strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20

Koko: px
Aloita esitys sivulta:

Download "strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20"

Transkriptio

1 NEUREN TEHTÄVÄKUVAUKSET esi- ja alkuopetukseen Arviointi TAITO TEHTÄVÄ TAVOITE LK. TEHTÄVÄN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi, 1-50 Lukujono eteenpäin 1-50 Puutuvan luvun täydentäminen, 1-50 Neure/Matematiikka/Arviointi/10-järjestelmä LukiMat/Arviointi ARITMEETTISET PERUSTAIDOT Yhteenlasku 1-20 Laskustrategia_plussa1 Laskustrategia_plussa1(lyh) Laskustrategia_plussa2 Laskustrategia_plussa3 Vähennyslasku 1-20 Laskustrategia_miinus1 Laskustrategia_miinus1(lyh) Laskustrategia_miinus2 Laskustrategia_miinus3 Yhteenlaskun oikeellisuus ja nopeus, 1-20 strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20 ja strategia, 1-20, lyhennetty versio edellisestä ja strategia, 1-20 ja strategia, 1-20 LukiMat/Arvointi Neure/Matematiikka/Arviointi/Laskustrategiat Neure/Matematiikka/Arviointi/Laskustrategiat Neure/Matematiikka/Arviointi/Laskustrategiat Neure/Matematiikka/Arviointi/Laskustrategiat LukiMat/Arviointi Neure/Matematiikka/Arviointi/Laskustrategiat Neure/Matematiikka/Arviointi/Laskustrategiat Neure/Matematiikka/Arviointi/Laskustrategiat Neure/Matematiikka/Arviointi/Laskustrategiat

2 Yhteenlasku A Yhteenlasku B Yhteenlasku C Yhteenlasku Vähennyslasku A Vähennyslasku B Vähennyslasku C Vähennyslasku Yhteenlaskun oikeellisuus ja nopeus; seula kattaen B ja C sisältöjä, 10- ylitystä Yhteenlaskun oikeellisuus ja nopeus, tasakymmeniin lisääminen, ei 10-ylitystä Yhteenlaskun oikeellisuus ja nopeus, ykköset ja kymmenet lisääntyvät, 10-ylityksiä Yhteenlaskun oikeellisuus ja nopeus, 10-ylitys nopeus; seula kattaen B ja C sisältöjä 10-ylitys nopeus, ei 10-ylitystä nopeus, ykköset ja kymmenet vähenevät, 10-ylitystä nopeus, 10-ylitys MATEMAATTISTEN SUHTEIDEN YMMÄRTÄMINEN Paikka-arvo ja 10- järjestelmä Luvun ymmärtäminen Luvun rakenteen ymmärtäminen 1-2. Neure/Matematiikka/Arviointi/10-järjestelmä 1000 Lukujen koonti Luvun rakenteen ymmärtäminen 1-2. LukiMat/Arviointi Lukujen vertailu Lukujen vertailua LukiMat/Arviointi Luvun kirjoittaminen Kuullun luvun kirjoittaminen numeroin, LukiMat/Arviointi

3 Harjoitus TAITO TEHTÄVÄ TAVOITE LK. TEHTÄVÄN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen LJ_eteenpäin 1-30 LJ_eteenpäin LJ_taaksepäin 1-20 LJ_taaksepäin 1-30 Puuttuva luku LJ_taaksepäin LJ_parilliset luvut LJ_eteenpäin LJ_puuttuva luku A LJ_puuttuva luku B Lukujen järjestäminen , 1-50, tukena lukusuora, tukena lukusuora Tietylle lukuvälille kuuluvien lukujen tunnistaminen. Lukualue Neure/Matematiikka/Harjoitus/Lukujono Neure/Matematiikka/Harjoitus/Lukujono Neure/Matematiikka/Harjoitus/Lukujono Neure/Matematiikka/Harjoitus/Lukujono LukiMat/Harjoitus Neure/Matematiikka/Harjoitus/Lukujono Neure/Matematiikka/Harjoitus/Lukujono Lukumäärän laskeminen Myyrä_pluslaskut 1-5 sekä yhteenlaskun rakentaminen

4 Myyrä_miinuslaskut 1-5 sekä vähennyslaskun rakentaminen 1-5a1+ lukumäärän lisääminen 1-5b1+ lukumäärän lisääminen 1-5a1- lukumäärän vähentäminen 1-10a b1- lukumäärän lisääminen lukumäärän vähentäminen Numerosymbolien hallinta Muistipeli_Lukumaarat 1a Muistipeli_Lukumaarat 1b Myyrä_lukumäärät 1-5 Taikuri luvut1-5 Myyrä_lukumäärät 6-10 Taikuri luvut 6-10a Taikuri luvut 6-10b Lukumäärän ja numerosymbolin vastaavuus 1-10 Lukumäärän ja numerosymbolin vastaavuus 1-10 Neure/Matematiikka/Harjoitus/Muistipelit Neure/Matematiikka/Harjoitus/Muistipelit ARITMEETTISET PERUSTAIDOT Yhteenlaskuharjoite 1-20_ Karkkipeli Vähennyslaskuharjoitus 1-18 (adapt.) 1-5a2+ Pelinomainen harjoitekokonaisuus lukumääristä, niiden vertailusta ja yhteenlaskustrategioista 7 eri tasoa sisältävä, lapsen suoritukseen mukautuva harjoitus vähennyslaskuista, lukumäärän lisääminen, -2. LukiMat/Harjoitus -2. LukiMat/Harjoitus

5 1-5b2+ 1-5a2-1-10a b2- lukumäärän lisääminen, lukumäärän vähentäminen, lukumäärän lisääminen, lukumäärän vähentäminen, Taikuri Taydenna 5 Luvun 5 täydentäminen Taikuri Taydenna 10a Luvun 10 täydentäminen Taikuri Taydenna 10b Luvun 10 täydentäminen Muistipeli_Kymppipari 10-yhdistelmien muistaminen Neure/Matematiikka/Harjoitus/Muistipelit Muistipeli_Tuplat Tuplien muistaminen Neure/Matematiikka/Harjoitus/Muistipelit Rahojen vaihtaminen 1a 1 tai 2 euron tunnistaminen 10snt- 2e Rahojen vaihtaminen 1b 5 euron tunnistaminen 10snt-2e Rahojen vaihtaminen 1c 10 euron tunnistaminen 50snt-5e Rahojen vaihtaminen 1d 20 euron tunnistaminen 1-5e Rahojen vaihtaminen 2a snt:n laskeminen, Rahojen vaihtaminen 2b snt:n laskeminen, Rahojen vaihtaminen 2c snt:n laskeminen, Rahojen vaihtaminen 2d snt:n laskeminen, Rahojen vaihtaminen 1e 50 euron tunnistaminen 5-20e Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha Neure/Matematiikka/Harjoitus/Raha 2. Neure/Matematiikka/Harjoitus/Raha

6 MATEMAATTISTEN SUHTEIDEN YMMÄRTÄMINEN Paikka-arvo ja 10- järjestelmä Rahojen vaihtaminen 1f 100 euron tunnistaminen 5-50e Yleisurheilu _A1- Vähennyslaskua, jossa vähentäjä tasakymmen, tukena lukusuora Yleisurheilu _A1+ Yhteenlaskua, jossa vähintään toinen yhteenlaskettava tasakymmen, tukena lukusuora Yleisurheilu _A2- Vähennyslaskua, ei 10-ylitystä, tukena lukusuora Yleisurheilu _A2+ Yhteenlaskua, ei 10-ylitystä, tukena lukusuora Yleisurheilu _A3- Vähennyslaskua, 10-ylitys, tukena lukusuora Yleisurheilu _A3+ Yhteenlaskua, 10-ylitys, tukena lukusuora Luonnolliset luvut 1a Laskuja luonnollisilla luvuilla 1-30, lukusuoran avulla, yhteen- tai kertolaskulla Luonnolliset luvut 1b Laskuja luonnollisilla luvuilla 1-30, lukusuoran avulla, yhteen- tai kertolaskulla Lukujen koonti Lukujen koontia, 10- järjestelmävälineillä, numerolapuilla ja, Neure/Matematiikka/Harjoitus/Raha 2. LukiMat/Harjoitus MUUT Kello_puoli Analoginen merkintä: puoli 2 Neure/Matematiikka/Harjoitus/Ajanmääreet Kello_tasan Analoginen merkintä: tasan 2 Neure/Matematiikka/Harjoitus/Ajanmääreet Kello ½tunnin kuluttua/sitten Analoginen merkintä Neure/Matematiikka/Harjoitus/Ajanmääreet Kello tunnin kuluttua/sitten Analoginen merkintä Neure/Matematiikka/Harjoitus/Ajanmääreet Kello_yli ja vaille Analoginen merkintä: 25 vaille 9 2. Neure/Matematiikka/Harjoitus/Ajanmääreet Kello minuutteja sitten Analoginen merkintä 2. Neure/Matematiikka/Harjoitus/Ajanmääreet Kello minuuttien kuluttua Analoginen merkintä 2. Neure/Matematiikka/Harjoitus/Ajanmääreet Digikello minuutit Digitaalimerkinnän tunnistaminen 2. Neure/Matematiikka/Harjoitus/Ajanmääreet Digikello tasan ja puoli Digitaalimerkinnän tunnistaminen 2. Neure/Matematiikka/Harjoitus/Ajanmääreet

Lukemisen ja laskemisen perustaitojen esteetön arviointi Mukaan -tehtävillä. 2.4.2014 Helsinki. Tehtäväkuvaukset. neure

Lukemisen ja laskemisen perustaitojen esteetön arviointi Mukaan -tehtävillä. 2.4.2014 Helsinki. Tehtäväkuvaukset. neure Lukemisen ja laskemisen perustaitojen esteetön arviointi Mukaan -tehtävillä 2.4.2014 Helsinki Tehtäväkuvaukset neure Sisältö: 3 Nopeustehtävä 4 Määrien vertailu 1-9 5 Lukujen vertailu 1-9 6 Yhteenlasku

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Matematiikan tehtävät

Matematiikan tehtävät Matematiikan tehtävät ensimmäinen luokka syksy Nimi: Luokka/ryhmä: Päivämäärä: Kokonaispisteet: / 56p 2 MSH: Vertailu a b c d a b c d a b c d a b c d 3 MSH: Vertailu a b c d a b c d / 2p 4 MSH: Vertailu

Lisätiedot

Oppimisen seuranta. matematiikan arviointi. Yksilökoontilomakkeet. Nimi: Vastuuopettaja:

Oppimisen seuranta. matematiikan arviointi. Yksilökoontilomakkeet. Nimi: Vastuuopettaja: Oppimisen seuranta matematiikan arviointi Yksilökoontilomakkeet Nimi: Vastuuopettaja: Sisällysluettelo LUKUMÄÄRÄISYYDEN TAJU...3 MATEMAATTISTEN SUHTEIDEN HALLINTA matemaattis-loogiset taidot... 4 matemaattiset

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty )

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty ) MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty 16.12.2015) Merkitys, arvot ja asenteet T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Yykaakoo 3A opettajan oppaan liitteet

Yykaakoo 3A opettajan oppaan liitteet Yykaakoo 3A opettajan oppaan liitteet Kopiontipohjat 1. Oppikirjan liitteet 2 a. Lukukortit 2 3 b. Kertolaskukortit 4 5 c. Jakolaskukortit 6 7 2. Sanakyltit, yhteen- ja vähennyslasku 8 3. YKS-välineet

Lisätiedot

Tuen tarpeen tunnistaminen. Matematiikan arviointi toinen luokka

Tuen tarpeen tunnistaminen. Matematiikan arviointi toinen luokka Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Sisältö Käsikirja Käyttäjän opas Tekninen opas Syksy Esitysohjeet opettajalle Lapsen tehtävälomake Tarkistuslomake Talvi Esitysohjeet opettajalle

Lisätiedot

Matemaattiset oppimisvaikeudet

Matemaattiset oppimisvaikeudet Matemaattiset oppimisvaikeudet Matemaattiset taidot Lukumäärien ja suuruusluokkien hahmottaminen synnynnäinen kyky, tarkkuus (erottelukyky) lisääntyy lapsen kasvaessa yksilöllinen tarkkuus vaikuttaa siihen,

Lisätiedot

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus Käyttäjän opas Niilo Mäki Instituutti, 2011 Koponen, T., Salminen, J., Aunio, P. & Polet, J. LukiMat - Oppimisen arviointi: Matematiikan tuen

Lisätiedot

MATH ASSESSMENT LEAFLET (MATLE)

MATH ASSESSMENT LEAFLET (MATLE) MATH ASSESSMENT LEAFLET (MATLE) Mikä se on? The Math assessment leaflet (MATLE) on kehitetty nopeaan, strukturoituun, laadulliseen, yksilölliseen lasten peruslaskutaitojen arviointiin. Kenelle se on? MATLE

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Käyttäjän opas Niilo Mäki Instituutti, 2011 Koponen, T., Salminen, J., Aunio, P. & Polet, J. LukiMat - Oppimisen arviointi: Matematiikan

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka Käyttäjän opas Niilo Mäki Instituutti, 2011 Koponen, T., Salminen, J., Aunio, P. & Polet, J. LukiMat - Oppimisen arviointi: Matematiikan

Lisätiedot

Oppimisen seuranta. Matematiikan seuranta. Käsikirja

Oppimisen seuranta. Matematiikan seuranta. Käsikirja Matematiikan seuranta Käsikirja Niilo Mäki Instituutti, 2011 Salminen, J., & Koponen, T. LukiMat - Oppimisen arviointi: matematiikan oppimisen seurannan välineet. Käsikirja. Saatavilla osoitteessa http://www.lukimat.fi/lukimat-oppimisen-arviointi/materiaalit/

Lisätiedot

Matematiikka. - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista

Matematiikka. - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Matematiikka - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Osa 1: Taitojen kehityksestä Tammikuu 2015 Erityispedagogiikka Kurssin tukimateriaali www.lukimat.fi

Lisätiedot

Tuen tarpeen tunnistaminen. Matematiikan arviointi ensimmäinen luokka

Tuen tarpeen tunnistaminen. Matematiikan arviointi ensimmäinen luokka Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka Sisältö Käsikirja Käyttäjän opas Tekninen opas Syksy Esitysohjeet opettajalle Lapsen tehtävälomake Tarkistuslomake Talvi Esitysohjeet

Lisätiedot

LukiMat verkkopalvelu www.lukimat.fi. 2014% Niilo%Mäki%Ins0tuu3%

LukiMat verkkopalvelu www.lukimat.fi. 2014% Niilo%Mäki%Ins0tuu3% www.lukimat.fi LukiMat verkkopalvelu www.lukimat.fi 2% Mikä? Kenelle? Opetus- ja kulttuuriministeriön rahoittama valtakunnallinen käyttäjille ilmainen verkkopalvelu. Opettajille, psykologeille ja muille

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut.

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. LUKUJONOT 2 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. 2, 4,, 8,, 12,,, 7,, 3, 1 3) Keksi oma lukujono ja kerro

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Tekninen opas Niilo Mäki Instituutti, 2013 Polet, J. & Koponen, T. LukiMat - Oppimisen arviointi: Matematiikan tuen tarpeen tunnistamisen

Lisätiedot

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe C = Aseta Aseta i i = n i > i i i Ei i < i i i Ei i i = Ei i i = i i -- On On On C in > < = CI CO C out -- = + (-) (-) = + = C + Digitaalitekniikan matematiikka

Lisätiedot

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus Tekninen opas Niilo Mäki Instituutti, 2013 Polet, J. & Koponen, T. LukiMat - Oppimisen arviointi: Matematiikan tuen tarpeen tunnistamisen välineet

Lisätiedot

ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen

ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen Kokeilut ja käytänteet Riikka Mononen Pirjo Aunio Anna Tapola ThinkMath-verkkopalvelu. Matemaattisten taitojen tutkimukseen perustuva tukeminen Kohokohdat ThinkMath-verkkopalvelu tarjoaa tutkimukseen perustuvaa

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

OPPIMISVAIKEUKSIEN VARHAINEN TUNNISTAMINEN. Neuropsykologinen näkökulma Heli Isomäki LudusAkatemia Oy

OPPIMISVAIKEUKSIEN VARHAINEN TUNNISTAMINEN. Neuropsykologinen näkökulma Heli Isomäki LudusAkatemia Oy OPPIMISVAIKEUKSIEN VARHAINEN TUNNISTAMINEN Neuropsykologinen näkökulma Heli Isomäki LudusAkatemia Oy NEUROPSYKOLOGIPALVELU LUDUS WWW.LUDUSOY.FI Henkilökunta: 13 psykologia/neuropsykologia Puheterapeutti

Lisätiedot

10. Kerto- ja jakolaskuja

10. Kerto- ja jakolaskuja 10. Kerto- ja jakolaskuja * Kerto- ja jakolaskun käsitteistä * Multiplikare * Kertolaatikot * Lyhyet kertotaulut * Laskujärjestys Aiheesta muualla: Luku 14: Algoritmien konkretisointia s. 87 Luku 15: Ajan

Lisätiedot

HYÖTYVÄTKÖ ALLE KOULUIKÄISET LAPSET LUKUKÄSITTEEN KUN- TOUTUKSESTA?

HYÖTYVÄTKÖ ALLE KOULUIKÄISET LAPSET LUKUKÄSITTEEN KUN- TOUTUKSESTA? HYÖTYVÄTKÖ ALLE KOULUIKÄISET LAPSET LUKUKÄSITTEEN KUN- TOUTUKSESTA? Sari Kantelinen Lisensiaattitutkielma Yhteiskunta ja kulttuuritieteiden yksikkö Psykologia Tampereen yliopisto Helmikuu 2016 TAMPEREEN

Lisätiedot

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on

Lisätiedot

Urheilijaksi kasvamisen sisältösuositukset yläkouluissa. Yläkouluseminaari , Jyväskylä

Urheilijaksi kasvamisen sisältösuositukset yläkouluissa. Yläkouluseminaari , Jyväskylä Urheilijaksi kasvamisen sisältösuositukset yläkouluissa Yläkouluseminaari 17.3.2016, Jyväskylä Urheilijaksi kasvamisen sisältösuositukset yläkouluissa Tavoitteena nuoren urheilijan hyvä päivä 1. Urheilijaksi

Lisätiedot

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Matemaattiset oppimisvaikeudet (69213, 5 op)

Matemaattiset oppimisvaikeudet (69213, 5 op) Matemaattiset oppimisvaikeudet (69213, 5 op) - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Osa 1: Kehitys Lokakuu 2016 Professori Pirjo Aunio Erityispedagogiikka

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE

KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE KYSELYLOMAKE OPETTAJALLE JA ERITYISOPETTAJALLE luokka-asteille 1-6 Oppilaan nimi: _ Luokka: Koulun yhteystiedot: Osoite _ Puhelin Luokanopettaja/luokanvalvoja: Nimi: Puhelin: Sähköposti: _ Kuinka kauan

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 Lukujonot Tarvikkeet: siniset ja vihreät lukukortit Toteutus: yksin, pareittain,

Lisätiedot

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ENSIMMÄISELLE LUOKALLE

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ENSIMMÄISELLE LUOKALLE INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ENSIMMÄISELLE LUOKALLE Induktiivisen päättelyn opetuskuvakortit Tehtävät 1 ja 2 Ryhmän muodostaminen ja ryhmän laajentaminen 1. Jaa palikat kahteen ryhmään. Ryhmän

Lisätiedot

Mari Salminen SUBITISAATIOTAIDOT ARITMEETTISENA KOULUVALMIUTENA

Mari Salminen SUBITISAATIOTAIDOT ARITMEETTISENA KOULUVALMIUTENA Mari Salminen SUBITISAATIOTAIDOT ARITMEETTISENA KOULUVALMIUTENA Erityispedagogiikan pro gradu -tutkielma Kevätlukukausi 2014 Kasvatustieteiden laitos Jyväskylän yliopisto SISÄLTÖ TIIVISTELMÄ... 4 1 JOHDANTO...

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet

Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet 9.2.4. Matematiikka Koulumme matematiikan opetus antaa oppilaalle välineitä ja taitoja ratkaista arkipäivän ongelmia matemaattisen ajattelun avulla. Opetus tarjoaa oppilaalle välineen oppia tunnistamaan

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

oppimispeli esi- ja alkuopetusikäisten lasten matemaattisten taitojen tukemiseen

oppimispeli esi- ja alkuopetusikäisten lasten matemaattisten taitojen tukemiseen oppimispeli esi- ja alkuopetusikäisten lasten matemaattisten taitojen tukemiseen ILMAINEN Lukimat-verkkopalvelun (www.lukimat.fi) kautta saatava tietokonepeli EKAPELI-MATIKKA Ekapeli-Matikka on tarkoitettu

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

Matematiikan tuen tarpeen tunnistaminen: esikoulunopettajien kokemuksia ja käsityksiä

Matematiikan tuen tarpeen tunnistaminen: esikoulunopettajien kokemuksia ja käsityksiä Matematiikan tuen tarpeen tunnistaminen: esikoulunopettajien kokemuksia ja käsityksiä Maija Lamminen Erityispedagogiikan pro gradu -tutkielma Syyslukukausi 2016 Kasvatustieteiden laitos Jyväskylän yliopisto

Lisätiedot

Lyhyet harjoitteiden kuvaukset: Keskittymisen valmiudet, perustaidot ja huipputaidot

Lyhyet harjoitteiden kuvaukset: Keskittymisen valmiudet, perustaidot ja huipputaidot Lyhyet harjoitteiden kuvaukset: Keskittymisen valmiudet, perustaidot ja huipputaidot Keskittymisen valmiuksien tavoitteita Mitä keskittyminen tarkoittaa sekä omien keskittymisen tapojen ja taitojen tunnistaminen

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot 3. Muuttujat ja operaatiot Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot

LUENTO 3. Toiminnan kehä

LUENTO 3. Toiminnan kehä LUENTO 3 1) Ihminen toimijana ja laitteen käyttäjänä 2) Ihminen laitteen käytön oppijana 3) Käytettävyys 4) Harjoitustehtävä 2 5) Luentotehtävä 3 IHMINEN TOIMIJANA JA LAITTEEN KÄYTTÄJÄNÄ Toiminnan kehä

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

Yleisopetuksen sanallinen arviointi

Yleisopetuksen sanallinen arviointi Yleisopetuksen sanallinen arviointi KÄYTTÄYTYMISEN ARVIOINTILAUSEET... 1 1.vuosiluokka,väliarviointi SYKSY... 1 1. KOULUN SÄÄNNÖT... 1 2. HYVÄT TAVAT... T 1 1.vuosiluokka, lukuvuosiarviointi KEVÄT... 1

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

LUKUMÄÄRÄÄN LIITTYVIEN VARHAISTEN MATEMAATTISTEN TAITOJEN KEHITYS ESIOPETUSVUODEN AIKANA

LUKUMÄÄRÄÄN LIITTYVIEN VARHAISTEN MATEMAATTISTEN TAITOJEN KEHITYS ESIOPETUSVUODEN AIKANA LUKUMÄÄRÄÄN LIITTYVIEN VARHAISTEN MATEMAATTISTEN TAITOJEN KEHITYS ESIOPETUSVUODEN AIKANA Elina Kuivamäki Kasvatustieteen pro gradu -tutkielma Syksy 2006 Opettajankoulutuslaitos Jyväskylän yliopisto TIIVISTELMÄ

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

3. jakso. Kellonajat 1. jakso. Yhteen- ja vähennyslasku. 4. jakso Kertolasku allekkain. 2. jakso Kertolasku. Kertaus.

3. jakso. Kellonajat 1. jakso. Yhteen- ja vähennyslasku. 4. jakso Kertolasku allekkain. 2. jakso Kertolasku. Kertaus. Sisällys 3. jakso Kellonajat. jakso Yhteen- ja vähennyslasku. Kymmenylitys... 8 2. Yhteenlasku... 0 3. Vähennyslasku... 2 4. Harjoittelen... 4 5. Lukuyksiköihin hajottaminen... 6 6. Suuruusvertailu...

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana. Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9

Lisätiedot

HARJOITUS- PAKETTI E

HARJOITUS- PAKETTI E Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI E (6 pistettä) TUTA 17 Luento 18 Jonojen hallinta Hamburger Restaurant Pinball Wizard 1 piste Benny s Arcade 1/4 Luento 19 Projektin

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

Oppilaan taitojen seuranta: Havainnointi Kokeet Vanhempaintapaamiset Todistusarviointi Ryhmähavainnointi Wilma: poissaolon seuranta

Oppilaan taitojen seuranta: Havainnointi Kokeet Vanhempaintapaamiset Todistusarviointi Ryhmähavainnointi Wilma: poissaolon seuranta Oppimisen ja koulunkäynnin tuen tarpeiden suunnitelmallinen seulonta tuen järjestämiseksi Oppilas Vanhemmat Opettaja Erityisopettaja esi kasvun ja hyvinvoinnin lapsikohtaiset keskustelut, lapsen oppimissuunnitelma

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAB6. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

YHTEEN- JA VÄHENNYSLASKU lukualue 0-10

YHTEEN- JA VÄHENNYSLASKU lukualue 0-10 YHTEEN- JA VÄHENNYSLASKU lukualue 0-10 Yhteen- ja vähennyslasku, lukualue 0 10 ThinkMath 2014 YHTEEN- JA VÄHENNYSLASKU, lukualue 1 10 Yhteen- ja vähennyslasku 1 10 -osio sisältää 15 opetustuokiota yhteen-

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Teollisuustilojen käytettävyyteen vaikuttavat tekijät

Teollisuustilojen käytettävyyteen vaikuttavat tekijät Teollisuustilojen käytettävyyteen vaikuttavat tekijät Toiminnallisuuteen vaikuttaa: -sujuva materiaalivirta, lyhyet siirtymiset -ristikkäisten toimintojen välttäminen -teknisillä ratkaisuilla tuotannon

Lisätiedot

Maahanmuuttajien oppimisvaikeudet

Maahanmuuttajien oppimisvaikeudet Maahanmuuttajien oppimisvaikeudet 7.11.2016 Anu Arvonen Mitä oppimisvaikeudet ovat OPPIMISVAIKEUDEN MÄÄRITELMÄ: Opetuksesta ja tuesta huolimatta taidot kehittyvät erityisen hitaasti tai oppiminen ei edisty.

Lisätiedot

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta Espoon suomenkielisen perusopetuksen opetussuunnitelma Luvut 13 15 OPPIAINEIDEN OPETUSSUUNNITELMAT Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka Tekninen opas Niilo Mäki Instituutti, 2013 Polet, J. & Koponen, T. LukiMat - Oppimisen arviointi: Matematiikan tuen tarpeen tunnistamisen

Lisätiedot

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ESIOPETUKSEEN

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ESIOPETUKSEEN INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ESIOPETUKSEEN Induktiivisen päättelyn opetuskuvat Tehtävät 1 ja 2 Ryhmän muodostaminen ja ryhmän laajentaminen 1. Jaa palikat kahteen ryhmään. Ryhmän muodostaminen

Lisätiedot

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat).

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat). Laske kymmeneen Tavoite: Oppilaat osaavat laskea yhdestä kymmeneen ja kymmenestä yhteen. Osallistujamäärä: Vähintään 10 oppilasta kartioita, joissa on numerot yhdestä kymmeneen. (Käytä 0-numeroidun kartion

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Elina Rusanen MÄ TÄLLEEN NOPSASTI KÄYTIN SORMIA. Lasten laskustrategioiden kehitys ensimmäiseltä kolmannelle luokalle

Elina Rusanen MÄ TÄLLEEN NOPSASTI KÄYTIN SORMIA. Lasten laskustrategioiden kehitys ensimmäiseltä kolmannelle luokalle Elina Rusanen MÄ TÄLLEEN NOPSASTI KÄYTIN SORMIA Lasten laskustrategioiden kehitys ensimmäiseltä kolmannelle luokalle Erityispedagogiikan pro gradu -tutkielma Kevätlukukausi 2011 Kasvatustieteiden laitos

Lisätiedot

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. 3 1 3 ja 1. Laske lukujen 4 summa b. erotus c. tulo d. osamäärä e. käänteislukujen

Lisätiedot

Vä ritä ruutujä Kertoläsku 1-5

Vä ritä ruutujä Kertoläsku 1-5 Vä ritä ruutujä Kertoläsku 1-5 Matematiikan harjoitustehtäviä, 7-9v, 10min/sivu Nämä tehtävät auttavat lapsia ymmärtämään, kuinka 1) kertolasku toimii pienillä numeroilla, 2) kuinka kertolaskun voi ymmärtää

Lisätiedot

Sähköisen liikenteen foorumi 2014

Sähköisen liikenteen foorumi 2014 Sähköisen liikenteen foorumi 2014 Miten Suomi hyötyy sähköisestä liikenteestä Hannele Pokka 14.5.2014 Ilmastopaneelin (IPCC) terveiset sähköisen liikkumisen näkökulmasta Kasvihuonepäästöt ovat lisääntyneet

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 1-2

MATEMATIIKKA VUOSILUOKAT 1-2 MATEMATIIKKA VUOSILUOKAT 1-2 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

MITEN KYMMENJÄRJESTELMÄ HALLITAAN PERUSKOULUN VIIDENNELLÄ LUOKALLA? Liisa Ilonen Päivi Kangas

MITEN KYMMENJÄRJESTELMÄ HALLITAAN PERUSKOULUN VIIDENNELLÄ LUOKALLA? Liisa Ilonen Päivi Kangas MITEN KYMMENJÄRJESTELMÄ HALLITAAN PERUSKOULUN VIIDENNELLÄ LUOKALLA? Liisa Ilonen Päivi Kangas Kasvatustieteen pro gradu tutkielma Luokanopettajien aikuiskoulutus Kokkolan yliopistokeskus Chydenius Jyväskylän

Lisätiedot

Matematiikka/ Vuosiluokat 1-2

Matematiikka/ Vuosiluokat 1-2 Matematiikka/ Vuosiluokat 1-2 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

Kompleksiluvut. JYM, Syksy /99

Kompleksiluvut. JYM, Syksy /99 Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

MATEMAATTISESTI HAASTEELLISET KOULUTULOKKAAT NÄKÖKULMIA PITKÄLLE EDISTYNEIDEN ENSILUOKKA- LAISTEN HUOMIOIMISEEN. Katri Pietilä

MATEMAATTISESTI HAASTEELLISET KOULUTULOKKAAT NÄKÖKULMIA PITKÄLLE EDISTYNEIDEN ENSILUOKKA- LAISTEN HUOMIOIMISEEN. Katri Pietilä MATEMAATTISESTI HAASTEELLISET KOULUTULOKKAAT NÄKÖKULMIA PITKÄLLE EDISTYNEIDEN ENSILUOKKA- LAISTEN HUOMIOIMISEEN Katri Pietilä Kasvatustieteen pro gradu -tutkielma Luokanopettajien aikuiskoulutus Kokkolan

Lisätiedot

Lapsen esiopetuksen oppimissuunnitelma

Lapsen esiopetuksen oppimissuunnitelma Laukaan kunta Sivistysosasto Lapsen esiopetuksen oppimissuunnitelma Salassa pidettävä Arkistointiohje; AMS Peruskoulut Lapsen esiopetuksen oppimissuunnitelma Lapsen esiopetuksen oppimissuunnitelma tehdään

Lisätiedot

TAMPEREEN YLIOPISTO. Pienestä matikasta suuri soppa Analyysi perusopetuksen ensimmäisen luokan matematiikan oppimateriaaleista

TAMPEREEN YLIOPISTO. Pienestä matikasta suuri soppa Analyysi perusopetuksen ensimmäisen luokan matematiikan oppimateriaaleista TAMPEREEN YLIOPISTO Pienestä matikasta suuri soppa Analyysi perusopetuksen ensimmäisen luokan matematiikan oppimateriaaleista Kasvatustieteiden tiedekunta Opettajankoulutuslaitos, Hämeenlinna Kasvatustieteen

Lisätiedot

URHEILIJAKSI KASVAMINEN JA LAJIN OPISKELU

URHEILIJAKSI KASVAMINEN JA LAJIN OPISKELU URHEILIJAKSI KASVAMINEN JA LAJIN OPISKELU Suorituksen katsomisen ja videon rooli Teuvo Moilanen UKK-instituutti 17.1.2012 KEITÄ TE OLETTE? URHEILIJOITA VALMENTAJIA KORTIT ESIIN SEUROJEN TOIMIHENKILÖITÄ

Lisätiedot

Tuire Koponen, PsT Projektikoordinaattori, NMI

Tuire Koponen, PsT Projektikoordinaattori, NMI www.lukimat.fi Tuire Koponen, PsT Projektikoordinaattori, NMI 1 Valtakunnanlaajuinen käyttäjille ilmainen verkkopalvelu Opettajille, psykologeille ja muille kasvatusalanammatilaisille sekä vanhemmille

Lisätiedot

SELECT-lauseen perusmuoto

SELECT-lauseen perusmuoto SQL: Tiedonhaku SELECT-lauseen perusmuoto SELECT FROM WHERE ; määrittää ne sarakkeet, joiden halutaan näkyvän kyselyn vastauksessa sisältää

Lisätiedot

H e l i I s o m ä k i N e u r o p s y k o l o g i a n e r i k o i s p s y k o l o g i P s y k o l o g i a n t o h t o r i L U D U S

H e l i I s o m ä k i N e u r o p s y k o l o g i a n e r i k o i s p s y k o l o g i P s y k o l o g i a n t o h t o r i L U D U S H e l i I s o m ä k i N e u r o p s y k o l o g i a n e r i k o i s p s y k o l o g i P s y k o l o g i a n t o h t o r i L U D U S LUDUS TUTKIMUS- JA KUNTOUTUSPALVELUT OY Mäkitorpantie 3B, HELSINKI Liesikuja

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

MATEMAATTISTEN TAITOJEN KEHITTYMINEN ESIOPETUKSESTA NELJÄNNELLE LUOKALLE

MATEMAATTISTEN TAITOJEN KEHITTYMINEN ESIOPETUKSESTA NELJÄNNELLE LUOKALLE MATEMAATTISTEN TAITOJEN KEHITTYMINEN ESIOPETUKSESTA NELJÄNNELLE LUOKALLE Virpi Paukkeri Kasvatustieteen pro gradu -tutkielma Kevät 2013 Opettajankoulutuslaitos Jyväskylän yliopisto TIIVISTELMÄ Paukkeri,

Lisätiedot

Lukutaidon kehitykseen yhteydessä olevia tekijöitä luokalla

Lukutaidon kehitykseen yhteydessä olevia tekijöitä luokalla Lukutaidon kehitykseen yhteydessä olevia tekijöitä 1.-2. luokalla Jyväskylän yliopisto Kielellisen kehityksen yhteys lukutaitoon Esikielelliset Sanavarasto Lauseet ja taivutukset Kielellinen tietoisuus

Lisätiedot

ESIOPETUSVUODEN HAVAINNOINTIja SUUNNITTELULOMAKE. Lapsen nimi:

ESIOPETUSVUODEN HAVAINNOINTIja SUUNNITTELULOMAKE. Lapsen nimi: ESIOPETUSVUODEN HAVAINNOINTIja SUUNNITTELULOMAKE Lapsen nimi: kevät 2016 1 PERUSTIEDOT Lapsen sukunimi, etunimi Henkilötunnus Lapsen äidinkieli Huoltaja 1 Huoltaja 2 Osoite Osoite Puhelin Puhelin Sähköpostiosoite

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Automaattisen nopeusvalvonnan kehitysnäkymät. LINTU-seminaari Veli-Pekka Kallberg, VTT Jan Törnqvist

Automaattisen nopeusvalvonnan kehitysnäkymät. LINTU-seminaari Veli-Pekka Kallberg, VTT Jan Törnqvist Automaattisen nopeusvalvonnan kehitysnäkymät LINTU-seminaari 6.2.2012 Veli-Pekka Kallberg, VTT Jan Törnqvist 2 1. Tausta ja tavoitteet 2. Osatehtävät Sisältö 3. Automaattisen nopeusvalvontajärjestelmän

Lisätiedot

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 tuetusti / vaihtelevasti / hyvin / erinomaisesti vuosiluokka 1 2 3 4 käyttäytyminen Otat muut huomioon ja luot toiminnallasi myönteistä ilmapiiriä.

Lisätiedot

1. Opettaja pitää matematiikka-aiheisia tuokioita säännöllisesti tietyssä lapsiryhmässä.

1. Opettaja pitää matematiikka-aiheisia tuokioita säännöllisesti tietyssä lapsiryhmässä. Siv Hartikainen, luokanopettaja, matematiikanopettaja Opintopiiri esikoulunopettajille Taustaa Espoon ruotsinkielisen lapsiasiain- ja koulutuskeskuksen Matikkamaa Mattelandet i Esbo avattiin elokuussa

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot