Luku 11. Logiikkaohjelmoinnin idea Logiikkakieli
|
|
- Juho Pesonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luku 11 Logiikkaohjelmoinnin idea Logiikkaohjelmoinnin perusidea on esittää ohjelmointiongelma faktoina (aksioomina) ja päättelysääntöinä sekä kyselynä, joka kohdistuu näiden muodostamaan tietojoukkoon. Tässä monisteessa on jo esitetty runsaasti logiikkaohjelmaesimerkkejä, sillä jokainen operationaalinen merkitysoppi on aika lähellä logiikkaohjelmaa Logiikkakieli Määritellään aluksi yksinkertainen logiikkakieli: A,..., O, Q, R, T,..., Z VariableNames a,..., o, v,..., z ConstantNames t, u Terms t, u ::= X f ((t) + ) a p, q Predicates p, q ::= f ((t) + ) a r, s Rule r, s ::= (p) p P Programs P ::= r ; p Ohjelma koostuu jonosta sääntöjä p 1,..., p n p (jossa n = 0 on täysin mahdollinen), joita seuraa predikaatti eli tavoite (engl. goal) tai kysely (engl. query). Sääntö tulkitaan väitteeksi jos jokainen p i (i = 1,..., n) pätee, niin p pätee ; siinä p on johtopäätös ja p i premissejä. Sääntö sitoo kaikki 113
2 114 LUKU 11. LOGIIKKAOHJELMOINNIN IDEA siinä esiintyvät muuttujat; muissa yhteyksissä muuttujat ovat aina vapaita. Kielen konkreetti syntaksi voi olla melkein mitä vain. Prolog käyttää - symbolin sijalla merkintää :- ja sijoittaa johtopäätöksen ja premissit toisin päin merkkiin nähden sekä lisäksi tukee koko joukkoa erityismerkintätapoja, mutta olennaisilta osiltaan se käyttää yllä kuvattua abstraktia kielioppia. Puolimuodolliset operationaaliset merkitysopit, kuten tässä monisteessa esitetyt, esittävät säännöt kaksiulotteisesti, jolloin -symbolin paikalla on päättelysäännön vaakasuora viiva; näissä kielissä myös termit ja predikaatit käyttävät usein erityismerkintätapoja. Pohjimmiltaan niissäkin on kuitenkin kyse edellä kuvatusta abstraktista kielestä. Ohjelman tuloksena on vastaus seuraavaan kysymykseen: Millä kaikilla tavoitteessa esiintyvien muuttujien arvoilla tavoite on osoitettavissa (ohjelman sääntöjä käyttäen) todeksi? Toisin sanoen, imperatiivisen ohjelman tavoin, logiikkaohjelma tuottaa (IOsivuvaikutukset unohtaen) muuttujien arvon lopputuloksenaan; mutta toisin kuin imperatiivinen ohjelma, se voi tuottaa useampia kuin yhden vastauksen, tai vastauksen puutteen (tavoitetta ei ole osoitettavissa todeksi millään muuttujien arvoilla). Tarkastellaan seuraavassa logiikkaohjelmointikielen toimintaperiaatteita Korvaukset Seuraavassa rajoitutaan tarkastelemaan vain termejä, koska jokainen predikaatti on muodollisesti myös termi. Logiikkaohjelmointikielen toiminnan määrittelyssä tarvitaan aiemmista kielistä tuttu vekotin, osittaisfunktio muuttujien nimiltä arvoille. Toisi kuin aiemmissa kielissä, arvot ovat termejä. Myös toisin kuin aiemmissa kielissä, näillä osittaisfunktoilla on uusi kollektiivinimi: korvaus (engl. substitution). Tämän nimen taustalla on se ajatus, että korvaus on normaalin muuttujankorvausoperaattorin yleistys, eräänlainen rinnakkainen muuttujankorvaus. Korvauksen soveltaminen termiin ja predikaattiin on varsin helppo määritellä (huomaa, että tσ tarkoittaa korvauksen σ soveltamista ter-
3 11.3. SAMASTUS 115 miin t): Xσ = { X σ(x) jos σ(x) muuten (11.1) aσ = a (11.2) f ((t i ) n i=1 )σ = f ((t iσ) n i=1 ) (11.3) Kahden korvauksen σ ja θ yhdistäminen, jota merkitään σθ, määritellään siten, että seuraava yhtälö pätee kaikilla termeillä t: t(σθ) = (tσ)θ (11.4) Toisin sanoen: { θ(x) (σθ)(x) = θ(σ(x)) jos σ(x) jos θ(σ(x)) = X Huomaa järjestyksen vaihtuminen! Yksinkertaisuuden vuoksi sovitaan, että millekään korvaukselle σ ja millekään muuttujalle X ei päde σ(x) = X, koska kaikille termeille t pätee tσ = tσ, missä σ = σ dom σ\{x}. Korvauksille voidaan määritellä esijärjestys 1 seuraavasti: σ θ ( σ on yleisempi kuin θ ) pätee, jos on olemassa korvaus η, jolle pätee ση = θ. Se ei ole osittaisjärjestys, sillä voi olla σ θ ja θ σ ja silti σ = θ, esimerkiksi jos σ = {(X, Y)} ja θ = {(Y, X)}. Niinpä määritelläänkin uusi ekvivalenssirelaatio seuraavasti: Jos σ θ ja θ σ, pätevät niin silloin σ θ ( σ ja θ ovat muuttujanvaihtoa vaille samat ) pätee Samastus Baader ja Snyder (2001) ovat laatineet kattavan esityksen samastuksesta. Määritelmä 4. Olkoon T joukko termejä. Korvaus σ on näiden termien samastin (engl. unifier), jos 1. dom σ t T FV(t) ja 2. jokaiselle t, u T pätee tσ = uσ. 1 Esijärjestys (engl. preorder) on refleksiivinen ja transitiivinen relaatio, joka ei välttämättä täytä symmetrisyys- tai antisymmetrisyysvaatimusta.
4 116 LUKU 11. LOGIIKKAOHJELMOINNIN IDEA Ensimmäinen ehto ei ole oikeastaan tarpeen, mutta sillä rajataan pois epäolennaisuuksia. Määritelmän olennainen sisältö on toisessa ehdossa. Esimerkiksi termien f (2, X) ja f (X, 2) (ainoa) samastin on {(X, 2)} ja termien f (2, g(x)) ja f (X, Y) (ainoat) samastimet ovat {(X, 2), (Y, g(2))} ja {(X, 2), (Y, g(x))}. Termien f (X) ja f (Y) samastimia ovat muiden muassa {(X, Y)}, {(Y, X)} ja {(X, g(3)), (Y, g(3))}. Määritelmä 5. Termijoukon samastin σ on sen yleisin samastin (engl. most general unifier), jos kaikille kyseisen termijoukon samastimille θ pätee σ θ. Termijoukon T yleisintä samastinta, jos se on olemassa, merkitään mgu T. Yleisin samastin on muuttujanvaihtoa vaille yksikäsitteinen. Esimerkiksi termien f (X) ja f (Y) yleisimpiä samastimia ovat {(X, Y)}, {(Y, X)} ja {(X, Z), (Y, Z)}; ne ovat kaikki muuttujanvaihtoa vaille samoja. Samastusongelmaksi (engl. unification problem) sanotaan seuraavaa ohjelmointitehtävää: On annettu (äärellinen) joukko termejä. Selvitä, onko tällä joukolla yleisintä samastinta, ja jos on, laske sellainen. Algoritmia, joka ratkaisee samastusongelman, sanotaan samastusalgoritmiksi (engl. unification algorithm). Eräs yksinkertainen kahden termin samastusalgoritmi toimii seuraavasti: function mgu(t,u ): local σ := local procedure unify(t,u): if ISVAR(t): t := tσ if ISVAR(u): u := uσ if ISVAR(t) t = u: if t FV(u): throw occurs check failure σ := σ{(t, u)} else if ISVAR(u) t = u: if u FV(t): throw occurs check failure σ := σ{(u, t)} else if HEAD(t) = HEAD(u) ARITY(t) = ARITY(u): for i = 1 to ARITY(t):
5 11.4. LOGIIKKAOHJELMAN SUORITUS 117 unify(subterm(t, i),subterm(u, i)) else: throw symbol mismatch unify(t,u ) return σ Algoritmissa käytetään seuraavia apufunktioita: ISVAR(t) = (t VariableNames) { f jos (u) + : t = f ((u) + ) HEAD(t) = t muuten { n jos f, (t) + : t = f ((t ARITY(t) = i ) i=1 n ) 0 muuten SUBTERM(t, k) = t k jos n k, (u i ) n i=1 : t = f ((t i) n i=1 ) Algoritmin idea on varsin yksinkertainen: käydään termejä rinnakkain rekursiivisesti läpi. Jos ne jossain kohtaa eroavat muutoin kuin muuttujan kohdalla, algoritmi epäonnistuu ( symbol mismatch ). Muuttujan kohdalla samastinehdokasta σ täydennetään. Ainoa hämmennystä ehkä aiheuttava kohta on esiintymistarkastus eli occurs check. Jos sitä ei olisi, algoritmi väittäisi, että termien X ja f (X) yleisin samastin olisi σ = {(X, f (X))}. Se ei kuitenkaan ole näiden termien samastin: Xσ = f (X) = f ( f (X)) = f (X)σ. Näillä termeillä ei ole samastinta lainkaan: ainoa mahdollisuus olisi σ = {(X, f ( f ( )))}, mutta äärettömän laajat termit eivät ole sallittuja Logiikkaohjelman suoritus Oletetaan aluksi, että eri säännöissä on eri muuttujat ja että tavoitteen muuttujat eivät esiinny säännöissä. Koska kukin sääntö sitoo muuttujansa, tämä on mahdollista varmistaa vaihtamalla säännöissä muuttujien nimiä tarpeen mukaan. Logiikkaohjelman suorituksen ydin on kulloisenkin tavoitteen q todistusyritys. Ohjelman säännöt käydään yksi kerrallaan läpi, kunnes löytyy jokin sellainen sääntö (p i ) i=1 n p, jolle mgu{p, q} on määritelty, toisin sanoen jolle p ja q samastuvat (engl. unify). Tällöin kyseinen sääntö tulee ikään kuin aliohjelman tavoin suoritettavaksi; jos n = 0, tämä tehtävä on
6 118 LUKU 11. LOGIIKKAOHJELMOINNIN IDEA triviaali. Koko säännöllä on oltava yhteinen samastin: ensimmäisen premissin samastimen tulee tarkentaa johtopäätöksen samastinta, ja toisen premissin samastimen tulee tarkentaa ensimmäisen premissin samastinta; näin siksi, että sama muuttuja on koko säännön ajan sama muuttuja, ja sillä pitää olla koko säännön ajan sama tulkinta. Mikäli jonkin tavoitteen kohdalla päästään koko sääntölistan loppuun asti, katsotaan tavoitteen todistus epäonnistuneeksi. Mikäli kyse oli alkuperäisestä koko ohjelman tavoitteesta, ohjelma päättyy. Muuten kyse oli tavoitteesta, joka oli jonkin säännön premissi, ja sen suorituksen syynä oli jokin toinen tavoite q, joka samastui säännön johtopäätökseen. Tällöin suoritus peruuttaa (engl. backtrack): kyseine sääntö hylätään ikään kuin samastus olisi epäonnistunut ja suoritus jatkaa tavoitteen q todistusta alkaen seuraavasta vielä soveltamattomasta säännöstä. Peruutusta logiikkaohjelmassa käytetään myös onnistuneen todistuksen jälkeen, jos tarkoituksena on selvittää kaikki mahdolliset alkuperäisessä tavoitteessa esiintyvien muuttujien onnistumisen aiheuttavat arvot. Esimerkkinä tarkastellaan Salminen ja Väänänen (1997) innoittamana kaupunkiverkkoja. Olkoon meillä seuraava säännöstö: yhteys(lontoo, lontoo), (11.5) yhteys(lontoo, pariisi), (11.6) yhteys(lontoo, praha), (11.7) yhteys(lontoo, rooma), (11.8) yhteys(pariisi, lontoo), (11.9) yhteys(pariisi, pariisi), (11.10) yhteys(pariisi, praha), (11.11) yhteys(pariisi, rooma), (11.12) yhteys(praha, lontoo), (11.13) yhteys(praha, pariisi), (11.14) yhteys(praha, praha), (11.15) yhteys(praha, rooma), (11.16) yhteys(rooma, lontoo), (11.17) yhteys(rooma, pariisi), (11.18) yhteys(rooma, praha), (11.19) yhteys(rooma, rooma) (11.20)
7 11.5. SAMASTUS PARAMETRINVÄLITYSMEKANISMINA 119 Nyt kysely yhteys(pariisi, X) käy sääntölistaa läpi yksi kerrallaan kunnes löytää säännön, jonka johtopäätös samastuu kyselyn kanssa; se on sääntö (11.9), ja samastin on {(X, lontoo)}. Koska säännöllä ei ole premissejä, säännön suoritus onnistuu heti, ja käyttäjälle tulostetaan X = lontoo. Sen jälkeen peruutetaan ja etsitään seuraava sopiva sääntö, joka on (11.10); samastin on {(X, pariisi)} ja käyttäjälle tulostetaan X = pariisi. Näin jatkaen käyttäjälle tulostetaan myös X = praha ja X = rooma, minkä jälkeen ei enää samastuvia sääntöjä löydy ja ohjelman suoritus päättyy. Lisätään nyt kaksi sääntöä: yhteys(lontoo, glasgow), (11.21) yhteys(a, B), yhteys(b, C) yhteys(a, C) (11.22) Nyt kyselyn yhteys(x, glasgow) suoritus löytää sopivan säännön vasta säännöstä (11.22), ja (eräs) samastin on {(A, X), (C, glasgow)}. Tällä säännöllä on kaksi premissiä, joten suoritus joutuu tarkastelemaan ensiksi tavoitetta yhteys(x, B). Jo sääntö (11.5) tuottaa sen kohdalla tuloksen, samastimena {(X, lontoo), (B, lontoo)}. Koska tuolla säännöllä ei ole premissejä, päästään kokeilemaan, toimiiko samastus myös toisen premissin kohdalla: yhteys(lontoo, glasgow); ja sääntö (11.21) sanoo, että tämä onnistuu. Niinpä käyttäjälle tulostetaan X = lontoo. Seuraavaksi, peruutuksen jälkeen, kokeillaan sääntöä (11.6) tavoitteeseen yhteys(x, B), jolloin löytyy samastin {(X, lontoo), (B, pariisi)}. Tällöin säännön (11.22) toinen premissi muuttuu muotoon yhteys(pariisi, glasgow). Tämän premissin todistus joutuu kulkemaan vielä sääntöjen (11.22) ja (11.9) kautta, mutta lopulta todistus onnistuu, ja käyttäjälle tulostuu jälleen X = lontoo. Vastaavasti käy kaikkien muidenkin kaupunkien kohdalla, ja lopulta X =... -luettelo kattaa kaikki ohjelman tuntemat kaupungit itse Glasgowta lukuunottamatta (koska ohjelma ei tiedä mitään reittiä Glasgowsta pois) Samastus parametrinvälitysmekanismina Kuten edellä todettiin, logiikkaohjelman sääntöä voidaan pitää eräänlaisena aliohjelmana. Tällöin kuitenkin samastus johtaa varsin erikoiseen parametrinvälitysmekanismiin. Tarkastellan sääntöä f (A, B). Sitä voidaan kutsua eri tavoin: Kutsu f (a, b) haluaa tietää, voiko säännössä A olla a ja B olla b. Tällöin parametrinvälitys käyttäytyy arvovälitteisyyden tavoin, ja kutsu palauttaa totuusarvon.
8 120 LUKU 11. LOGIIKKAOHJELMOINNIN IDEA Kutsu f (a, X) haluaa tietää kaikki ne B:t, jotka tulevat kyseisen säännön kohdalla kyseeseen silloin, kun A on a. Kutsu toimii proseduurikutsun tavoin, mutta a välittyy arvovälitteisesti ja X välittyy tulosvälitteisesti. Lisäksi kutsu on (hyväntahtoisesti) epädeterministinen. Kutsu f (X, b) toimii, mutatis mutandis, kuten edellinen. Kutsu f (X, Y) haluaa tietää kaikki ne A:n ja B:n arvot, jotka tulevat säännössä kyseeseen. Kutsu on proseduurimainen ja hyväntahtoisesti epädeterministinen, ja molemmat parametrit välittyvät tulosvälitteiseen tapaan. Ja nämä ovat vain ne helpot tapaukset. Yksi esimerkki hurjemmasta kutsusta on f (h(a, X), Y).
Tietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Matematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
T Tietojenkäsittelyteorian seminaari
p.1/25 T-79.194 Tietojenkäsittelyteorian seminaari Krzysztof R. Apt: Principles of Constraint Programming: 4. luku, ss. 103 118 Jakub Jarvenpaa jakub.jarvenpaa@hut.fi p.2/25 Sisältö Termiyhtälöt Martelli-Montanari-algoritmi
Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.
TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
Lisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
Matemaatiikan tukikurssi
Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014
Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013
ja ja TIEA241 Automaatit ja kieliopit, kesä 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. kesäkuuta 2013 Sisällys ja ja on yksi vanhimmista tavoista yrittää mallittaa mekaanista laskentaa. Kurt
Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed
T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut
T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1
Täydentäviä muistiinpanoja jäsennysalgoritmeista
äydentäviä muistiinpanoja jäsennysalgoritmeista Antti-Juhani Kaijanaho 7. helmikuuta 2012 1 simerkki arleyn algoritmin soveltamisesta arkastellaan kielioppia G : + () c ja sovelletaan arleyn algoritmia
Taulumenetelmä modaalilogiikalle K
/ Kevät 2004 ML-6 1 Taulumenetelmä modaalilogiikalle On vaikeaa löytää Hilbert-tyylisiä todistuksia: Käytössä Modus Ponens -sääntö: jotta voidaan johtaa Q, täytyy johtaa P ja P Q. Mutta mikä on sopiva
M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.
T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut
T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)
Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =
Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos
6 Relaatiot. 6.1 Relaation määritelmä
6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan II, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Mitkä muuttujat esiintyvät vapaina kaavassa x 2 ( x 0 R 0 (x 1, x 2 ) ( x 3 R 0 (x 3, x 0
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
on rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
Rekursiiviset palautukset [HMU 9.3.1]
Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle
Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
jäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg.
Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Olkoon L = {Lontoo, P ariisi, P raha, Rooma, Y hteys(x, y)}. Kuvan 3.1. kaupunkiverkko vastaa seuraavaa L-mallia
Johdatus diskreettiin matematiikkaan Harjoitus 1,
Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13
2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut
T-79.146 Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut 1. M : a P P f Q, R Q e P a) M, a = A(P UQ), sillä (esim.) (a,,,,,...) on tilasta a alkava täysi polku, joka
tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla
2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella
Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006
Taas laskin TIES341 Funktio ohjelmointi 2 Kevät 2006 Rakennepuutyyppi data Term = C Rational T F V String Term :+: Term Term : : Term Term :*: Term Term :/: Term Term :==: Term Term :/=: Term Term :
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
Diofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
Luonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla
Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka
815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava
Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
DFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Esko Turunen Luku 9. Logiikan algebralisointi
Logiikan algebralisointi Tässä viimeisessä luvussa osoitamme, miten algebran peruskäsitteitä käytetään logiikan tutkimuksessa. Käsittelemme vain klassista lauselogiikkaa ja sen suhdetta Boolen algebraan,
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Silmukkaoptimoinnista
sta TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale
Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on