Q 17.1/27.2/74/3. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. T. Jokinen SUSKEPTIBILITEETTIPROFIILI

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Q 17.1/27.2/74/3. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. T. Jokinen SUSKEPTIBILITEETTIPROFIILI"

Transkriptio

1 Q 171/272/74/3 T Jokinen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste SUSKEPTIBILITEETTIPROFIILI

2 4 171 /272/74/3 T Jokinen GEOLOGIIVEIV 'i-litkimuslaitos Geofysiikan osasto HP 9820 A-ohjelmaseloste Suskeptibiliteettiprofiili Ohjelmaa voidaan käyttää suskeptibiliteettiprofiilipohjien piirtämiseen ja mittauspisteiden esittämiseen profiileina jolloin samalla mittauspisteet lasketaan 10~~~1-~ksiköiksi Profiilin piirtarnisen jälkeen tulostaa ohjelma myös kaik- kien suskeptibiliteettien keskiarvon keskihajonnan ja vaih- telukertoimen Vaihtoehtoisesti voidaan profiilipohjien piirtäminen jättää pois (FLG61 Profiilin piirtämisessä on eri vaihtoehtoja: 1 Normaalitapauksessa ohjelma piirtää suskeptibiliteetit +:nä ja yhdistää nämä merkit jos mittauspisteiden väli L 7 m (rivillä Suskeptibiliteetit esitetään mustattuina ympyröina (FLG41 3 Kaikki suskeptibiliteettien välit yhdistetään riippumatta mittauspisteiden etäisyyksista (FLG21 Liitteissä 1-5 on esimerkkejä eri piirtämistavoista Toimintaohjeet Clhjelma sijaitsee kahdella pitkällä kortilla 4 sivulla Piirtoalaksi skaalataan 25 x 38 cmz (suuremman HP-paperin nurkat] Jos haluat jättää profiilipohjan piirtämisen pois aseta FLG6 Kysymyksiin vastataan seuraavasti: [suluissa muistirekisteri jonne vastaus menee1 PROFNUMER0 Anna k0 numero (RIO1 KARTTALEHTI (R201 anna alueen 1: karttalehti (6 numeroinen luku1 Seuraaviin kysymyksiin vastataan muodossa PLT "vastaus"

3 MATKAMITTAKAAVA [ R2 1 anna mittakaava muodossa 1/R2 esim 1/ XO =? [ROI ensimmäinen numeroitava x MITTAUSSUUNTA (R11 Mittaussuunta asteina jos k0 luku > 180 piirtää ohjelma profiilin oikealta vasemmalle X-KOCIRDINAATTI Y-KOORDINAATTI Alkupisteen koordinaatit SEURAAVA X anna matkalukema metreinä LI =? L =? anna ilmalukema ja mittauslukema jos samoja kuin edellisellä pisteellä jätä antamatta Virheellisen lukeman korjaaminen Anna kysymykseen L =? vastaukseksi -1 jolloin ohjelma palaa kysymykseen SEURAAVA X Suskeptibiliteetin jättäminen keskiarvon laskemisesta pois Aseta FLG 0 ennen kuin tulee kysymys SEURAAVA X Voit painaa kesken piirtämisen SFG jolloin FLG 0 on asetettu Piirtoalan looouminen Jos piirrettävä X PIIRTOALA LOPPUI <-2 tai >36 tulee näyttötaululle ilmoitus jos haluat jatkaa piirtämistä uudella paperilla vaihda pa-peri ja anna vastaukseksi luku 1 Jos lopetat profiilin piirtamisen jätä vastaus antamatta jolloin ohjelma tulostaa N:n k:n S:n ja C:n Piirtämisen looettaminen Profiilin viimeisen pisteen piirtamisen jälkeen anna kysymykseen vastaukseksi luku -2 Tällöin ohjelma tulostaa kaikkien piirrettyjen suskeptibiliteettien [ellet ole käyttänyt FLG 0:aal lukumäärän (Nl keskiarvon MEAN K (1 O-~SI 1 keski-

4 hajonnan S [IO-~SII ja vaihtelukertoimen C sekä niiden suskeptibiliteettien lukumaaran jotka olet jättänyt keskiarvon laskemisesta pois FLG0:n avulla (Nl) Ohjelman rakenne rivit FXD 0 Skaalausarvot jos FLG 6 ei ole asetettu haarautuminen riville 30 Akselien piirtäminen Y-akselin numerointi Vakiotekstit Profiilin numeron ja karttalehden antaminen Karttalehden ja profiilin numeron plottaus Alue laite PVM Matkamittakaavan XO:n mittaussuunnan ja alkupisteen koordinaattien antaminen X-akselin nurnerointi Mittaussuunnan ja koordinaattien plottaus Eräiden rekisterien nollaus "SEURAAVA X" Piirtämisen lopetustesti Matkalukema muutetaan piirtärnisarvoksi Piirtämisarvojen muutokset jos FLG 3 tai FLG 1 Li =? L =? Jos L = -1 palaa riville 58 AL:n muutos yksiköiksi IO-~SI Piirrettävän Y:n laskeminen((~0~1~-skaala) Jos mittauspisteiden väli i 7 m yhtenäinen viiva k0 pisteen plottaus Jos FLG 0 jää k0 arvo pois keskiarvon laskemisesta Keskiarvon ja -hajonnan laskeminen Paluu riville 58 Piirtoalan loppuminen Piirtamisen lopettaminen keskiarvon ja -hajonnan ja pisteiden lukumaaran plottaus Piirtäminen jatkuu seuraavalla paperilla Alirutiini joka piirtää mustatun ympyrän EIVD

5 Muistitilan käyttö A Sisäänsyötettävä Li 11 C - - matka X Piirrettävä X (cm) 11 Y - - Y (cm) Xo (ensimmäinen numeroitava x) Mittaussuunta (O) X:n mittakaava (muodossa 1/R2) K (IO-~SII r xl -koordinaatti profiilin alkupisteen yl koordinaatit vapaa L - Li= AL 4a 1154 AL AL') = ~~[IO-~SI) Eki Profiilin numero N I k : n laskemiseen käytettyjen mittausten lukumäärä) k (suskeptibiliteettie keskiarv0~10~~~1) Cki 9 S keskihajonta -nk2 = J( n-l 1 R14 R15 C vaihtelukerroin = S/k Cki2 x-akselin numerointi R18 R19 1: karttalehden osanumero R20 karttalehden numero R22 x-akselin numerointi R23 Niiden mittausten lukumäärä joita ei ole käytetty k:n laskemiseen = NI R24 vapaa R25 Paperin vaihto jos R25 # 0 R26 Ympyrän säde jos havaintopisteet esitetään ympyröinä (o15) R27 X (cm) R28 I~i+i - ~ i = ( 1~x1 R29 Xi-1 (edellinen piirretty x) R30 Yi-1 [ Y)

6 FLAGIT FLG 0 : k0 suskeptibiliteetti jää keskiarvon laskemisesta pois FLG 1: Profiilia jatketaan seuraavalla paperilla [sisäinen] FLG 2: Kaikki piirrettävät pisteet yhdistetään yhtenäiseksi profiiliksi (liite 51 FLG 3: Profiilin piirtäminen oikealta vasemmalle (sisäinen] FLG 4: Suskeptibiliteetit esitetään mustattuina ympyröinä FLG 6: Profiilipohjan piirtäminen jää pois

7 - a L LI I= -u Lil u Z

8 m rn - N P B J N N - J J -

9 1 1 \ ;tfl LV LA 8 13 m ; 1 : 4 I I 3- IFJ : 'EJ : m 1 4 : -! 1 * - i j :! ; 1 ' i ' " l d i! ; l L m - - 4! r\l Ln /:II - i m -- - LO :!! : J : I " L : ' < i [U r : -_i 1 :- _-:LI:--r;--:r-ii:! : L_ 1 L ~ ~ - ~ : -: : :! i : I L -1 : L *- 1 - : - a - - : ; : -! : : : ; - : i - IL---!--'-~ 1 i- 3- n1 --- I i!! "! : : - : ---- ;--- -i! l! -: i j ; ; --] - --!- -! 8 * - - i :!! i L 1 - -A i ~ : i 8 / -! -- i! ~-~ - - -l- :- I i 1 M : ; --- e - -- : - --!-; - -: C-- - ; ~- : :~' L- 1P l- 3 8! : w - 'm ;m : L --- : -_- : i- 8 i l 1 : :-- / / i_: -:i: i_ -:::: :-i; - 'VU1 : ' jj : : : ~-< - - :! I i ' i ; :: ' + 8 ' l: :- ~ - : i- " jj j j ' l I < - : t s*ot I < ' 8 ' - : - -: :! - ; -: : : - I:: :: _? j :! i : ; I < :! R;I 1 1!! _ j! " - I - *- i : ;! 1 : I 8 -- i Y!ml> * I I I I 1 I I 1 4 d d I r2j 61 n1 l-3 m m Rl EJ t5j I-51 rsl t4 m m IQ E(1 Ei rn CJ Fu IA N Lrl - - Ju 4bl - t'a El rj;l 1 9 L - J - ~: m- ru mn a MP ru p" X> I

10 ~ ~ i ni v -!- - --!- -~ 1! 8 - ;-! 1: ~ ' : 1 1 : m '! m < - : : Ea B mi i i ~ ~ +!! : l 1 i : -- # j : 1 ' ; : i - : : : 1 - i ' 1 -- ~ : ; + - i 1 : i: -! : i ~ ~ ; ~ + : :! ::! :! : ; I i 1 ~! ~ ~ ~ * ~ I _-- ' : ' I! 8 8! : ;! ~! : : i : ;! i! :!! < - ~ + I! : - 2" ; i ~ : V:! m ' ; -~ :--i ;- -i: - 8 : : 1 : : f'l4 8 f :! I I I 1 I l I 1 1 I 1 d d 6l l;;i IZ! Eil El - EJ - ~4 LI 8 - 'EJ 01 ' m n N t3 El KI El 6l U a1 hlt3 L r N Irl d N - M N - Lr 4 - v -- mm NF? X> ~ '

11

12

13

Q 17.1/24.1/74/1. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. T. Jokinen SLINGRAM-PROFIILI

Q 17.1/24.1/74/1. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. T. Jokinen SLINGRAM-PROFIILI Q 17.1/24.1/74/1 T. Jokinen 1974-12-05 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste SLINGRAM-PROFIILI Q 17.1/24.1/74/1 T. Jokinen 1974-12-05 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan

Lisätiedot

4 17.1/24.34/74/1. Tarmo Jokinen. Geofysiikan osasto GEOLOGINEN TUTKIMUSLAITOS VLF-PRDFIILI

4 17.1/24.34/74/1. Tarmo Jokinen. Geofysiikan osasto GEOLOGINEN TUTKIMUSLAITOS VLF-PRDFIILI 4 17.1/24.34/74/1 Tarmo Jokinen 1974-1 1-1 9 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto VLF-PRDFIILI 't LJ 17.1/2$.34/74/1 T. Jokinen 1974-1 1-19 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820

Lisätiedot

Q 17.1/24.1/73/1. GEOLOGINEN TLITKIIYUSLAITOS Geofysiikan osasto. Tarmo Jokinen SLIINGRAM-PRCIFIILIIN PIIRTÄMINEN

Q 17.1/24.1/73/1. GEOLOGINEN TLITKIIYUSLAITOS Geofysiikan osasto. Tarmo Jokinen SLIINGRAM-PRCIFIILIIN PIIRTÄMINEN Q 7/24/73/ Tarmo Jokinen 973-0-03 GEOLOGINEN TLITKIIYUSLAITOS Geofysiikan osasto SLIINGRAM-PRCIFIILIIN PIIRTÄMINEN 24 Q 7/=/73/ T Jokinen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A -0h~emaseloste

Lisätiedot

Q 17.1/16.2/73/6. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A. P. Mikkola Koskee: Q 17.1/22

Q 17.1/16.2/73/6. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A. P. Mikkola Koskee: Q 17.1/22 Q 171/162/73/6 P Mikkola 1973-12-17 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A Koskee: Q 171/22 UZIANOMALIAN LASKEMINEN ( malli 17 puolizäretöntä levyä) Q 171/162/73/6 P Mikkola

Lisätiedot

Q 17.1/27/75/2. Risto Puranen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto

Q 17.1/27/75/2. Risto Puranen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto Q 17.1/27/75/2 Risto Puranen 197 5-01-08 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto Q 17.1/27/75/2 Risto Puranen 1975-01-08 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste Ohjelman

Lisätiedot

PETROFYSIKAALINEN SYVÄKAIRAUSPROFIILI (TULOSTEN ESITTÄMINENI

PETROFYSIKAALINEN SYVÄKAIRAUSPROFIILI (TULOSTEN ESITTÄMINENI Q 17.1/27/74/21 R. Puranen 1974-12-28 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasta HP 9820 A-ohjelrnaseloste PETROFYSIKAALINEN SYVÄKAIRAUSPROFIILI (TULOSTEN ESITTÄMINENI Q 17.1 /27/74/21 Risto Puranen

Lisätiedot

HAVAINTOARVOJEN TLILOSTUS LCIMAKKEELLE PETROFYSIKAALISET LABORA- TURIOMITTAUKSET

HAVAINTOARVOJEN TLILOSTUS LCIMAKKEELLE PETROFYSIKAALISET LABORA- TURIOMITTAUKSET Q 17.1/27/75/3 R. Puranen 1975-01 -22 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste HAVAINTOARVOJEN TLILOSTUS LCIMAKKEELLE PETROFYSIKAALISET LABORA- TURIOMITTAUKSET - 1975. Q 17,1/27/75/3

Lisätiedot

R. Puranen Q 17.1 /27/74/23. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste

R. Puranen Q 17.1 /27/74/23. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste Q 17.1 /27/74/23 R. Puranen 1974-03-07 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste HAVAINTOPISTEIDEN PLOTTAUS (1:250001 JA TILASTOLLINEN KÄSITTELY 4 17.1 /27/74/23 R. Puranen

Lisätiedot

Q 17,4/21/73/2 GEOLOGINEN TUTKIMUSLAITOS. Seppo Elo. Geofysiikan osasta FORTRAN IV ohjelmaseloste

Q 17,4/21/73/2 GEOLOGINEN TUTKIMUSLAITOS. Seppo Elo. Geofysiikan osasta FORTRAN IV ohjelmaseloste Q 17,4/21/73/2 Seppo Elo 19 73-12-05 GEOLOGINEN TUTKIMUSLAITOS 1. Geofysiikan osasta FORTRAN IV ohjelmaseloste FORTRAN IV OHJELMA JOKA LASKEE SARJAN VAAKASUORISTA SUORAKULMAISISTA MONIKULMIOSTA KOOSTUVIEN

Lisätiedot

GEOLOGINEN TUTKIMUSLAITOS AZ-ANOMALIAN LASKEMINEN (GAY:N MUKAAN) Geofysiikan osasto HP-ohjelmaseloste 9820 A. Koskee: Q 17.1/22

GEOLOGINEN TUTKIMUSLAITOS AZ-ANOMALIAN LASKEMINEN (GAY:N MUKAAN) Geofysiikan osasto HP-ohjelmaseloste 9820 A. Koskee: Q 17.1/22 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A Koskee: Q 7./22 AZ-ANOMALIAN LASKEMINEN (GAY:N MUKAAN) Q 7,/6.2/73/%4 A. Villareal 973-09-24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan

Lisätiedot

Q ~ i~.i/z~7a/t R. Puranen

Q ~ i~.i/z~7a/t R. Puranen Q ~ i~.i/z~7a/t R. Puranen 7 976-01 -05 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto RAPORTTITI EDOSTO -- P \ Q 17*1/27/76/V 2. Puranen GEOLOGIETEN rputkimusli1itos Geofysiikan osasto HP 9820 A-ohjelmaseloste

Lisätiedot

PETROFYSIKAALINEN KARTOITUS REIKÄNAuHALTA (1:50 000)

PETROFYSIKAALINEN KARTOITUS REIKÄNAuHALTA (1:50 000) Q 17.1/27/74/3 R. Puranen 1974-06-19 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-oh jelmaseloste PETROFYSIKAALINEN KARTOITUS REIKÄNAuHALTA (1:50 000) HP 9820 A-OHJELMASELOSTE Q 17.1/27/74/3 Risto Puranen

Lisätiedot

Q 17.1/27/73/2 R. Puranen

Q 17.1/27/73/2 R. Puranen Q 17.1/27/73/2 R. Puranen 1973-07-31 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste MERKKIEN SELTTYKSEN PIIRT#MINEN SUSaPTIBILZTEETTI- JA TIHEYSKARTTQIHIN Q 17 *1/37/73/2 R. Puranen 1973-07-31

Lisätiedot

/27/75/5. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. R. Puranen

/27/75/5. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. R. Puranen 4 1 7.1/27/75/5 R. Puranen 1975-01 -24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste SUSKEPTIBILITEETIN RIIPPUVUUS TIHEYDESTÄ. REIKÄNAUHALTA. TULOSTUS Q 17.1/27/75/5 R. Puranen

Lisätiedot

(NYRKKIN~YTTEET) Q 17.1/27/74/6 R. Puranen 1974-05-24. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A

(NYRKKIN~YTTEET) Q 17.1/27/74/6 R. Puranen 1974-05-24. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A Q 17.1/27/74/6 R. Puranen 1974-05-24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A (NYRKKIN~YTTEET) HP 9 820 A-OHJELMASELOSTE Q 17.1/27/74/6 R. Puranen

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 1975-04-13

R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 1975-04-13 Q 17.1/27/75/13 R. Puranen 1975-04-13 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste PETROFYSIKAALINEN KARTOITUS KASETEILTA (1:50 0001 HP 9820 A-OHJELMASELOSTE Q 17.1/27/75/13 Risto Puranen

Lisätiedot

Geofysiikan osasto Q 17.1/27/75/9 1975-03-11 GECILOGINEN TUTKIMUSLAITOS. HP-ohj elmaseloste ALLIEELLINEN STATISTIIKKA REIKÄNAUHALTA IPINTA- IVÄYTTEETI

Geofysiikan osasto Q 17.1/27/75/9 1975-03-11 GECILOGINEN TUTKIMUSLAITOS. HP-ohj elmaseloste ALLIEELLINEN STATISTIIKKA REIKÄNAUHALTA IPINTA- IVÄYTTEETI Q 17.1/27/75/9 R. Puranen 1975-03-11 GECILOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohj elmaseloste ALLIEELLINEN STATISTIIKKA REIKÄNAUHALTA IPINTA- IVÄYTTEETI Q 17.1/27/75/9 R. Puranen 1975-03-1 1 GEOLOGINEN

Lisätiedot

MITTAUSARVOJEN TULOSTUS PETROFYSIKAALISIKSI REI~NAUHOIKSI

MITTAUSARVOJEN TULOSTUS PETROFYSIKAALISIKSI REI~NAUHOIKSI Q 17.1/27/74/2 Risto Puranen 1974-05-07 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste MITTAUSARVOJEN TULOSTUS PETROFYSIKAALISIKSI REI~NAUHOIKSI (NYRKKINÄYTTEET) I HP 9820 A-OHJELMASELOSTE

Lisätiedot

HP 9820 A-ohjelmaseloste

HP 9820 A-ohjelmaseloste GEOLOGINEN TUTKIMUSLAITOS GeoQsiikan osasto HP 9820 A-ohjelmaseloste PETRQPY SIKAALISEN REI~NAUHAN QTSZKOINTI ( FINTAN#YTTEET 1 Q 17,1/27/74/9 R. Puranen 1974-05-03 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan

Lisätiedot

HP 9820 A-OHJELMASELQSTE

HP 9820 A-OHJELMASELQSTE Q 17.1/27f 741 14 Risto Puranen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste PETROPY SIKAALISTEN TIETOJEN LAY ISTY S ( P INTAN~YTTEET, P-KOODI = 41 HP 9820 A-OHJELMASELQSTE Q 17.1/27/74/14

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o

Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o Forssan kaupunki Osavuosikatsaus 2017-08 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S E U T U P A L V E L U T T I L I

Lisätiedot

EP 9820 -A-Oh jelmaseloste

EP 9820 -A-Oh jelmaseloste & 17.1/27/74/10 R. Puranen 1974-04-01 Geologinen tutkimuslaitos Geofysiikan osasto d EP 9820 -A-Oh jelmaseloste - PETROFYSIKAALISTEN TIETOJEN LAVISTYS ARKISTOKORTEILTA R. Puranen 1974-04-01 PETROFYSIKAALISTEN

Lisätiedot

0 17.1/27/75/14 R. Puranen GECILOGINEN TUTKIMUSLAITOS. Geofysiikan osasto REIKÄNAUHAN LUKEMIIUEN KASETILLE

0 17.1/27/75/14 R. Puranen GECILOGINEN TUTKIMUSLAITOS. Geofysiikan osasto REIKÄNAUHAN LUKEMIIUEN KASETILLE 0 17.1/27/75/14 R. Puranen 1975-04-10 GECILOGINEN TUTKIMUSLAITOS Geofysiikan osasto REIKÄNAUHAN LUKEMIIUEN KASETILLE IMUSLAITOS R. Puranen GeofjsiSan osasto -. Ohjelman avulla voidôan silrtaa petrofysikaalinen

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

Q 17.1/27/75/17. Geofysiikan osasto. R. Puranen GEOLOGINEN TUTKIMUSLAITOS PETROFYSIKAALISEN KASETIN EOITOINTI

Q 17.1/27/75/17. Geofysiikan osasto. R. Puranen GEOLOGINEN TUTKIMUSLAITOS PETROFYSIKAALISEN KASETIN EOITOINTI Q 17.1/27/75/17 R. Puranen 1975-04-14 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISEN KASETIN EOITOINTI - Q 17*1/27/75/17 GZOLOGZiEN TUTKINUSLAITOS 2. Puzanen Geofysiikan osasto 1975-04-1

Lisätiedot

OUTOKUMPU OY 040/2341 12/~~/83

OUTOKUMPU OY 040/2341 12/~~/83 Q OUTOKUMPU OY 040/234 2/~~/83 0 K MALMINETSINTX Eero Sandgren/PHM 25..984 GEOFYSIIKAN TUTKIMUKSET VUONNA 98 JA 983 Reisjarvi, Tiaskuru 234 2 Sijainti :400 000 Lähtökohta Kesän 983 aikana tutkimuskohteella

Lisätiedot

2 Keminmaa 3 4 5 6. Haaparanta TORNIO. > 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db. Vt 4 Kemi

2 Keminmaa 3 4 5 6. Haaparanta TORNIO. > 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db. Vt 4 Kemi LIITE.. Pek ka ti injun Heik rä npe ä nper kkaa u u L joki Kylä L LIITE.. i aar Na u ska ang as ik ju Koi vuh ar Ru u tti Mä nt Väi nöl ä y lä Ma rtta Vai n io n ine Tor v o Paa tti Las si ik ko Kem inm

Lisätiedot

OUTOKUMPU OY 0 K MALMINETSINTA. Eero Sandqren/PHM 11-4.1983 1 GEOFYSIIKAN TUTKIMUKSET VUONNA 1979 JA 19. Sijainti 1:400 000. Vihanti, Kiviharju

OUTOKUMPU OY 0 K MALMINETSINTA. Eero Sandqren/PHM 11-4.1983 1 GEOFYSIIKAN TUTKIMUKSET VUONNA 1979 JA 19. Sijainti 1:400 000. Vihanti, Kiviharju Q OUTOKUMPU OY 0 K MALMINETSINTA Eero Sandqren/PHM 11-4.1983 1 GEOFYSIIKAN TUTKIMUKSET VUONNA 1979 JA 19 Vihanti, Kiviharju 2434 05 Sijainti 1:400 000 Gähtökohta Lampinsaaren malmimuodostuman kulku on

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Kattoläpiviennit KATTOLÄPIVIENTISARJA VILPE. Tuote LVI-numero Pikakoodi SOLAR TIILI MUSTA TM85 SOLAR TIILI RUSKEA AD58

Kattoläpiviennit KATTOLÄPIVIENTISARJA VILPE. Tuote LVI-numero Pikakoodi SOLAR TIILI MUSTA TM85 SOLAR TIILI RUSKEA AD58 Kattoläpiviennit Tuote LVI-numero Pikakoodi 5289200 WF99 SOLAR TIILI MUSTA 75602 SOLAR TIILI RUSKEA 75604 SOLAR TIILI HARMAA 75607 SOLAR TIILI TIILENPUN. 75609 SOLAR PELTIMUSTA 75612 SOLAR CLASSIC MUSTA

Lisätiedot

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 "i

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 i Tampereen kesäyliopisto, kevät 20 1 5 Thlousmatematiikan perusteet, orrr s ro30 L. harjoitus, (la 12.11.2015) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin þnää ja paperia käyttäen. Anna vastaukset

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

4 37.1/27/75/ R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISTEN TIETOJEN NAUHOITUS (PINTANÄYTTEETI

4 37.1/27/75/ R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISTEN TIETOJEN NAUHOITUS (PINTANÄYTTEETI 4 37.1/27/75/38 R. Puranen 1975-04-3 6 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISTEN TIETOJEN NAUHOITUS (PINTANÄYTTEETI i Q?7*1/27/75/18 R. Puranen 197 5-04-1 6 GEOLOGINEN TUTKIMUSLAITOS

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Yl ä -S a von S O TE kunt a yhtym ä en Kuukausiraportti

Yl ä -S a von S O TE kunt a yhtym ä en Kuukausiraportti Ylä-Savon SOTE K U N T A Y H T Y M A Yl ä -S a von S O TE kunt a yhtym ä en Kuukausiraportti Tammikuu - Heinäkuu 213 Kuukausiraportti heinäkuu 213 Kuntayhtymä Talous Ta 213 Tot.71213 Tot-% Ennuste Toimintatuotot,

Lisätiedot

Q 16/24.34/71/1. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto VLF-m i ttau kset. P. Mikkola 24.6.1971 VLF-MITTAUKSISTA JA TULOSTEN KÄSITTELYSTÄ

Q 16/24.34/71/1. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto VLF-m i ttau kset. P. Mikkola 24.6.1971 VLF-MITTAUKSISTA JA TULOSTEN KÄSITTELYSTÄ C C Q 16/24.34/71/1 P. Mikkola 24.6.1971 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto VLF-m i ttau kset VLF-MITTAUKSISTA JA TULOSTEN KÄSITTELYSTÄ KÄYTÄNNÖN MITTAUS Vastaanotinta on säilytettävä paikassa,

Lisätiedot

VAISALAN STATOSKOOPPIEN KÄYTTÖÖN PERUSTUVASTA KORKEUDEN-

VAISALAN STATOSKOOPPIEN KÄYTTÖÖN PERUSTUVASTA KORKEUDEN- Q 16.1/21/73/1 Seppo Elo 1973-11-16 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto Painovoimapisteiden korkeuden mittauksesta statoskoopeilla VAISALAN STATOSKOOPPIEN KÄYTTÖÖN PERUSTUVASTA KORKEUDEN- MÄARITYKSESTA

Lisätiedot

v1.2 Huom! Piirto-ohjelmissa asioita voi tehdä todella monella tavalla, tässä esitellään yksi esimerkkitapa tällaisen käyrän piirtämiseen.

v1.2 Huom! Piirto-ohjelmissa asioita voi tehdä todella monella tavalla, tässä esitellään yksi esimerkkitapa tällaisen käyrän piirtämiseen. v2 Tehtävä: Piirrä kartalle merkittyjen pisteiden ja välinen korkeusprofiili. Voit käyttää valmista Libre Office Draw koordinaatistopohjaa. Pisteiden välisen janan jakomerkit ovat 100m välein. Vaihtoehtoisesti

Lisätiedot

2016/07/05 08:58 1/12 Shortcut Menut

2016/07/05 08:58 1/12 Shortcut Menut 2016/07/05 08:58 1/12 Shortcut Menut Shortcut Menut Shortcut menut voidaan aktivoida seuraavista paikoista. Shortcut menun sisältö riippuu siitä, mistä se aktivoidaan. 1. Shortcut menu suunnitellusta linjasta

Lisätiedot

KSAO Liiketalous 1. Asiakirjan ulkoasuun vaikuttavat tekstin muotoilut ja kappale muotoilut. Kappaleen ulkoasuun vaikuttavia tekijöitä:

KSAO Liiketalous 1. Asiakirjan ulkoasuun vaikuttavat tekstin muotoilut ja kappale muotoilut. Kappaleen ulkoasuun vaikuttavia tekijöitä: KSAO Liiketalous 1 Asiakirjan ulkoasuun vaikuttavat tekstin muotoilut ja kappale muotoilut. Kappaleen ulkoasuun vaikuttavia tekijöitä: tekstin tasaus sisennys riviväli; kappaleen sisäiset rivivälit kappaleiden

Lisätiedot

LIITE 1 Jaksoarviointi, Syntymäpäivätaivas Opettaja

LIITE 1 Jaksoarviointi, Syntymäpäivätaivas Opettaja LIITE 1 Jaksoarviointi, Syntymäpäivätaivas Opettaja SYNTYMÄPÄIVÄTAIVAS (aapinen s. 114 125): JAKSOARVIOINTI, opettajan ohjeet Jaksoarvioinnin kolme ensimmäistä tehtävää ovat sanelutehtäviä ja ne tehdään

Lisätiedot

Tasapainotehta via vaakamallin avulla

Tasapainotehta via vaakamallin avulla Tasapainotehta via vaakamallin avulla Aihepiiri Luokka-aste Kesto Tarvittavat materiaalit / välineet Asiasanat Lausekkeet ja yhtälöt 7.-8. luokka 20 30 minuuttia Piirtoheitin, 2 kalvoa, erimuotoisia paloja

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

ill 'l' L r- i-ir il_i_ lr-+ 1r l

ill 'l' L r- i-ir il_i_ lr-+ 1r l ir a I - --+,.---+-,- i-ir il_i_ lr-+ 1r l rl ill 'l' L r- T- 'l rl *r- I s. ;l -' --S"[nJ+&L rlr D Ur-r^^;lA_e^ 3. Piirrä indi erenssikäyrät korille ( ; x 2 ); kun on tavallinen hyödyke, ja x 2 on tavallinen

Lisätiedot

2 Toisen asteen polynomifunktio

2 Toisen asteen polynomifunktio Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4.5.017 Toisen asteen polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Merkitään taulukon pisteet koordinaatistoon ja hahmotellaan niiden kautta kulkeva

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Yykaakoo 1A opettajan oppaan liitteet

Yykaakoo 1A opettajan oppaan liitteet Yykaakoo A opettajan oppaan liitteet Kopiointipohjat. Laskemisen tukimateriaali 2 a. Kymppiruudukot 2 b. Pistenapit 3 c. Lukunapit 4 d. Geometriset tasokuviot 5 e. Rahat 6 2. Ruutupohjia 7 a. Ruutupohja

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Peitelevy ja peitelaippa

Peitelevy ja peitelaippa Peitelevy ja peitelaippa Tuote LVI-numero Pikakoodi PEITELAATTA MERIKA 5688050 JF92 50-75-110/VALKOINEN 510 PEITELEVY ORAS D70/G1/2 167051 PEITELEVY KAULUKSELLA 50 MM-130 MM PEITELEVY KAULUKSELLA 75 MM-150

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

Q 17.1/06/71/2. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Juha Korhonen HP-ohJ el mase l oste

Q 17.1/06/71/2. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Juha Korhonen HP-ohJ el mase l oste Q 17.1/06/71/2 Juha Korhonen 1.4.1971 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohJ el mase l oste SUORAVI IVAISTEN KOORDINAATTIEN MUUNTAMINEN MAANTIETEELLISIKSI OHJELMASELOSTE TRANSFORFAAT I ON

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kuva 1. GIMP:in uuden kuvan luominen. Voit säätää leveyttä ja korkeutta ja kokeilla muitakin vaihtoehtoja. Napsauta sitten "OK".

Kuva 1. GIMP:in uuden kuvan luominen. Voit säätää leveyttä ja korkeutta ja kokeilla muitakin vaihtoehtoja. Napsauta sitten OK. Gimp alkeet III 8 luokan ATK-työt/HaJa Sivu 1 / 6 Uuden kuvan luominen GIMP:illä yleisinfoa ----> LUE! Sen lisäksi, että GIMP on loistava valokuvankäsittelyohjelma, sillä saa piirrettyä myös omia kuvia

Lisätiedot

Q 17.1/27.2/71/5. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Risto Puranen REMANENTTI MAGNETOITUMINEN, ERANNON (El LASKENNOLLINEN

Q 17.1/27.2/71/5. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Risto Puranen REMANENTTI MAGNETOITUMINEN, ERANNON (El LASKENNOLLINEN Q 17.1/27.2/71/5 Risto Puranen 22.1.1971 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto REMANENTTI MAGNETOITUMINEN, ERANNON (El LASKENNOLLINEN KORJAAMINEN: J Dr, I ')+(J,D, I;Jx,Jy,Jz; I,m,n) REMAhrENTTI

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Scratch ohjeita. Perusteet

Scratch ohjeita. Perusteet Perusteet Scratch ohjeita Scratch on graafinen ohjelmointiympäristö koodauksen opetteluun. Se soveltuu hyvin alakouluista yläkouluunkin asti, sillä Scratchin käyttömahdollisuudet ovat monipuoliset. Scratch

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Aluevarausmerkinnät: T/kem Maakuntakaava

Aluevarausmerkinnät: T/kem Maakuntakaava kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12

Lisätiedot

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Valitse Näkymät->Geometria PIIRRETÄÄN KOLMIOITA: suorakulmainen kolmio keksitkö, miten korostat suoraa kulmaa? tasakylkinen kolmio keksitkö,

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi) Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1 Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa

Lisätiedot

PS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos.

PS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos. Teamware Office' Posti Saapunut posti : Olavi Heikkisen lausunto Lähettäjä : Karjalainen Mikko Vastaanottaja : Leinonen Raija Lähetetty: 18.1.2013 10:29 He i! Korjasin nyt tämän spostiliitteenä olevaan

Lisätiedot

9. Kappale -ryhmä - Kappalemuotoilut

9. Kappale -ryhmä - Kappalemuotoilut 9. Kappale -ryhmä - Kappalemuotoilut Aloitus -välilehdellä Kappale -ryhmästä löytyvät kaikki kappalemuotoilut. Huomaa, että kappalemuotoilut ovat aina voimassa seuraavaan kappalemerkkiin asti. Kappalemerkki

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Lukujärjestys vko 41 5.10. - 9.10.2015

Lukujärjestys vko 41 5.10. - 9.10.2015 1 (5) AmmattitaitoinenSihteeri 7.10.2015 8:00 7.10.2015 3:00 MaL Mikro 2 AvustajanaArjessa 5.10.2015 8:00 5.10.2015 3:00 Ulkop. kouluttaja / AvustajanaArjessa 6.10.2015 8:00 6.10.2015 3:00 Ulkop. kouluttaja

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

KARTTAILTAPÄIVÄ 27.9.09 Haukkavuori Paikalla: Ari Hietanen Kari Hovi Heikki Kyyrönen Seppo Tuominen Kari Ylönen Asko Määttä.

KARTTAILTAPÄIVÄ 27.9.09 Haukkavuori Paikalla: Ari Hietanen Kari Hovi Heikki Kyyrönen Seppo Tuominen Kari Ylönen Asko Määttä. KARTTAILTAPÄIVÄ 27.9.09 Haukkavuori Paikalla: Ari Hietanen Kari Hovi Heikki Kyyrönen Seppo Tuominen Kari Ylönen Asko Määttä Askon jutustelu GPS:n 1 vaihe 2000-2007 Mittaukset maastossa tallentimeen; DGPS

Lisätiedot

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ:

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ: KRANPDON TNTT 14.4.2014 LAY/OTK OT: Vst jkseen kysymykseen erllselle pperlle (must merktä nm myös krjnptu"t.u"ppern). ös et vst jhnkn kysymykseen, jätä nmetty vstuspper myös kysesen tehtävän slt' rrävär:

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot