WIANTIETEELLISTEN KOORDINAATTIEN MUUNTAMINEN SUORAVIIVAISIKSI

Koko: px
Aloita esitys sivulta:

Download "WIANTIETEELLISTEN KOORDINAATTIEN MUUNTAMINEN SUORAVIIVAISIKSI"

Transkriptio

1

2 OHJ ELMASELOSTE TRANSFORMATION TO PLANE GTL/GEOF JK - GEOD WIANTIETEELLISTEN KOORDINAATTIEN MUUNTAMINEN SUORAVIIVAISIKSI 1 OHJELMAN SUORITTAMA TEHTÄvÄ Ohjelma projisoi kansainvälisen referenssiellipsoidin pinnalla kulmakoordinaattien avulla rnääritel lyn pisteen ellipsoidia sivuavalle sylinteripinnalle, jolla piste määritellään suoraviivaisten koordinaattien ja meridiaanikaistan numeron avul ta. Referenssiellipsoidi rnaaritelläan paivantasaajasateen ja litistyneisyyden avulla. Em. pararnetrin arvoiksi on v sovittu seuraavat (Hasse 1928): pa i vantasaajasade 1 itistyneisyys Projektio suoritetaan kohtisuoraan ellipsoidin pintaa vasten sylinterille, joka Suomessa tavallisesti kaytettavassa Gauss-Krueger-koordinaatistossa ulottuu 1.5 astetta kunkin keskirneridiaanin molemmin puolin. Suomen a l ueel l a on kaytössd kuusi kolmen asteen l evyi sta ka i staa, jotka on numeroitu juoksevasti Iannesta itään siten, että kaistaa k = 0 vastaava keskirneridiaani on h = 18'. Tämän koord i naat i ston l i saks i on käytössä va i n yhden projekt ioka i stan Lfi-,ii~3-- nk. t ietokonekoord inaat i sto, jonka keskirnerid iaan i on h = 27'. Tietokonekoordinaatisto vastaa siten levennettya kaistaa k = 3. 1 I MUUNNOSKAAVAT Käytetyt kaavat on esitetty rnaanmittaushallituksen julkaisussa no 35 (1954). Kaavat ovat sarjakehitelmia, joihin tässä on otettu mukaan myös jaannösterrneja kuvaavat lausekkeet, Jotta ohjelmaa voitaisiin käyttää myös tavanomaisen kolmen asteen levyisen kaistan ulkopuolelle suoritettavissa projektloissa, kuten esim. projektiossa tietokonekoordinaatistoon.

3 Muunnoskaavot ovat seuraavat : a5 ( 1 - ZOcos + (24-5~1e'~)cos~ I 2op Ze0 cos 1. Suurelden rnerkltykset ovat seuraavat: x-koordlnaattl Gauss-Kruegor-proJektlossa (motrl3) y-karttakoordlnaattl Gouss-Krusgor-proJektlossa (netrlfil maantletoslllnen leveys (astetta) mantleteelllnen pltuus kasklmorldiaanlsta laskettuna (astetta) maantleteelllnon pltuus nollamerldlaanista luettuna (astetta) maantletsslllsta IovayttY vastaavan morldlaanlkaaren pltuus (rnutrl3) absoluuttlnsn kulmaykslkk0 astelssa lausuttuna (astetta) maantleteelllst8 levsytt# vastaavan paralleel Iyrnpyrrn kaarsvuuss:!de (mt3trla) moridlaanlelllpsln enslmnylnsn epakesklsyys merldlaanlolllpsln toinen op3kesklsyys Apusuurelden arvot saadaan ssureavlsta kaavolsto: rnlssy kertoimet ovat ao SarJokeh ItelmJ on muodostettu rqress lomenetel mij l 13 v:i 1 1 I I U 59' kolmontolsta tasavyllsen plstoen avulla. Sovltukoessa kaytetyt numeeriset arvot on saatu maanmlttaushallltukson Julkalsussa no 35 e~ltotylsta taulu-

4 kolsta. Kehltelmlin tarkkuus osltetylly v3llllb on i 4 mm, mm:n tarkkuuteen ptl~setnlsoksl vaaditaan suurempl plstetlheys Ja kuudennen asteen sovitus. Tlltlöln kehltolmht3 voidaan geadeettlsosca ty6ss# kyytt3y tgysln samaan tarkoitukseen kuin em. taulukoita. a (5) N 2 21/2 (1 - o sln $ 2 (6) e a(2 - a) (7) oe2-e2/(i-e 2 I I 1 KALKULAATTOR IOHJ ELMA OhJelmssa voldaan erottaa seuraavat osat: A L8htbarvoJen sybttö U C Merldlaanlkaaren pltuudon Iaskemlnen Muldon apusuurelden laskeminen 0 x- koord I neat 1 n l askeml nen E y-koordlnaatln laskeminen F Tu l ostus Em. valheet on osltteln Ilmltstty muistin k8ytun tohostarnlseksl. Ohjelma sljaltsae mulstlpslkolssa *00... *bd Ja d. Vapaaksi J8Y vllsl roklsterlii, Joton on mahdollista Ilitt8a tyh2fn runkoon em. kuu- dennen asteen polynomi geodeettlsla laskujo sllmally pitaen. Sls~~ntulo ohjolmaon suorltotaan muistipalkasta *00. Ohjelman listaus on esltetty liitteell V KÄYTTöOHJ EET Ohjolman luku kortilta koneen mulstlln tapahtuu seuraavasti: END Kort In A-puol 1 sl saan ENTEK Kort l n Ei-puo l 1 s 1 sb3n

5 ENTEH OhJelman kaytt0kaav lo on souraova: DEGREES DEC I MALS 3 DESIMAL END alku CONT Lue arvot IJlaantleteelllset koordlnaatlt sydtetaan merkkljonomuodossa astslna Ja mlnuuttelna seka vllmekslrnalnlttujsn doslmaalelna slton, etta doslmaallplsto sljoltstaan tayslen mlnuuttlen Ja mlnuuttlon dasimaelloean vyllln. Suoravllvaiset koordtnaatlt saadaan kllometrelssn. Kone laskee yhta plstatta n. 2.0 sek. OhJ~jlman tolmintet voldaan tarkistaa seuraavl l la arvo1 l ln: 2. Z k Y - 25O ' X ' Oikeln tolniiva ohjelrna antaa tulokset 2. Z k Y y km X x km Ohjelman Iöskutarkkuutoen vaikuttavat kaaronpltuuspol ynoml Ja sarjakohltel- mlen katkalsu. Kaarenpltuuden approkstmolnnlsta Johtuva vlrhe on kalkklalla

6 Itssfsarvoltaan pfenempl kuln 4 mm. Kstka lsusta Johtuva vlrhe on y: l 12 plenempl kuln x:iis. x:n mak~fmlvlrhe on kolmen asteen et#lsyydall.3 kesklmerldlaanlsta n 6 m kuudon asteon py8ssa n. 130 mn Ja yhdsksrn asteen pbyss8 n 1600 mm. 1: lohdllla kartanpllrustustarkkuus (n. 0.2 nm) vastaa 4000 mm maastossa, Joten ohjarlmaa voldasn hyvln kaytt32i tlstokonekoordlnaattlen Iaskmlsoan koko Suomon alueella. V VIITTEET Hasse, E. st Perrlsr, G Teblas I'Clllpsolde de R6fQronco Intornatlonal. Un lon g6odslque et g6ophys lque 1 ntsrnat lona l e, Sect lon da gbodósle, Publlcatlon sp8clale No 2. Parls. Maanmlttaushallltus, Taulukolta Gauss-Kruegorln projektion kaardlnaat- tllaskuja varton. bsnmlttaushallltuksan JulkelsuJa No 35, Welslnkl, 71 pp.

7 LIITE 1. TRANSFORMATION TO PLl--

8 TRANSFORMATION TO PLANE

9 TRANSFORMATION TO PLANE

Q 17.1/06/71/2. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Juha Korhonen HP-ohJ el mase l oste

Q 17.1/06/71/2. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Juha Korhonen HP-ohJ el mase l oste Q 17.1/06/71/2 Juha Korhonen 1.4.1971 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohJ el mase l oste SUORAVI IVAISTEN KOORDINAATTIEN MUUNTAMINEN MAANTIETEELLISIKSI OHJELMASELOSTE TRANSFORFAAT I ON

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

(NYRKKIN~YTTEET) Q 17.1/27/74/6 R. Puranen 1974-05-24. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A

(NYRKKIN~YTTEET) Q 17.1/27/74/6 R. Puranen 1974-05-24. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A Q 17.1/27/74/6 R. Puranen 1974-05-24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A (NYRKKIN~YTTEET) HP 9 820 A-OHJELMASELOSTE Q 17.1/27/74/6 R. Puranen

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi! MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse

Lisätiedot

Q 17,4/21/73/2 GEOLOGINEN TUTKIMUSLAITOS. Seppo Elo. Geofysiikan osasta FORTRAN IV ohjelmaseloste

Q 17,4/21/73/2 GEOLOGINEN TUTKIMUSLAITOS. Seppo Elo. Geofysiikan osasta FORTRAN IV ohjelmaseloste Q 17,4/21/73/2 Seppo Elo 19 73-12-05 GEOLOGINEN TUTKIMUSLAITOS 1. Geofysiikan osasta FORTRAN IV ohjelmaseloste FORTRAN IV OHJELMA JOKA LASKEE SARJAN VAAKASUORISTA SUORAKULMAISISTA MONIKULMIOSTA KOOSTUVIEN

Lisätiedot

N I K E A N U S K O N T U N N U S T U S

N I K E A N U S K O N T U N N U S T U S 100 H a n n u P o h a n n o r o N I K E A N U S K O N T U N N U S T U S lauluäänelle, kitaralle sekä viola da gamballe tai sellolle or voices, guitar, viola da gamba / violoncello - ' 00 Teosto Suomalaisen

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

Sosiaali- ja terveysalan lupa- ja valvontavirasto/botnia Scan Oy

Sosiaali- ja terveysalan lupa- ja valvontavirasto/botnia Scan Oy Sosiaali- ja terveyslautakunta 380 09.11.2011 Sosiaali- ja terveysalan lupa- ja valvontavirasto/botnia Scan Oy 1068/61/616/2011 STLTK 380 Botnia Scan Oy on pyytänyt sosiaali- ja ter veysalan lupa- ja valvontavirastolta

Lisätiedot

> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db

> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db Kmnrtno Ln Kmnlnn Hov Kore unsr etso Turv Ps Uus Kmnsuu Hovnsr Rstnlus Rstnem Vssr Hnmä Pävä-lt-ömelutso Vt 7 Phtää Hmn (sentoreus: m) Rs Russlo Tnem eltt Svnem S Ps Het Pohjos-Pots Ptäjänsr Rnth Suutr

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 1975-04-13

R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 1975-04-13 Q 17.1/27/75/13 R. Puranen 1975-04-13 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste PETROFYSIKAALINEN KARTOITUS KASETEILTA (1:50 0001 HP 9820 A-OHJELMASELOSTE Q 17.1/27/75/13 Risto Puranen

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

Lapsiperheiden kotipalveluiden myöntämisperusteet ja asiakasmaksut 1.1.2016 alkaen

Lapsiperheiden kotipalveluiden myöntämisperusteet ja asiakasmaksut 1.1.2016 alkaen Hallitus 267 16.12.2015 Lapsiperheiden kotipalveluiden myöntämisperusteet ja asiakasmaksut 1.1.2016 alkaen H 267 (Valmistelija: perhepalvelujohtaja Matti Heikkinen ja vastuualuepäällikkö Tarja Rossinen)

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

Veittijärvi-Moision ja Vuorentausta-Soppeenharjun kouluyksiköiden nimien muutokset alkaen

Veittijärvi-Moision ja Vuorentausta-Soppeenharjun kouluyksiköiden nimien muutokset alkaen Sivistyslautakunta 40 16.05.2017 Veittijärvi-Moision ja Vuorentausta-Soppeenharjun kouluyksiköiden nimien muutokset 1.8.2017 alkaen 606/01.017/2016 SIVLTK 16.05.2017 40 Sivistysjohtaja Matti Hursti: Sivistysjohtajan

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

πx) luvuille n N. Valitaan lisäksi x = m,

πx) luvuille n N. Valitaan lisäksi x = m, Lisäyksiä Muutamia lisäyksiä laskuharjoitusten 9 tehtävien ratkaisuihin. Sarjan n n cos4 n π termeittäin erivoituvuus Sarjan n n cos4 n πtermeittäinerivoitavuusonhiukkasenhankalaasia tutkia. Olkoon a n

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2)

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) Yhteistyöryhmä 1 16.01.2013 Kunnanhallitus 71 04.02.2013 Yhteistyöryhmä 14 24.10.2013 Kunnanhallitus 289 02.12.2013 Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) 26/01.01.03/2013 Yhteistyöryhmä

Lisätiedot

Henkilökuljetuspalveluiden järjestämisen kannalta on tar koi tuksenmukaista käyttää yhden vuoden optiota. Valmistelijan päätösehdotus:

Henkilökuljetuspalveluiden järjestämisen kannalta on tar koi tuksenmukaista käyttää yhden vuoden optiota. Valmistelijan päätösehdotus: Yhtymähallitus 75 08.04.2014 Yhtymähallitus 253 09.12.2014 Yhtymähallitus 41 26.02.2015 Yhtymähallitus 71 21.04.2015 Taksiliikenteen kilpailutus 517/02.08.03/2014 Yhall 08.04.2014 75 Sosiaalityön päällikkö

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

EP 9820 -A-Oh jelmaseloste

EP 9820 -A-Oh jelmaseloste & 17.1/27/74/10 R. Puranen 1974-04-01 Geologinen tutkimuslaitos Geofysiikan osasto d EP 9820 -A-Oh jelmaseloste - PETROFYSIKAALISTEN TIETOJEN LAVISTYS ARKISTOKORTEILTA R. Puranen 1974-04-01 PETROFYSIKAALISTEN

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Aluevarausmerkinnät: T/kem Maakuntakaava

Aluevarausmerkinnät: T/kem Maakuntakaava kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12

Lisätiedot

Program matopeli; uses graph,grafiikka,crt; VAR. merkkiluettu,herkkutarkistettu : boolean;

Program matopeli; uses graph,grafiikka,crt; VAR. merkkiluettu,herkkutarkistettu : boolean; {Matopeli} {Yksinkertainen TurboPascalilla ohjelmoitu matopeli} {Julkaistu GPLv3 lisenssillã } {https://www.gnu.org/licenses/gpl-3.0.html} {Ilari Kuoppala 9D} Program matopeli; uses graph,grafiikka,crt;

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

Aikaisemmin kiinteistötoimitusten uskottuja miehiä on valittu kym me nen. Heille ei valita varajäseniä.

Aikaisemmin kiinteistötoimitusten uskottuja miehiä on valittu kym me nen. Heille ei valita varajäseniä. Kunnanhallitus 18 14.01.2013 Valtuusto 13 24.01.2013 Kunnanhallitus 102 16.03.2015 Valtuusto 13 26.03.2015 Kunnanhallitus 6 18.01.2016 Valtuusto 8 17.03.2016 Kunnanhallitus 227 22.08.2016 Valtuusto 32

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

Rakennustarkastaja Petri Mäki, sähköposti petri.maki@ylojarvi.fi, puh. 050 385 1815

Rakennustarkastaja Petri Mäki, sähköposti petri.maki@ylojarvi.fi, puh. 050 385 1815 Ympäristölautakunta 252 30.10.2012 Ympäristölautakunta 145 29.10.2013 Ympäristölautakunta 158 11.11.2014 Ympäristölautakunta 38 17.02.2015 Ympäristön epäsiisteys Ryömäntiellä 746/53.532/2012 YMPLTK 30.10.2012

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Laser FLS 90. Käyttöohje

Laser FLS 90. Käyttöohje Laser FLS 90 fi Käyttöohje L SE R R DI TIO N DO NO T ST R E IN TO BE M L SE R CL S S 2 5 1 2 4 3 3 6 7 B1 B2 1 C1 C2 C3 S1 =S2 = 90 C4 S1 90 S2 D1 D2 D3 D4 D5 D6 E1 S=10m 32 10 E2 C L 1 B E3 L 2 D C L

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

kivikoriaita h500mm VIERAS JÄTEKATOS JÄTEKATOS +135,10 +135,10 lumet lumet 5 svk asf lumet PULL-UP PULL-UP 31 AIR AIR WALKER WALKER jumppa

kivikoriaita h500mm VIERAS JÄTEKATOS JÄTEKATOS +135,10 +135,10 lumet lumet 5 svk asf lumet PULL-UP PULL-UP 31 AIR AIR WALKER WALKER jumppa h500mm kivikoriaita kivikoriaita h500mm 11 h500mm kivikoriaita kivikoriaita h500mm 22 33 44 66 55 77 88 10 10 99 11 11 12 12 kivikoriaita h500mm 13 13 14 14 15 15 VIERAS JÄTEATOS JÄTEATOS +135,10 +135,10

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Kouvolan kaupunki Pöytäkirja 4/2015 41. Vammaisneuvosto 20.10.2015. Aika 20.10.2015 klo 16:00-17:12

Kouvolan kaupunki Pöytäkirja 4/2015 41. Vammaisneuvosto 20.10.2015. Aika 20.10.2015 klo 16:00-17:12 Kouvolan kaupunki Pöytäkirja 4/2015 41 Vammaisneuvosto 20.10.2015 Aika 20.10.2015 klo 16:00-17:12 Paikka Läsnä Toimitila Veturi, Kauppamiehenkatu 4 (Pohjola-talo) 2. krs Luettelon mukaan Pykälät 26-31

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3 . Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat

Lisätiedot

Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille

Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille Phingin osayliskaava 27.10.2014 Kysly alun asukkaill ja maanomistajill Arvoisa vastaanottaja, Raahn kaupunginhallitus on päättänyt aloittaa Phingin osayliskaavan ajaasaistamistyön. Phingin osayliskaava

Lisätiedot

Matriisialgebra harjoitukset, syksy 2015

Matriisialgebra harjoitukset, syksy 2015 Matriisialgebra harjoitukset, syksy 25 MATRIISIALGEBRA, s. 25, Ratkaisuja/ M.Hamina 2. Virittääkö vektorijoukko S vektoriavaruuden V seuraavissa tapauksissa. a V = R 3 ja S = {(, 4,3,(,3,,(3, 5,,(,2, 2}.

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Ellipsit, hyperbelit ja paraabelit vinossa

Ellipsit, hyperbelit ja paraabelit vinossa Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

VIKAJÄRVEN OSAYLEISKAAVA

VIKAJÄRVEN OSAYLEISKAAVA LIITE Rovaniemen kaupunki VIKAJÄRVEN OSAYLEISKAAVA Mitoituslaskelma rakennusoikeuden jakamisesta kaava-alueella Kaavoitus VIKAJÄRVEN OSAYLEISKAAVA Mitoitus laskelma Vikajärven osayleiskaavan rakennusoikeuden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

KÄYTTÖOHJE ELTRIP-R6. puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi. PL 163 87101 Kajaani

KÄYTTÖOHJE ELTRIP-R6. puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi. PL 163 87101 Kajaani KÄYTTÖOHJE ELTRIP-R6 PL 163 87101 Kajaani puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi SISÄLLYSLUETTELO 1. TEKNISIÄ TIETOJA 2. ELTRIP-R6:n ASENNUS 2.1. Mittarin asennus 2.2. Anturi-

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Sosiaali- ja terveysalan lupa- ja valvontavirasto/doc Finland Oy

Sosiaali- ja terveysalan lupa- ja valvontavirasto/doc Finland Oy Sosiaali- ja terveyslautakunta 211 08.06.2011 Sosiaali- ja terveysalan lupa- ja valvontavirasto/doc Finland Oy 543/61/616/2011 STLTK 211 Sosiaali- ja terveysalan lupa- ja valvontavi rasto (Valvira) on

Lisätiedot

Palokuristimien painehäviö - tuloilman päätelaitteet S11-125 ja S55 400 x 100 mm - S

Palokuristimien painehäviö - tuloilman päätelaitteet S11-125 ja S55 400 x 100 mm - S LAUSUNTO Nro. RTE1890/05 12.5.2005 Palokuristimien painehäviö - tuloilman päätelaitteet S11-125 ja S55 400 x 100 mm - S Tilaaja: Vasatherm Finland Oy VTT RAKENNUS- JA YHDYSKUNTATEKNIIKKA LAUSUNTO NRO RTE1890/05

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

ART HOUSE C M Y CM MY CY CMY K. Harjoitus tekee mestarin. Suomen kielen syventäviä harjoituksia maahanmuuttajille. Marja-Liisa Saunela

ART HOUSE C M Y CM MY CY CMY K. Harjoitus tekee mestarin. Suomen kielen syventäviä harjoituksia maahanmuuttajille. Marja-Liisa Saunela J K T K j j I A-S A A L J A j-bjö M Sb V Hj 3: j j j j j j j Kj j j j j j K j j M j j j j S - j - j ö Hj 3 j j j j T ö j j ö - j TITOSANOMA Mj-L S Hj 3 S j j ART HOUS Hj C M Y CM MY CY CMY K Oj j K S L

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot