S ja T. Kolmioissa PSR ja PTR PTR PSR normaalit TPR SPR kulman puolitus Sivu PR on yhteinen Tällöin PSR PTR (kks). Yhtenevien kolmioiden vastinosina RT RS. Koska R on mielivaltainen kulmanpuolittajalla sijaitseva piste, on kulmanpuolittajan jokainen piste yhtä etäällä kulman kyljistä.

5 Pyramidi 3 Geometria tehtävien ratkaisut sivu Mediaanit eli keskijanat puolittavat kolmion sivut. Koska tasasivuisen kolmion keskijanat ovat yhtä pitkät, merkitään osia kirjaimella x. 507 a) Väite: Todistus: Tangenttikulman kärjen ja ympyrän keskipisteen yhdysjana puolittaa tangenttikulman. Mediaanien leikkauspiste jakaa mediaanit :1 kärjestä lukien. Koska tasasivuisen kolmion mediaanit ovat keskenään yhtä pitkät (symmetrisyys), merkitään mediaanin osia y ja y. Pienet kuusi kolmiota ovat keskenään yhteneviä sss-yhtenevyyslauseen mukaan. Piirretään tangenttikulman kärjen P ja ympyrän keskipisteen K yhdysjana PK. Kolmioissa PKR ja PKS on KR KS säde sivu KP on yhteinen R S ( 90 ) ja sivuja KR ja KS vastapäätä olevat kulmat ovat teräviä. Tällöin PKR PKS (ssk). Yhtenevien kolmioiden vastinosina SPK RPK, joten yhdysjana KP puolittaa tangenttikulman SPR.

6 Pyramidi 3 Geometria tehtävien ratkaisut sivu 89 b) Väite: Todistus: Tangenttikulman kyljet ovat yhtä pitkät. 508 Kolmioissa C ja CD on Piirretään tangenttikulman kärjen P ja ympyrän keskipisteen K yhdysjana PK. Kolmioissa SKP ja RKP on KR KS säde sivu KP on yhteinen R S ( 90 ) ja sivuja KR ja KS vastapäätä olevat kulmat ovat teräviä. Tällöin SKP RKP (ssk). Siis 1) C yhteinen ) C DC 90 3) C DC oletus C CD (ksk), joten CD. Näin ollen pylväät ovat yhtä korkeat. Yhtenevien kolmioiden vastinosina PRPS, joten tangenttikulman kyljet ovat yhtä pitkät.

7 Pyramidi 3 Geometria tehtävien ratkaisut sivu Pölypunkki ja siitä mikroskoopilla otettu kuva ovat keskenään yhdenmuotoiset. Merkitään punkin kokoa kirjaimella x. Koska mittakaava on vastinosien pituuksien suhde, saadaan verranto Tapaus 1. Piste P ei ole janalla. Olkoon piste C janan keskipiste. Osoitetaan, että α 90, jolloin suora PC on janan keskinormaali. Koska PP (Piste P on yhtä kaukana janan päätepisteistä) CC (C on janan keskipiste) PC yhteinen niin CP CP (sss). Tällöin vastinkulmat ovat yhtä suuret, joten CP CP α. Saadaan CP + CP 180 α + α 180 α 180 α 90 Tapaus. Piste P on janalla. Väite on triviaali, koska piste P on tällöin janan keskipiste. x x 9 x 0,03 ( cm) Pölypunkin koko on 0,3 mm.

8 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Mittakaava on 1,5 cm 1,5 cm 1 k 5 83 km cm b) Olkoon x Kitisen pituus. Saadaan verranto 139 cm 1 x x cm x cm x 78 km a) 1: b)78 km 51 Tapa 1 Yhdenmuotoisten kuvioiden vastinjanojen suhde on vakio, joten h a h' a' a 3,8 cm ah' a' h,3cm h h' 3,6cm 3,8 3,6 a' 5,7 (cm),3 Tapa Kuvioiden mittakaava k on h, k h' 3,6 3 Siis vastinjanojen suhde on a a' 3 a' a 3,8 5,7 (cm) 3 3 Tontin kanta on 5,7 cm. Merkitään tunnettuja osia kirjaimilla a, h ja h sekä kysyttyä kantaa kirjaimella a.

9 Pyramidi 3 Geometria tehtävien ratkaisut sivu Kolmioiden vastinosien suhde on 8:3. Saadaan verranto 51 a) Vastaavasti x 1 8 x 3 y y 9 8 y Suurennetun kolmion kateetit ovat ja 3. Hypotenuusa on Kolmion sivut ovat, 3 ja 0. Ei voida, sillä ei ole olemassa yhdenmuotoisuuslausetta ss. Kuvassa on esimerkki, joka täyttää annetut ehdot, mutta kolmiot eivät ole yhdenmuotoiset. b) C C E F Kyllä, kolmiossa C on kaksi yhtä suurta kulmaa kuin kolmiossa DEF, joten kolmiot ovat yhdenmuotoiset lauseen kk perusteella. F D D E

10 Pyramidi 3 Geometria tehtävien ratkaisut sivu 93 c) D 515 Koska C DE (kk, yhteinen kulma ja suora kulma), saadaan yhtälö C E F x 1, x 1 1,8 1 1,8 x, (m) 6 Kolmioissa C ja DEF kaksi sivua ovat verrannolliset ja näistä sivuista toisten vastaiset kulmat ovat yhtä suuret. Tällöin kolmiot ovat yhdenmuotoiset, jos toisten verrannollisten sivujen C ja EF vastaiset kulmat ovat samaa tyyppiä eli joko teräviä, suoria tai tylppiä. Pylvään korkeus on, m. Kulmat C ja DEF ovat tylppiä. Jos kolmiossa on tylppä kulma, on kaikkien muiden kulmien oltava teräviä, koska kolmion kulmien summa on 180º. Tällöin myös kulmat C ja FDE ovat molemmat teräviä, eli ne ovat teräviä. Kolmiot ovat siis yhdenmuotoiset lauseen ssk perusteella.

11 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Koska niin FD FE (ristikulmat) DF FE (samankohtaiset kulmat ja D C) FD EF (kk) Tällöin vastinsivut ovat suoraan verrannolliset, joten F D C FD F E x FD C 3x F FD E D E C 1 3 F: FD 1: 3 Todistus: Kolmioissa C ja DEC on C DC sivun keskipiste C yhteinen CEC sivun keskipiste joten C DEC (sks). Yhdenmuotoisissa kolmioissa vastinkulmat ovat yhtä suuret, joten C CDE C CED Samankohtaiset kulmat ovat keskenään yhtä suuret, joten DE. ja DE CD CE 1 1, joten DE. C C Siis kolmion sivujen keskipisteiden yhdysjana on kolmannen suuntainen ja pituudeltaan puolet siitä.

12 Pyramidi 3 Geometria tehtävien ratkaisut sivu 95 b) 518 a) Piirretään mallikuva ja siihen janat ja ED x 13 E D x C a)-kohdan tuloksen perusteella kysytyn yhdysjanan pituus on puolet kolmion toisen kateetin pituudesta. Merkitään kolmion toista kateettia kirjaimella x. Pythagoraan lauseen avulla saadaan yhtälö x x x x 1 x ± 1 x> 0 x 1 Siis kysytyn yhdysjana pituus on 1 6. a) Pikkukolmion ala on 16 % alkuperäisen kolmion alasta. b) Yhdysjanan pituus on 6. Kolmioissa C ja EDC C ECD ristikulmat C DEC samaa kaarta vastaavat kehäkulmat Tällöin kolmiot C ja EDC ovat yhdenmuotoiset (kk) Kolmioiden vastinosista saadaan yhtälö x 7 3 3x x 9 3 3

13 Pyramidi 3 Geometria tehtävien ratkaisut sivu 96 b) 519 a) Mittakaava 7,5 cm 3 k 5cm Koska E samaa kaarta vastaavat kehäkulmat C on yhteinen niin CD EC (kk) Saadaan verranto x ( x + 3) 1 3x x 5 5 x 3 b) ' k ' k 9 ' Kuinka monta prosenttia on suurempi kuin? 5 5 ' 100 % 100% 15% a) 3: b) 15 % a) 1 9 b) 1 3 3

14 Pyramidi 3 Geometria tehtävien ratkaisut sivu Merkitään alkuperäisen suorakulmion sivuja kuvan mukaisesti kirjaimilla x ja y. 36 a) Suorakulmion sivuja pienennettiin 36% eli suhteessa 6:100 eli 16:5. Vastinosien suhde on siis 16 : 5. Saadaan yhtälö Vastaavasti x 5 16x x 56,5 56 (mm) x 5 16x x 75 (mm) 16 x y b) Suorakulmion alaa pienennettiin 36% eli suhteessa 6:100 eli 16:5. Koska pinta-alojen suhde on mittakaavan neliö, saadaan yhtälö 16 k 5 k ± k > 0 5 k 5 Vastinosien suhde on siis : 55. Saadaan yhtälö 36 x 5 x x 5 (mm) Vastaavasti 8 x 5 x 0 x 60 (mm) a)75 mm ja 56 mm b)60 mm ja 5 mm

15 Pyramidi 3 Geometria tehtävien ratkaisut sivu Mittakaava on 70 cm 7 0 cm Tilavuuksien suhde on V V jalkapallo tennispallo 3 7,875 3 Jalkapallon tilavuus on 3-kertainen. 5 Vastinosien pituuksien suhde on mittakaava 8cm 8 k 11 cm 11 Pinta-alojen suhde on 98 cm ' k 8 k 11 ' k 8 ' 98cm 11 ' 157, cm ' 158cm Tilavuuksien suhde on V,8 dl V ' 3 k 8 V k 11 3 V' k V 8 V ',8dl 11 V ' 1,86... dl V ' 1,8dl 3 Pienemmän rasian ala on 158 cm ja tilavuus 1,8 dl.

16 Pyramidi 3 Geometria tehtävien ratkaisut sivu l 75 cm k 1: R 600 km r 15 cm Mittakaava r 15 cm k R cm 6 ' k ' ' ' , km ' , cm ' 1, cm 1,9 cm 1,9 cm 1 Olkoon pyöräilylenkin pituus luonnossa x. Saadaan yhtälö l k x 1 75cm x x cm x cm Pekka polki siis 15 km. Koska pyöräily kesti puolitoista tuntia, keskivauhti oli v matka 15 km 10 km/h aika 1,5 h Matka oli 15 km ja keskinopeus 10 km/h.

17 Pyramidi 3 Geometria tehtävien ratkaisut sivu Olkoon uuden lakanan pituus 100 x. Tällöin pestyn lakanan pituus on 9 x. Lakanoiden mittakaava on lojen suhde on 9x 7 k 100x Neliön ala neliö 9. Olkoon neliön sivu x. x 9 x ± 3 ( ) 88 % ' 7 100% 100% 50 88,36% 88% C DEC (kk), sillä 1) C on yhteinen ) E, samankohtaiset kulmat ja DE h DE h 3 5 h 3 h 3 5( h 3) 3h 5h 15 3h h h Kolmion ala kolmio

18 Pyramidi 3 Geometria tehtävien ratkaisut sivu 101 Prosentteina 57 neliö kolmio 100% 8 % 9 100% % 75 8% h h 1 h h eli h h eli h h Siis h3 h1 h1 19 mm 7 7 h mm 9 38,77... mm 39 mm 39 mm

19 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Kartan mittakaava on 1cm 1cm 1cm k 1: km m cm Matka luonnossa on, (km). : a) Mittakaava on 1: b) Tapaaminen Mäntässä, jonne on linnuntietä Turusta noin 10 km. b) Piirretään kolmio, jonka kärkinä ovat Turku, Lappeenranta ja Nivala. Kärjistä on yhtä pitkä matka paikkaan, jossa kolmion keskinormaalit leikkaavat. Piirretään kolmiolle keskinormaalit. Keskinormaalit leikkaavat paikassa, josta on matkaa kärkiin noin,1 cm.

20 Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Kun pienennetään 3-paperi kokoon, pinta-ala pienenee puoleen eli pinta-alojen suhde on 1:. Koska pinta-alojen suhde on mittakaavan neliö, saadaan yhtälö 1 k 1 k ± k > 0 1 k ( 0, ) Tällöin pienennetyn pohjapiirroksen mittakaava on :50 1: b) Olohuoneen todelliset mitat ovat 65 mm 70,7 600 mm,6 m ja 5 mm 70, mm 3,7 m : a) noin 1:71 b),6 m ja 3,7 m 530 Kolmioissa R ja RDC on R CRD CD D joten R RDC (kk). ristikulmat samaa kaarta vastaavat kehäkulmat Koska yhdenmuotoisten kolmioiden vastinsivut ovat suoraan verrannolliset, saadaan yhtälö RD RC R R a b b a a b b 00 a 00 : 00 a 00 a 00 a 00 (m) Polun pituus on 5a 5 00m 1000 m 1 km Toisen polun pituus on 1 km.

21 Pyramidi 3 Geometria tehtävien ratkaisut sivu C DEC Mittakaava on k. 5 Pinta-alojen suhde on pikku iso 100% 16% 5 k 5 5 Pikkukolmion ala on 16 % alkuperäisen kolmion alasta. Koska D (samankohtaiset kulmat ja DE ) ja kulma C on yhteinen, niin DEC C (kk). Tällöin 1 h 1 ' ' a' k eli iso h a 1 1 iso 1 1 iso iso iso iso 1 iso iso iso 1:3

22 Pyramidi 3 Geometria tehtävien ratkaisut sivu a C D 5 Kolmiot C ja CD ovat yhdenmuotoiset lauseen kk perusteella, koska molemmissa on suora kulma ja lisäksi kulma on yhteinen. Vastinsivujen suhteesta saadaan yhtälö C C D 9 a a a 36 a± 6 a> 0 a 6 b Koska kolmio C on suorakulmainen, saadaan Pythagoraan lauseen avulla yhtälö a + b b 81 b 5 b ± 5 b> 0 b 9 5 b 3 5 : Kateetit ovat 6 ja 3 5.

23 Pyramidi 3 Geometria tehtävien ratkaisut sivu Olkoon ympyrän säde r. C h-r Pythagoraan lauseen avulla saadaan ensin ratkaistua h: h h h h ± b> 0 h E F Tällöin Kolmiot EOC ja DC ovat yhdenmuotoiset (kk), sillä kummassakin on suora kulma ja kulma C on yhteinen. Verrannollisista vastinosista saadaan yhtälö 3 r r O 3 r r 3 5 5r 3 ( r) 5r 1 3r 8r 1 1 r 1 r OC 3 C OC h r C 5 Ympyrän säde on 1 1. r h r 3 5

24 Pyramidi 3 Geometria tehtävien ratkaisut sivu Ympyrän halkaisija: Jakosuhde on 15 a: 1 a 15:1 8 8 ( ) a ) a d ( ± ) a a 16a a 15a a d 15 Puoliympyrän sisältämä kehäkulma on suora, joten CD 90. C DC (kk), C on yhteinen ja 90π D Vastinjanojen avulla saadaan verranto Suhteessa 15:1 huipusta lukien. C C CD x CD C d a x d ax d a d x a a a ) D a a a

Laudatur 3. Opettajan aineisto. Geometria MAA3. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 3. Opettajan aineisto. Geometria MAA3. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur Geometria MAA Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava SISÄLLYS Ratkaisut kirjan tehtäviin... Kokeita.... painos 006 Tekijät

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o. KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kenguru 2014 Junior sivu 1 / 15 (lukion 1. vuosikurssi) RATKAISUT

Kenguru 2014 Junior sivu 1 / 15 (lukion 1. vuosikurssi) RATKAISUT Kenguru 2014 Junior sivu 1 / 15 3 pistettä 1. Kenguru-kilpailu on joka vuosi maaliskuun kolmantena torstaina. Mikä on ensimmäinen mahdollinen päivä kilpailulle? (A) 14.3. (B) 15.3. (C) 20.3. (D) 21.3.

Lisätiedot

AVOIN MATEMATIIKKA 8 lk. Osio 3: Tasogeometriaa

AVOIN MATEMATIIKKA 8 lk. Osio 3: Tasogeometriaa Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 8 lk. Osio 3: Tasogeometriaa Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 Osio 3: Tasogeometriaa 1. Yhtenevät ja yhdenmuotoiset kuviot...

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja

AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 Osio 2: Kuvioiden luokittelua ja pinta-aloja

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Kenguru 2015 Student Ratkaisut

Kenguru 2015 Student Ratkaisut sivu 1 / 16 3 pistettä 1. Mistä kuviosta on väritetty puolet? (A) (B) (C) (D) (E) 2. Mikä seuraavista luvuista on lähinnä lukua 20,15 51,02? (A) 10 (B) 100 (C) 1 000 (D) 10 000 (E) 100 000 Ratkaisu: 20,15

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

x 2 1+x 2 2 = (x 1 +x 2 ) 2 2x 1 x 2 = a 2 2( a 2) = a 2 +2a+4 = a 2 +2a+4 = (a+1) 2 +3 3. Edellisessä epäyhtälössä on yhtäsuuruus, kun a = 1.

x 2 1+x 2 2 = (x 1 +x 2 ) 2 2x 1 x 2 = a 2 2( a 2) = a 2 +2a+4 = a 2 +2a+4 = (a+1) 2 +3 3. Edellisessä epäyhtälössä on yhtäsuuruus, kun a = 1. Pythagoraan polku 5.4.008 RATKAISUT. Määritä se a, jolla yhtälön x + ax a = 0 ratkaisujen neliöden summa on pienin. Kun. asteen termin kerroin on, niin ratkaisujen summa on. asteen termin kertoimen vastaluku

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

AVOIN MATEMATIIKKA 9 lk. Osio 2: Trigonometriaa ja geometrian tietojen syventämistä

AVOIN MATEMATIIKKA 9 lk. Osio 2: Trigonometriaa ja geometrian tietojen syventämistä Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 9 lk. Osio : Trigonometriaa ja geometrian tietojen syventämistä Sisältö on lisensoitu avoimella CC BY.0 -lisenssillä. 1 Osio : Trigonometriaa ja geometrian

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Taso. Hannu Lehto. Lahden Lyseon lukio

Taso. Hannu Lehto. Lahden Lyseon lukio Taso Hannu Lehto Lahden Lyseon lukio Taso avaruudessa Piste P 0 ja tason normaalivektori n määräävät tason. n=a i+b j+c k P 0 (x 0,y 0,z 0 ) Hannu Lehto 17. syyskuuta 2010 Lahden Lyseon lukio 2 / 7 Taso

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Analyyttistä geometriaa kilpailutehtävien kautta

Analyyttistä geometriaa kilpailutehtävien kautta nalyyttistä geometriaa kilailutehtävien kautta Jouni Seänen. 4. 04 Johdanto. Joskus kehäkulmalauseeseen kyllästyy ja haluaa ratkaista geometrian tehtävän algebrallisesti. Tässä monisteessa esitetään tarkoitukseen

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten? Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu

Lisätiedot

Lukion. Calculus. Kertauskirja. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava TEHTÄVIÄ KURSSIEN MAA1 10 YDINAIHEISTA RATKAISUINEEN

Lukion. Calculus. Kertauskirja. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava TEHTÄVIÄ KURSSIEN MAA1 10 YDINAIHEISTA RATKAISUINEEN Calculus Lukion MAA Kertauskirja Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava TEHTÄVIÄ KURSSIEN MAA 0 YDINAIHEISTA RATKAISUINEEN Pitkä matematiikka Kertauskirja Tehtäväsarjat ja niiden ratkaisut Tehtäväsarjoja

Lisätiedot

Suora. Hannu Lehto. Lahden Lyseon lukio

Suora. Hannu Lehto. Lahden Lyseon lukio Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat Harjoitustehtävät, joulukuu 013, (ehkä vähän) vaativammat Ratkaisuja 1. Viisinumeroinen luku a679b on jaollinen 7:lla. Määritä a ja b. Ratkaisu. Luvun on oltava jaollinen 8:lla ja 9:llä. Koska luku on

Lisätiedot

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1

Lisätiedot

Viisi lukion geometrian oppikirjaa

Viisi lukion geometrian oppikirjaa Solmu 2/2007 1 Viisi lukion geometrian oppikirjaa Matti Lehtinen Maanpuolustuskorkeakoulu Paavo Jäppinen, Alpo Kupiainen ja Matti Räsänen: Lukion Calculus 2. MAA3 Geometria. MAA4 Analyyttinen geometria.

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Thaleen lause. Puoliympyrän sisältämä kehäkulma on suora. (Thales Miletolainen, n. 634 n. 547 eaa)

Thaleen lause. Puoliympyrän sisältämä kehäkulma on suora. (Thales Miletolainen, n. 634 n. 547 eaa) Nimekästä geometriaa Matemaattisiin lauseisiin tai muihin tuloksiin viitataan usein henkilönnimin. Yleensä tällaiset asiat ovat jotenkin tärkeitä, ja niiden todistuksiin tutustuminen opettavaa. Thaleen

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Euroopan tyttöjen matematiikkaolympialaiset Antalyassa, Turkissa, 10. 16.4.2014

Euroopan tyttöjen matematiikkaolympialaiset Antalyassa, Turkissa, 10. 16.4.2014 Solmu 3/2014 1 Euroopan tyttöjen matematiikkaolympialaiset Antalyassa, Turkissa, 10. 16.4.2014 Anne-Maria Ernvall-Hytönen Matematiikan ja tilastotieteen laitos, Helsingin yliopisto Mirjam Kauppila Matematiikan

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

9. Harjoitusjakso III

9. Harjoitusjakso III 9. Harjoitusjakso III Seuraavaksi harjoitellaan kuvien ja tekstin lisäämistä piirtoalueelle. Tarjolla on aikaisempien harjoittelujaksojen tapaan kahden tasoisia harjoituksia: perustaso ja edistynyt taso.

Lisätiedot

Pitkän matematiikan kertaustehtävät

Pitkän matematiikan kertaustehtävät Pitkän matematiikan kertaustehtävät Kurssit 1-10 Tehtäväpaketti soveltuu erityisen hyvin koko pitkän matematiikan pakollisen oppimäärän kertaamiseen lyhyessä ajassa. Asioiden käsittelyjärjestys ja kappalejako

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 13 3 pistettä 1. Kauppias Koikkalainen on maalannut liikkeensä ikkunaan kukkakuvion. Miltä kukkakuvio näyttää ikkunan toiselta puolelta katsottuna? (A) (B) (C) (D) (E) Vasen ja oikea vaihtuvat

Lisätiedot

x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y a + n 1 n a a + 1 a +. On myös helppo tarkastaa, että ratkaisut toteuttavat yhtälön.

x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y a + n 1 n a a + 1 a +. On myös helppo tarkastaa, että ratkaisut toteuttavat yhtälön. Kotitehtävät joulukuu 20 Helpopi sarja 1. Ratkaise yhtälöryhä x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y reaaliluvuilla x y ja z. Ratkaisu. Jokainen luvuista on puolet kahden neliön suasta ja siten välttäättä

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Kenguru 2011 Benjamin (6. ja 7. luokka)

Kenguru 2011 Benjamin (6. ja 7. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka 4..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

TEHTÄVÄVINKKEJÄ MATEMATIKKAAN

TEHTÄVÄVINKKEJÄ MATEMATIKKAAN Viinikankatu 49a, 33800 TAMPERE Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi TEHTÄVÄVINKKEJÄ MATEMATIKKAAN I LOOGISET PALAT 1) Laita kaikki LOOGISET PALAT eteesi työpöydälle.

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10

10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10 Helsingin ylioisto, Itä-Suomen ylioisto, Jyväskylän ylioisto, Oulun ylioisto, Tamereen ylioisto ja Turun ylioisto Matematiikan valintakokeen 3.6.0 ratkaisut. Oletetaan, että litralla (uhdasta) bensiiniä

Lisätiedot

454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet

454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet Ohje Tevellan tuotteelle Viinikankatu 49 A, 33800 Tampere Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi Pieni kuutio V=AxH V=(sxs)xH V=(2,5x2,5)x2,5 V=15,6 cm 3 Suuri kuutio

Lisätiedot

Kreikkalainen historioitsija Herodotos kertoo, että Niilin tulvien hävittämät peltojen rajat loivat maanmittareiden

Kreikkalainen historioitsija Herodotos kertoo, että Niilin tulvien hävittämät peltojen rajat loivat maanmittareiden MAB2: Geometrian lähtökohdat 2 Aluksi Aloitetaan lyhyellä katsauksella geometrian historiaan. Jatketaan sen jälkeen kuvailemalla geometrian atomeja, jotka ovat piste ja kulma. Johdetaan näistä lähtien

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2008 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Pohjoismaisten matematiikkakilpailujen tehtävät ja ratkaisut 1995 2015

Pohjoismaisten matematiikkakilpailujen tehtävät ja ratkaisut 1995 2015 Pohjoismaisten matematiikkakilpailujen tehtävät ja ratkaisut 995 05 Tehtävät 9. Pohjoismainen matematiikkakilpailu, 5.3.995 995.. Olkoon AB O-keskisen ympyrän halkaisija. Valitaan ympyrän kehältä pistec

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

1.2 Yhtälön avulla ratkaistavat probleemat

1.2 Yhtälön avulla ratkaistavat probleemat 1.2 Yhtälön avulla ratkaistavat probleemat Kun matemaattista probleemaa lähdetään ratkaisemaan yhtälöä hyväksi käyttäen, tilanne on vaikeampi kuin ratkaistaessa yhtälöä mekaanisesti. Nyt on näet itse laadittava

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 13 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 13 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 13 Oikeat vastaukset on alleviivattu ja lihavoitu. 3 pistettä 1. Pasi aikoo maalata seinälle iskulauseen ELÄKÖÖN KENGURU. Hän haluaa maalata eri kirjaimet aina eri väreillä,

Lisätiedot

sanat nimet kätensä toimia toistaa ymmärtänyt

sanat nimet kätensä toimia toistaa ymmärtänyt AISTIVÄLINEET Aistivaikutelmat, joita lapsi saa, ja joita hän on jo koko olemassaolonsa aikana varastoinut, eivät pelkästään riitä, kun lapsi on rakentamassa älyään. Ne ovat tiedostamattomia, eikä lapsi

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

MFKA-Kustannus MAOL-Palvelu. Matematiikan välineitä

MFKA-Kustannus MAOL-Palvelu. Matematiikan välineitä MFKA-Kustannus MAOL-Palvelu Matematiikan välineitä Toiminnallinen matematiikka Kymmenjärjestelmä - sarja 1 JW0141 100 keltaista yksikköä 10 vihreätä sauvaa 10 sinistä levyä 1 punainen kuutio Kymmenjärjestelmä

Lisätiedot

2.3. Lausekkeen arvo tasoalueessa

2.3. Lausekkeen arvo tasoalueessa Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät

Lisätiedot

Laudatur 1. Opettajan aineisto. Funktiot ja yhtälöt MAA1. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 1. Opettajan aineisto. Funktiot ja yhtälöt MAA1. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur Funktiot ja yhtälöt MAA Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava Toimittaja: Sanna Mäkitalo Taitto: Tekijät. painos Painovuosi

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla Tähtitieteellinen merenkulkuoppi on oppi, jolla määrätään aluksen sijainti taivaankappaleiden perusteella. Paikanmääritysmenetelmänäon ristisuuntiman

Lisätiedot

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään Ohjelmointi Ohjelmoinnissa koneelle annetaan tarkkoja käskyjä siitä, mitä koneen tulisi tehdä. Ohjelmointikieliä on olemassa useita satoja. Ohjelmoinnissa on oleellista asioiden hyvä suunnittelu etukäteen.

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot