Oppimisen seuranta. matematiikan arviointi. Yksilökoontilomakkeet. Nimi: Vastuuopettaja:

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Oppimisen seuranta. matematiikan arviointi. Yksilökoontilomakkeet. Nimi: Vastuuopettaja:"

Transkriptio

1 Oppimisen seuranta matematiikan arviointi Yksilökoontilomakkeet Nimi: Vastuuopettaja:

2 Sisällysluettelo LUKUMÄÄRÄISYYDEN TAJU...3 MATEMAATTISTEN SUHTEIDEN HALLINTA matemaattis-loogiset taidot... 4 matemaattiset symbolit, aritmeettiset periaatteet, paikka-arvo ja kymmenjärjestelmä... 5 LASKEMISEN TAIDOT lukujonon luettelemisen taidot (eteenpäin)... 6 lukujonon luettelemisen taidot (taaksepäin)... 7 lukumäärän määrittäminen laskemalla... 8 numerosymbolien hallinta... 9 ARITMEETTISET PERUSTAIDOT yhteen- ja vähennyslasku...10 MATEMATIIKAN PERUSKÄSITTEET suuruusluokka, suunta, järjestys...11 määrä LukiMat-työryhmä Niilo Mäki Instituutti 2

3 LUKUMÄÄRÄISYYDEN TAJU Määrän nopea hahmottaminen H E H E H E H E H E H E Hyödyntäminen laskemisessa spontaanisti ohjatusti Vertailu määrillä , ero määrien välillä > , ero määrien välillä 2 Vertailu lukusanoilla nolla viisi yksi kymmenen Vertailu numeroilla Niilo Mäki Instituutti 3 Yksilökoontilomake: LMT

4 MATEMAATTISTEN SUHTEIDEN HALLINTA: matemaattis-loogiset taidot Luokittelu H E H E H E H E H E H E koon mukaan muodon mukaan määrän mukaan Sarjoittaminen eli järjestäminen koon mukaan muodon mukaan määrän mukaan Vertailu koon mukaan määrän mukaan Niilo Mäki Instituutti 4 Yksilökoontilomake: MSH 1

5 MATEMAATTISTEN SUHTEIDEN HALLINTA: matemaattiset symbolit, aritmeettiset periaatteet, paikka-arvo ja kymmenjärjestelmä MATEMAATTISET SYMBOLIT H E H E H E H E H E H E suurempi kuin (>) pienempi kuin (<) yhtä suuri kuin (=) yhteen (+) vähennys ( ) ARITMEETTISET PERIAATTEET osa-kokonaisuus vaihdannaisuus liitännäisyys käänteisyys PAIKKA-ARVO JA KYMMENJÄRJESTELMÄ Lukujen vertailu Lukujen järjestäminen Yksiköt ja suhteet ykköset kymmenet sadat tuhannet Niilo Mäki Instituutti 5 Yksilökoontilomake: MSH 2

6 LASKEMISEN TAIDOT: lukujonon luettelemisen taidot (eteenpäin) Luvusta yksi H E H E H E H E H E H E Annetusta luvusta Kahden välein Viiden välein Kymmenen välein Niilo Mäki Instituutti 6 Yksilökoontilomake: LT lukujono eteenpäin

7 LASKEMISEN TAIDOT: lukujonon luettelemisen taidot (taaksepäin) Annetusta luvusta H E H E H E H E H E H E Kahden välein Viiden välein Kymmenen välein Niilo Mäki Instituutti 7 Yksilökoontilomake: LT lukujono taaksepäin

8 LASKEMISEN TAIDOT: lukumäärän määrittäminen laskemalla Määrittäminen H E H E H E H E H E H E Lisääminen summa 0 5 summa 6 10 summa summa Vähentäminen vähenevä 0 5 vähenevä 6 10 vähenevä vähenevä Niilo Mäki Instituutti 8 Yksilökoontilomake: LT lukumäärän määrittäminen

9 LASKEMISEN TAIDOT: numerosymbolien hallinta Lukusana Määrä Määrä Lukusana H E H E H E H E H E H E Numero Määrä Määrä Numero Lukusana Numero Numero Lukusana Niilo Mäki Instituutti 9 Yksilökoontilomake: LT numerosymbolien hallinta

10 ARITMEETTISET PERUSTAIDOT: yhteen- ja vähennyslasku YHTEENLASKU Päässälasku: yksinumeroinen yhteenlaskettava H E H E H E H E H E H E summa 0 5 summa 6 10 summa summa Päässälasku: moninumeroinen yhteenlaskettava summa summa Allekkainlasku: moninumeroinen yhteenlaskettava summa summa VÄHENNYSLASKU Päässälasku: yksinumeroinen vähentäjä vähenevä 0 5 vähenevä 6 10 vähenevä vähenevä Päässälasku: moninumeroinen vähentäjä vähenevä vähenevä Allekkainlasku: moninumeroinen vähentäjä vähenevä vähenevä Niilo Mäki Instituutti 10 Yksilökoontilomake: APT yhteen- ja vähennyslasku

11 MATEMATIIKAN PERUSKÄSITTEET: suuruusluokka, suunta, järjestys Suuruusluokka H E H E H E H E H E H E suurin suurempi kuin pienin pienempi kuin Suunta eteenpäin taaksepäin Järjestys ensimmäinen toinen kolmas keskimmäinen viimeinen joka toinen joka kolmas Niilo Mäki Instituutti 11 Yksilökoontilomake: Matematiikan peruskäsitteet 1

12 MATEMATIIKAN PERUSKÄSITTEET: määrä Määrä H E H E H E H E H E H E yhtä monta enemmän eniten yksi enemmän kaksi enemmän vähemmän vähiten yksi vähemmän kaksi vähemmän lisätä laskea yhteen ottaa pois vähentää Niilo Mäki Instituutti 12 Yksilökoontilomake: Matematiikan peruskäsitteet 2

Matematiikan tehtävät

Matematiikan tehtävät Matematiikan tehtävät ensimmäinen luokka syksy Nimi: Luokka/ryhmä: Päivämäärä: Kokonaispisteet: / 56p 2 MSH: Vertailu a b c d a b c d a b c d a b c d 3 MSH: Vertailu a b c d a b c d / 2p 4 MSH: Vertailu

Lisätiedot

MATEMATIIKAN PERUSTEIDEN KOULUOPPIMISEN SANASTO Räsänen, 2011

MATEMATIIKAN PERUSTEIDEN KOULUOPPIMISEN SANASTO Räsänen, 2011 Lukusanat ja lukuihin liittyvät sanat kardinaaliluvut järjestysluvut Muita Yksi, kaksi, kolme, neljä, Ensimmäinen, toinen, kolmas, neljäs, Nolla Ykköset Kymmenet Sadat tuhannet Luku Numero Suuruusjärjestys

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus Käyttäjän opas Niilo Mäki Instituutti, 2011 Koponen, T., Salminen, J., Aunio, P. & Polet, J. LukiMat - Oppimisen arviointi: Matematiikan tuen

Lisätiedot

Tuen tarpeen tunnistaminen. Matematiikan arviointi toinen luokka

Tuen tarpeen tunnistaminen. Matematiikan arviointi toinen luokka Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Sisältö Käsikirja Käyttäjän opas Tekninen opas Syksy Esitysohjeet opettajalle Lapsen tehtävälomake Tarkistuslomake Talvi Esitysohjeet opettajalle

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka Käyttäjän opas Niilo Mäki Instituutti, 2011 Koponen, T., Salminen, J., Aunio, P. & Polet, J. LukiMat - Oppimisen arviointi: Matematiikan

Lisätiedot

Matemaattiset oppimisvaikeudet

Matemaattiset oppimisvaikeudet Matemaattiset oppimisvaikeudet Matemaattiset taidot Lukumäärien ja suuruusluokkien hahmottaminen synnynnäinen kyky, tarkkuus (erottelukyky) lisääntyy lapsen kasvaessa yksilöllinen tarkkuus vaikuttaa siihen,

Lisätiedot

strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20

strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20 NEUREN TEHTÄVÄKUVAUKSET esi- ja alkuopetukseen Arviointi TAITO TEHTÄVÄ TAVOITE LK. TEHTÄVÄN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi, 1-50 Lukujono eteenpäin 1-50 Puutuvan

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Oppimisen seuranta. Matematiikan seuranta. Käsikirja

Oppimisen seuranta. Matematiikan seuranta. Käsikirja Matematiikan seuranta Käsikirja Niilo Mäki Instituutti, 2011 Salminen, J., & Koponen, T. LukiMat - Oppimisen arviointi: matematiikan oppimisen seurannan välineet. Käsikirja. Saatavilla osoitteessa http://www.lukimat.fi/lukimat-oppimisen-arviointi/materiaalit/

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Käyttäjän opas Niilo Mäki Instituutti, 2011 Koponen, T., Salminen, J., Aunio, P. & Polet, J. LukiMat - Oppimisen arviointi: Matematiikan

Lisätiedot

Tuen tarpeen tunnistaminen. Matematiikan arviointi esiopetus

Tuen tarpeen tunnistaminen. Matematiikan arviointi esiopetus Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus Sisältö Käsikirja Käyttäjän opas Tekninen opas Syksy Esitysohjeet opettajalle Lapsen tehtävälomake Tarkistuslomake Talvi Esitysohjeet opettajalle

Lisätiedot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot NEUREN TEHTAVAKUVAUKSET kaikki vuosiluokat Arviointi TAITO TEHTAVA TAVOITE LK. TEHTAVAN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi1-50 Puuttuvan luvun taydentaminen on,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus Tekninen opas Niilo Mäki Instituutti, 2013 Polet, J. & Koponen, T. LukiMat - Oppimisen arviointi: Matematiikan tuen tarpeen tunnistamisen välineet

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka Tekninen opas Niilo Mäki Instituutti, 2013 Polet, J. & Koponen, T. LukiMat - Oppimisen arviointi: Matematiikan tuen tarpeen tunnistamisen

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Tuen tarpeen tunnistaminen. Matematiikan arviointi ensimmäinen luokka

Tuen tarpeen tunnistaminen. Matematiikan arviointi ensimmäinen luokka Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka Sisältö Käsikirja Käyttäjän opas Tekninen opas Syksy Esitysohjeet opettajalle Lapsen tehtävälomake Tarkistuslomake Talvi Esitysohjeet

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Katsaus LukiMatiin. ITK2013, 10.-12.4.2013 Hämeenlinna. S Johanna Manninen, Niilo Mäki Instituutti

Katsaus LukiMatiin. ITK2013, 10.-12.4.2013 Hämeenlinna. S Johanna Manninen, Niilo Mäki Instituutti Katsaus LukiMatiin ITK2013, 10.-12.4.2013 Hämeenlinna S 11.4.2013 1 LukiMat verkkopalvelu www.lukimat.fi S Hanketta rahoittaa Opetus- ja kulttuuriministeriö (I-vaihe 2007-2009, II-vaihe 2010-2011 ja III-vaihe

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Tekninen opas Niilo Mäki Instituutti, 2013 Polet, J. & Koponen, T. LukiMat - Oppimisen arviointi: Matematiikan tuen tarpeen tunnistamisen

Lisätiedot

Matematiikka OPPIAINEEN LUONNE

Matematiikka OPPIAINEEN LUONNE Matematiikka OPPIAINEEN LUONNE Matematiikka koskettaa elämäämme hyvin monella tavalla. Matematiikka tarjoaa välineitä monien arkisten ja teoreettisten ongelmien hahmottamiseen ja ratkaisuun. Matematiikka

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Matematiikan rakennuspalikoita järjestämään esi- ja alkuopetuksessa

Matematiikan rakennuspalikoita järjestämään esi- ja alkuopetuksessa Matematiikan rakennuspalikoita järjestämään esi- ja alkuopetuksessa HYVÄ ALKU -tapahtuma 12. 13.2.2014, Jyväskylän Paviljonki KT Sirpa Eskelä-Haapanen, Jyväskylän yliopisto, OKL Mitä opetellaan, miten

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Yksilölliset opintopolut

Yksilölliset opintopolut Yksilölliset opintopolut Maija Koski, opettaja Työhön ja itsenäiseen elämään valmentava opetus ja ohjaus, Valmentava 2, autisminkirjon henkilöille, Pitäjänmäen toimipaikka Opetuksen ja ohjauksen suunnittelu

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

oppimispeli esi- ja alkuopetusikäisten lasten matemaattisten taitojen tukemiseen

oppimispeli esi- ja alkuopetusikäisten lasten matemaattisten taitojen tukemiseen oppimispeli esi- ja alkuopetusikäisten lasten matemaattisten taitojen tukemiseen ILMAINEN Lukimat-verkkopalvelun (www.lukimat.fi) kautta saatava tietokonepeli NUMERORATA saatavilla suomen- ja ruotsinkieliset

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Matematiikka. - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista

Matematiikka. - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Matematiikka - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Osa 1: Taitojen kehityksestä Tammikuu 2015 Erityispedagogiikka Kurssin tukimateriaali www.lukimat.fi

Lisätiedot

ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen

ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen Kokeilut ja käytänteet Riikka Mononen Pirjo Aunio Anna Tapola ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen Kohokohdat ThinkMath-verkkopalvelu tarjoaa tutkimukseen perustuvaa

Lisätiedot

Kokemäen kaupunki Sivistystoimi

Kokemäen kaupunki Sivistystoimi Kokemäen kaupunki Sivistystoimi ESIOPPILAAN OPPIMISSUUNNITELMA Lapsen nimi: Syntymäaika: Koulu: Huoltajat: Huoltajan puh.: ja Lapsen äidinkieli: Opettaja: Koulun puh.: Lapsen kuva syksy: Lapsen kuva kevät:

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty )

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty ) MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty 16.12.2015) Merkitys, arvot ja asenteet T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Lisätiedot

OPPIMISVAIKEUKSIEN VARHAINEN TUNNISTAMINEN. Neuropsykologinen näkökulma Heli Isomäki LudusAkatemia Oy

OPPIMISVAIKEUKSIEN VARHAINEN TUNNISTAMINEN. Neuropsykologinen näkökulma Heli Isomäki LudusAkatemia Oy OPPIMISVAIKEUKSIEN VARHAINEN TUNNISTAMINEN Neuropsykologinen näkökulma Heli Isomäki LudusAkatemia Oy NEUROPSYKOLOGIPALVELU LUDUS WWW.LUDUSOY.FI Henkilökunta: 13 psykologia/neuropsykologia Puheterapeutti

Lisätiedot

OPAS MATEMATIIKAN OPPIMISVAIKEUKSISTA LASTEN VANHEMMILLE

OPAS MATEMATIIKAN OPPIMISVAIKEUKSISTA LASTEN VANHEMMILLE OPAS MATEMATIIKAN OPPIMISVAIKEUKSISTA LASTEN VANHEMMILLE Elina Järviluoma - Mika Paananen - Suvi Kaila Marketta Mäntylä - Sira Määttä - Tuija Aro SISÄLLYSLUETTELO ESIPUHE... 3 TIETOA MATEMATIIKAN OPPIMISVAIKEUKSISTA...

Lisätiedot

Matematiikan solmukohdat

Matematiikan solmukohdat Matematiikan solmukohdat Pyhäntä 28.10.2013 Ohjaavat opettajat Raisa Sieppi ja Eija Häyrynen etunimi.sukunimi@tervavayla.fi Kuinka luvut opitaan Noin 2-vuotiaana lapset huomaavat kuinka luvut viittaavat

Lisätiedot

ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen. Riikka Mononen, Pirjo Aunio & Anna Tapola

ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen. Riikka Mononen, Pirjo Aunio & Anna Tapola Kokeilut ja käytänteet ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen Riikka Mononen, Pirjo Aunio & Anna Tapola ThinkMath-verkkopalvelu (http://blogs.helsinki.fi/thinkmath)

Lisätiedot

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE

KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE luokka-asteille 1-6 Oppilaan nimi: Luokka: Koulun yhteystiedot: Osoite Puhelin Luokanopettaja/luokanvalvoja: Nimi: Puhelin: Sähköposti: Kuinka kauan olet

Lisätiedot

TAMPEREEN YLIOPISTO. Toinen oppii kentällä juosten ja toinen hiljaa pöydän ääressä istuen - Lukukäsitteen harjoittelu esiopetuksessa

TAMPEREEN YLIOPISTO. Toinen oppii kentällä juosten ja toinen hiljaa pöydän ääressä istuen - Lukukäsitteen harjoittelu esiopetuksessa TAMPEREEN YLIOPISTO Toinen oppii kentällä juosten ja toinen hiljaa pöydän ääressä istuen - Lukukäsitteen harjoittelu esiopetuksessa Kasvatustieteiden tiedekunta Kasvatustieteiden pro gradu -tutkielma TIIA

Lisätiedot

Matematiikka. - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista

Matematiikka. - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Matematiikka - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Osa 1: Taitojen kehitys Tammikuu 2016 Pirjo Aunio Erityispedagogiikka Kurssin oppimateriaali

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

Ilmaisun monet muodot

Ilmaisun monet muodot Työkirja monialaisiin oppimiskokonaisuuksiin (ops 2014) Ilmaisun monet muodot Toiminnan lähtökohtana ovat lasten aistimukset, havainnot ja kokemukset. Lapsia kannustetaan kertomaan ideoistaan, työskentelystään

Lisätiedot

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1)

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1) Lasku-Lassin maatila - Harjoituslista Sivu 1 / 20 Luokka 0-1 Vertailua (Luokka 0-1) 1. Etsi erilainen Kuvavalinta 2. Mikä ei kuulu joukkoon? Kuvavalinta 3. Pitempi, lyhyempi Kuvavalinta 4. Mikä ei kuulu

Lisätiedot

Matematiikan tuen tarpeen tunnistaminen: esikoulunopettajien kokemuksia ja käsityksiä

Matematiikan tuen tarpeen tunnistaminen: esikoulunopettajien kokemuksia ja käsityksiä Matematiikan tuen tarpeen tunnistaminen: esikoulunopettajien kokemuksia ja käsityksiä Maija Lamminen Erityispedagogiikan pro gradu -tutkielma Syyslukukausi 2016 Kasvatustieteiden laitos Jyväskylän yliopisto

Lisätiedot

Tehtäväorientoituneisuus. Keskittyminen ja pitkäjänteisyys työskentelyssä. Työn aloittaminen ja loppuun saattaminen.

Tehtäväorientoituneisuus. Keskittyminen ja pitkäjänteisyys työskentelyssä. Työn aloittaminen ja loppuun saattaminen. 1. LK TYÖSKENTELYTAIDOT Mitä sisältää? Millaista hyvä osaaminen? Osaat työskennellä itsenäisesti Tehtäväorientoituneisuus. Keskittyminen ja pitkäjänteisyys työskentelyssä. Työn aloittaminen ja loppuun

Lisätiedot

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe C = Aseta Aseta i i = n i > i i i Ei i < i i i Ei i i = Ei i i = i i -- On On On C in > < = CI CO C out -- = + (-) (-) = + = C + Digitaalitekniikan matematiikka

Lisätiedot

Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen. Mirjami Manninen. Nimi: Luokka:

Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen. Mirjami Manninen. Nimi: Luokka: 3a Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen KUVITUS Mirjami Manninen Nimi: Luokka: Helsingissä Kustannusosakeyhtiö Otava Sisällys 1. jakso Yhteen- ja vähennyslasku

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 101 7.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Maahanmuuttajien oppimisvaikeudet

Maahanmuuttajien oppimisvaikeudet Maahanmuuttajien oppimisvaikeudet 7.11.2016 Anu Arvonen Mitä oppimisvaikeudet ovat OPPIMISVAIKEUDEN MÄÄRITELMÄ: Opetuksesta ja tuesta huolimatta taidot kehittyvät erityisen hitaasti tai oppiminen ei edisty.

Lisätiedot

Esikoululaisten matemaattisten taitojen kehityksen tukeminen Minäkin lasken! -harjoitusohjelmalla

Esikoululaisten matemaattisten taitojen kehityksen tukeminen Minäkin lasken! -harjoitusohjelmalla . Esikoululaisten matemaattisten taitojen kehityksen tukeminen Minäkin lasken! -harjoitusohjelmalla Kasvatust. maist., erityisopettaja Erja Lusetin tämän artikkelin taustalla oleva pro gradu -työ valmistui

Lisätiedot

Interventiotutkimus Lolan suuri seikkailu -oppimispelin vaikutuksista matemaattisesti heikkojen lasten oppimiseen

Interventiotutkimus Lolan suuri seikkailu -oppimispelin vaikutuksista matemaattisesti heikkojen lasten oppimiseen Interventiotutkimus Lolan suuri seikkailu -oppimispelin vaikutuksista matemaattisesti heikkojen lasten oppimiseen Helsingin yliopisto Käyttäytymistieteellinen tiedekunta Opettajankoulutuslaitos Erityispedagogiikka

Lisätiedot

Yykaakoo 3A opettajan oppaan liitteet

Yykaakoo 3A opettajan oppaan liitteet Yykaakoo 3A opettajan oppaan liitteet Kopiontipohjat 1. Oppikirjan liitteet 2 a. Lukukortit 2 3 b. Kertolaskukortit 4 5 c. Jakolaskukortit 6 7 2. Sanakyltit, yhteen- ja vähennyslasku 8 3. YKS-välineet

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

KÄRJEN PÄIVÄKODIN ESIOPETUSSUUNNITELMA

KÄRJEN PÄIVÄKODIN ESIOPETUSSUUNNITELMA KÄRJEN PÄIVÄKODIN ESIOPETUSSUUNNITELMA MATEMATIIKKA Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa ja tapa ajatella. Matemaattiset kokemukset ovat olennaisia lapsen ajattelun kehittymiselle.

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Kouluikäisten liikunta ja liikkumattomuus Liikkuva koulu ohjelmassa

Kouluikäisten liikunta ja liikkumattomuus Liikkuva koulu ohjelmassa Kouluikäisten liikunta ja liikkumattomuus Liikkuva koulu ohjelmassa Tuija Tammelin tutkimusjohtaja, LIKES Kuntotestauspäivät Tampere 21.3.2013 Liikkuva koulu -ohjelma käynnistettiin hankkeena keväällä

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

Anni Lampinen Eszter C. Neményi Anikó Wéber Hemu Lampinen. Matematiikkaa 3a. Yhteenlasku ja vähennyslasku sujuvaksi lukualueella

Anni Lampinen Eszter C. Neményi Anikó Wéber Hemu Lampinen. Matematiikkaa 3a. Yhteenlasku ja vähennyslasku sujuvaksi lukualueella Anni Lampinen Eszter C. Neményi Anikó Wéber Hemu Lampinen Matematiikkaa 3a Yhteenlasku ja vähennyslasku sujuvaksi lukualueella 0 100 Nimi: Luokka: 7 17 17 27 97 9 27 97 9 37 77 37 77 47 Yhteenlasku ja

Lisätiedot

Mari Salminen SUBITISAATIOTAIDOT ARITMEETTISENA KOULUVALMIUTENA

Mari Salminen SUBITISAATIOTAIDOT ARITMEETTISENA KOULUVALMIUTENA Mari Salminen SUBITISAATIOTAIDOT ARITMEETTISENA KOULUVALMIUTENA Erityispedagogiikan pro gradu -tutkielma Kevätlukukausi 2014 Kasvatustieteiden laitos Jyväskylän yliopisto SISÄLTÖ TIIVISTELMÄ... 4 1 JOHDANTO...

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

AMMATTITAITOA TÄYDENTÄVÄT TUTKINNON OSAT

AMMATTITAITOA TÄYDENTÄVÄT TUTKINNON OSAT Etelä-Savon koulutus Oy Etelä-Savon ammattiopisto AMMATTITAITOA TÄYDENTÄVÄT TUTKINNON OSAT (ruotsi, englanti, matematiikka, fysiikka ja kemia) Mukautettu oppilaitoskohtainen opetussuunnitelma AMMATTITAITOA

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

LUKUMÄÄRÄÄN LIITTYVIEN VARHAISTEN MATEMAATTISTEN TAITOJEN KEHITYS ESIOPETUSVUODEN AIKANA

LUKUMÄÄRÄÄN LIITTYVIEN VARHAISTEN MATEMAATTISTEN TAITOJEN KEHITYS ESIOPETUSVUODEN AIKANA LUKUMÄÄRÄÄN LIITTYVIEN VARHAISTEN MATEMAATTISTEN TAITOJEN KEHITYS ESIOPETUSVUODEN AIKANA Elina Kuivamäki Kasvatustieteen pro gradu -tutkielma Syksy 2006 Opettajankoulutuslaitos Jyväskylän yliopisto TIIVISTELMÄ

Lisätiedot

Matematiikka. Aineen kuvaus

Matematiikka. Aineen kuvaus Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan

Lisätiedot

KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE

KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE luokka-asteille 1-6 Oppilaan nimi: _ Luokka: Koulun yhteystiedot: Osoite _ Puhelin Luokanopettaja/luokanvalvoja: Nimi: Puhelin: Sähköposti: _ Kuinka kauan

Lisätiedot

Hahmottamisen kuntoutus -hanke. Mika Minkkinen FM, Projektitutkija Hahmotuksen kuntoutus -hanke Niilo Mäki Instituutti

Hahmottamisen kuntoutus -hanke. Mika Minkkinen FM, Projektitutkija Hahmotuksen kuntoutus -hanke Niilo Mäki Instituutti Ha Hahmottamisen kuntoutus -hanke Mika Minkkinen FM, Projektitutkija Hahmotuksen kuntoutus -hanke Niilo Mäki Instituutti Tavoitteet: Hahmottamisen kuntoutus -hanke (2014-2017) Tietokonevälitteiset kuntouttavat

Lisätiedot

TEHTÄVIEN KUVAUKSET. 3. luokan opintopolku (Laskutaito-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 3. luokan opintopolku (Laskutaito-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 3. luokan opintopolku (Laskutaito-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

HYÖTYVÄTKÖ ALLE KOULUIKÄISET LAPSET LUKUKÄSITTEEN KUN- TOUTUKSESTA?

HYÖTYVÄTKÖ ALLE KOULUIKÄISET LAPSET LUKUKÄSITTEEN KUN- TOUTUKSESTA? HYÖTYVÄTKÖ ALLE KOULUIKÄISET LAPSET LUKUKÄSITTEEN KUN- TOUTUKSESTA? Sari Kantelinen Lisensiaattitutkielma Yhteiskunta ja kulttuuritieteiden yksikkö Psykologia Tampereen yliopisto Helmikuu 2016 TAMPEREEN

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

HP Mobile -kaukosäädin (vain tietyt mallit) Käyttöopas

HP Mobile -kaukosäädin (vain tietyt mallit) Käyttöopas HP Mobile -kaukosäädin (vain tietyt mallit) Käyttöopas Copyright 2008 Hewlett-Packard Development Company, L.P. Windows ja Windows Vista ovat Microsoft Corporationin Yhdysvalloissa rekisteröimiä tavaramerkkejä.

Lisätiedot

MATEMAATTISESTI HAASTEELLISET KOULUTULOKKAAT NÄKÖKULMIA PITKÄLLE EDISTYNEIDEN ENSILUOKKA- LAISTEN HUOMIOIMISEEN. Katri Pietilä

MATEMAATTISESTI HAASTEELLISET KOULUTULOKKAAT NÄKÖKULMIA PITKÄLLE EDISTYNEIDEN ENSILUOKKA- LAISTEN HUOMIOIMISEEN. Katri Pietilä MATEMAATTISESTI HAASTEELLISET KOULUTULOKKAAT NÄKÖKULMIA PITKÄLLE EDISTYNEIDEN ENSILUOKKA- LAISTEN HUOMIOIMISEEN Katri Pietilä Kasvatustieteen pro gradu -tutkielma Luokanopettajien aikuiskoulutus Kokkolan

Lisätiedot

Oppimisvaikeuksien tunnistaminen. Turvapaikanhakijat ja pakolaislapset perusopetuksessa Helsinki Anu Arvonen

Oppimisvaikeuksien tunnistaminen. Turvapaikanhakijat ja pakolaislapset perusopetuksessa Helsinki Anu Arvonen Oppimisvaikeuksien tunnistaminen Turvapaikanhakijat ja pakolaislapset perusopetuksessa Helsinki 26.10.2017 Anu Arvonen Mitä oppimisvaikeudet ovat Oppimisvaikeuden määritelmä: taidot kehittyvät erityisen

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä. .. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se

Lisätiedot

3. jakso. Kellonajat 1. jakso. Yhteen- ja vähennyslasku. 4. jakso Kertolasku allekkain. 2. jakso Kertolasku. Kertaus.

3. jakso. Kellonajat 1. jakso. Yhteen- ja vähennyslasku. 4. jakso Kertolasku allekkain. 2. jakso Kertolasku. Kertaus. Sisällys 3. jakso Kellonajat. jakso Yhteen- ja vähennyslasku. Kymmenylitys... 8 2. Yhteenlasku... 0 3. Vähennyslasku... 2 4. Harjoittelen... 4 5. Lukuyksiköihin hajottaminen... 6 6. Suuruusvertailu...

Lisätiedot

Eszter C. Neményi Anikó Wéber Márta Sz. Oravecz Anni Lampinen Kirsi Puumalainen Soili Paavola. Matematiikkaa 3a

Eszter C. Neményi Anikó Wéber Márta Sz. Oravecz Anni Lampinen Kirsi Puumalainen Soili Paavola. Matematiikkaa 3a Matematiikkaa b Eszter C. Neményi Anikó Wéber Anni Lampinen Soili Paavola Pirjo Peltola Matematiikkaa b Matematiikkaa b oppilaan kirja Asenteet matematiikkaan pysyvät myönteisinä, kun oppiminen tuo onnistumisen

Lisätiedot

TEHTÄVIEN KUVAUKSET. 2. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 2. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 2. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a paperi nro 0 a b ± b 2 4ac b b ± b 2 + 4ac c b ± b 4ac d b ± b 2 4ac 2. Ratkaise toisen asteen yhtälö x 2 + 7x 12 = 0. 3. Ratkaise epäyhtälö 3x 2 30x > 0 4. Ratkaise epäyhtälö 5x 2 + 5 < 0 paperi nro 1

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

PUHUTAAN NUMEROILLA Murtoluvut Desimaaliluvut tai

PUHUTAAN NUMEROILLA Murtoluvut Desimaaliluvut tai PUHUTAAN NUMEROILLA Murtoluvut 1/2 yksi kahdesosaa (puoli) 2/3 kaksi kolmasosaa 3/4 kolme neljäsosaa 4/5 neljä viidesosaa 5/6 viisi kuudesosaa 6/7 kuusi seitsemäsosaa 7/8 seitsemän kahdeksasosaa 8/9 kahdeksan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

VUODEOSASTO- JA HOIVAPALVELUVERKOSTO JYTA- KUNTIEN ALUEELLA

VUODEOSASTO- JA HOIVAPALVELUVERKOSTO JYTA- KUNTIEN ALUEELLA VUODEOSASTO- JA HOIVAPALVELUVERKOSTO JYTA- KUNTIEN ALUEELLA Jyta-seminaari Toholampi kulttuurisali 18.4.2012 Päivi Peltokorpi, Terveyden ja sairaanhoidon palvelujohtaja Reetta Hjelm, Kotihoidon ja asumisen

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Matemaattiset oppimisvaikeudet (69213, 5 op)

Matemaattiset oppimisvaikeudet (69213, 5 op) Matemaattiset oppimisvaikeudet (69213, 5 op) - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Osa 1: Kehitys Lokakuu 2016 Professori Pirjo Aunio Erityispedagogiikka

Lisätiedot

LAPSEN ESIOPETUKSEN OPPIMISSUUNNITELMA

LAPSEN ESIOPETUKSEN OPPIMISSUUNNITELMA 1 Myrskylän kunta LAPSEN ESIOPETUKSEN OPPIMISSUUNNITELMA Lapsen nimi: Syntymäaika: Esiopetuksessa havainnoitavia asioita: lapsen vahvuudet, opitut taidot ja mielenkiinnonkohteet syksy kevät työskentelytaidot

Lisätiedot

1 lk Tavoitteet. 2 lk Tavoitteet

1 lk Tavoitteet. 2 lk Tavoitteet MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot