14. Haku sisällön perusteella Johdanto

Koko: px
Aloita esitys sivulta:

Download "14. Haku sisällön perusteella 14.1. Johdanto"

Transkriptio

1 4. Haku sisällön perusteella 4.. Johdanto Tietokantojen yhteydessä perinteinen kyselyn käsite on hyvin määritelty. Tiedonlouhinnassa on kyse edellistä yleisimmistä, mutta vähemmän täsmällisistä kyselyistä. Olkoon esimerkkinä lääketieteellinen data, jossa on potilastietoa, kuten demografista (ikä, sukupuoli jne.), verikokeiden tuloksia ja muita fysiologisia testituloksia sekä biolääketieteellisiä aikasarjoja ja röntgenkuvia. Lääkäriä kiinnostaisi tietää, sisältääkö sairaalan tietokanta ketään samankaltaista potilasta ja myönteisessä tapauksessa tämän diagnoosit, hoidot ja tulokset. Ongelman vaikea osa on määritellä samanlaisuus potilaiden joukossa eri datatyyppeihin pohjautuen (tässä monimuuttujaiset, aikasarjat ja kuvadata). Tarkan täsmäyksen käsite on tällöin jokseenkin epätarkoituksenmukainen, koska on sangen epätodennäköistä, että olisi toista täsmälleen samanlaista potilasta käytettyjen mittausten suhteen. 4. luku 580 Tarkastellaan em. kaltaisia ongelmia ja varsinkin niihin liittyen teknisiä ongelmia, joihin on vastattava kyselyiden mahdollistamiseksi yleismuotoisista datajoukoista: Etsi datajoukosta k kohdetta, jotka ovat samanlaisimmat määrätyn kyselyn tai kohteen kanssa. Esimerkkejä voivat olla: Satelliittikuvatietokannasta etsitään maasta kuvia, jotka sisältävät todisteita tulivuorenpurkauksista Keski Amerikassa. Etsitään tietoverkosta dokumentteja, jotka käsittelevät tietoa Tampereen ravintoloista. 4. luku 58 Tällaista hakumuotoa pidetään vuorovaikutteisena tiedonlouhintana, koska käyttäjä vaikuttaa suoraan datan tutkimiseen määrittämällä kyselyjä ja tulkitsemalla tuloksia prosessin kuluessa. Tämä on vastakohtainen tilanne verrattuna moniin ennustavan ja kuvaavan tiedonlouhinnan tehtäviin. Tavallisesti on esimerkkitapaus sille, mitä pyritään etsimään, kyselyhahmo Q. Siitä johdetaan, mitkä tietokannan muut kohteet ovat samanlaisimmat sen kanssa. Lähestymistapa tunnetaan hakuna sisällön perusteella. Tunnetuin sovellus on tekstihaku. Kyselyhahmo Q on yleensä suppea (kyselysanojen lista) ja se täsmätään suuren dokumenttien joukon kanssa. 4. luku 582 Keskitytään lähinnä tekstidokumentteihin, koska tämä on tunnetuin ja kypsin sovellusalue. Yleisen ongelman voidaan ymmärtää käsittävän kolme peruskomponenttia: miten määritellään kohteiden välinen samanlaisuusmitta, miten toteutetaan laskennallisesti tehokas hakualgoritmi (tunnettaessa samanlaisuusmitta) ja miten sisällytetään käyttäjän palaute ja vuorovaikutus hakuprosessiin. Pohditaan pääasiassa ensimmäistä ja kolmatta kysymystä; toista tarkasteltiin luvussa luku 583

2 Haku sisällön perusteella nojautuu voimakkaasti samanlaisuuden tai sen vastakohdan etäisyyden käsitteeseen. Luvussa 2 käsiteltiin erilaisia etäisyyksiä. Näistä on hyvä huomata, esim. euklidisesta, että kysymys on matemaattisista etäisyysfunktioista, jotka eivät välttämättä vastaa intuitiota samanlaisuudesta ihmisen näkökulmasta. Esim. tekstidokumenttien yhteydessä semanttinen sisältö voi olla merkittävä. 4. luku Hakujärjestelmien arviointi Haun tehokkuuden arvioinnin vaikeus Luokittelussa ja regressiossa mallin suorituskykyä voidaan aina arvioida objektiivisesti estimoimalla sen tarkkuutta kokeellisesti. Haussa sisällön perusteella suorituskykyarvioinnin ongelma on vaikeampi. Perimmäinen vaikeus on se, että hakusysteemin hyvyys määrätään haetun informaation hyödyllisyydellä. Sovelluksissa tällainen mitta on luonteeltaan subjektiivinen. Haku on käyttäjäkeskeistä ja vuorovaikutteista, mikä tekee suorituskykyarvioinnista vaikeaa. Joitakin melko objektiivisia menetelmiä voidaan arviointia varten kuitenkin antaa tehtäessä ensin muutama yksinkertaistus. Oletetaan, että jokaiselle kyselylle on olemassa tieto (binääri luokitteluarvo), mikä kohde on relevantti kyseiselle kyselylle. Käytännön kannalta tällainen arvo on luonnollisesti yksinkertaistus, sekä arvon binäärisyys että oletus sen olemassaolosta jokaiselle tapaukselle. 4. luku Täsmällisyys vastaan palautus Arvioidaan jonkin hakualgoritmin suorituskykyä määrätyn kyselyn Q tilanteessa riippumattomalla datajoukolla. Tämän kohteet on luokiteltu etukäteen joko relevanteiksi tai epärelevanteiksi kyselyn Q suhteen. Oletetaan luonnollisesti, että testidataa ei ole käytetty hakualgoritmin suorituskyvyn säätämiseen. Voidaan siis ajatella algoritmin yksinkertaisesti luokittelevan kohteet kyselyn Q suhteen, jolloin todelliset luokka arvot ovat tietysti piilossa algoritmilta, mutta ovat käytettävissä testitulosten arvioimiseksi tavanomainen testaustilanne. Jos algoritmi käyttää etäisyysmittaa (kohteen ja kyselyn välillä) arvioidakseen joukon kohteet, se parametrisoidaan tavallisesti kynnysarvolla T. Algoritmi palauttaa K T lajiteltua kohdetta, jotka ovat lähempänä kuin kynnysarvon T verran kyselyä Q. 4. luku 586 Kynnysarvon muuttaminen mahdollistaa algoritmin suorituskyvyn muuttamisen. Kynnysarvon ollessa matala, luokitellaan kohteita säästeliäästi relevanteiksi, mutta joitakin ehkä relevantteja saatetaan menettää. Sen ollessa korkea palautetaan enemmän kohteita, mutta mahdollisuus kasvaa, että ne eivät ehkä ole relevantteja. Olkoon datajoukossa N kohdetta, ja hakualgoritmi palauttaa K T mahdollisesti relevanttia. Algoritmin suorituskyky on ilmaistavissa taulukon 4.. mukaisesti, jossa N = TP + FP + FN + TN on kohteiden kokonaismäärä, TP + FP = K T on algoritmin hakemien kohteiden määrä ja TP + FN on relevanteiksi leimattujen kohteiden määrä. Täsmällisyys (precision) määritellään niiden kohteiden osuutena haetuista, jotka ovat oikeasti relevantteja, ts. TP / (TP + FP). Palautus (recall) määritellään haettujen oikeasti relevanttien osuutena kaikista datajoukon relevanteista kohteista, ts. TP / (TP + FN). Näille käsitteille on olemassa muitakin nimikkeitä, mutta näitä käytetään tässä yhteydessä. 4. luku 587

3 todellisuus: relevantti todellisuus: epärelevantti algoritmi: relevantti algoritmi: epärelevantti TP FN Taulukko 4.. Kaavakuva neljästä mahdollisesta tuloksesta haulle, jossa dokumentteja nimetään relevanteiksi tai epärelevanteiksi kyselyn Q suhteen. Sarakkeet vastaavat todellista tilannetta ja rivit algoritmin päättelyä. Lyhenteet TP, FP, FN ja TN viittaavat oikeaan positiiviseen, väärään positiiviseen, väärään negatiiviseen ja oikeaan negatiiviseen päättelyyn. Täysin oikein toimiva algoritmi tuottaisi tuloksen halkaisijalta, jolloin olisi FP = FN = 0. FP TN Näiden kahden käsitteen välillä on vastakkainen vaikutus. Kun saatujen kohteiden lukumäärää K T nostetaan nostamalla kynnysarvoa, palautusarvon voidaan odottaa kasvavan (enimmillään tietysti ), kun taas täsmällisyysarvon voidaan odottaa vähenevän. Ajettaessa hakualgoritmia eri kynnysarvoilla T saadaan palautus ja täsmällisyysarvopareja. Nämä kuvataan käytännössä, ei yhden kyselyn suhteen, vaan keskimääräisenä suorituskykynä kyselyjen joukon suhteen (esim. kuva 4..). Tämä vastaa suoraan nk. ROC kuvausta (receiver operating characteristic), tosin akselit on nimetty eri tavoin. 4. luku luku täsmällisyys algoritmi C algoritmi A algoritmi B palautus Kuva 4.. Kuvitteellinen esimerkki täsmällisyys palautuskäyristä kolmen hypoteettisen algoritmin tapauksessa. Algoritmilla A on suurimmat täsmällisyysarvot muihin verrattuna pienillä palautusarvoilla, kun taas algoritmilla B on suurimmat täsmällisyysarvot suurilla palautusarvoilla. Algoritmi C on yleisesti huonompi kuin muut. Käyrät ovat tyypillisiä tekstidokumenttialgoritmien tapauksessa, missä 50 % täsmällisyys ja palautusarvo sattuvat algoritmille B. 4. luku Tekstihaku Tekstipohjainen informaation etsiminen on perinteisesti nimetty informaationhauksi (IR, information retrieval), ja se on käynyt entistäkin tärkeämmäksi tietoverkkojen ja näissä hakukoneiden tulon jälkeen. Tekstin katsotaan koostuvan kahdesta perusyksiköstä, nimittäin dokumentista ja termistä. Edellinen mielletään sekä perinteiseksi kirjaksi tai lehtiartikkeliksi että yleisemmin miksi tahansa rakenteiseksi tekstisegmentiksi, jossa on lukuja, osia, kappaleita, tai jopa sähköpostiviestiksi, wwwsivuksi, ohjelman lähdekoodiksi jne. Termi voi olla sana, sanapari tai fraasi dokumentissa, esim. tieto tai tiedonlouhinta. Tekstikyselyt ymmärretään informaationhaussa termien joukkona. Vaikka dokumentit ovat kyselyjä paljon pitempiä, voidaan molemmat mieltää ja esittää yksikköinä, joiden välinen etäisyys lasketaan. 4. luku 59

4 4.3.. Tekstin esitysmuotoja Merkittävissä määrin on tutkittu dokumenttien yleisiä esitysmuotoja, jotka tukevat kykyä säilyttää mahdollisimman paljon semanttista sisältöä datasta ja etäisyysmittojen laskentaa kyselyjen ja dokumenttien välillä tehokkaalla tavalla. Informaationhaussa ei lähdetä liikkeelle semantiikan käsittelystä tekoälyn tässä keskeisen alueen, luonnollisen kielen ymmärtämisen valossa, koska siinä törmättäisiin vaikeisiin kysymyksiin esim. homonyymeistä (samalla sanalla eri merkityksiä) ja synonyymeistä (eri sanoja saman käsitteen ilmaisemiseksi). Sitä vastoin tarkastellaan yksinkertaisia termien täsmäyksiä ja esiintymiä. 4. luku 592 Dokumentin sisältö kuvataan tavallaan termien esiintymismääriä esittävällä vektorilla. Oletetaan, että on etukäteen määrätty termien t j joukko, j =,,T, hakua varten. Joukon koko voi olla melko suuri (esim. T = termiä). Jokainen yksittäinen dokumentti D i, i =,, N, esitetään termivektorina D i = (d i, d i2,, d it ), missä d ij edustaa jotakin informaatiota j:nnen termin esiintymästä i:nnessä dokumentissa. Yksittäiset arvot d ij ovat termien painoarvoja (termivektorin komponentteja). Boolen esityksenä painoarvot ilmaisevat, esiintykö vai ei määrätyt termit dokumentissa (d ij =, jos esiintyy, ja d ij = 0, jos ei). Reaaliarvoisina ne voivat merkitä termien esiintymismääriä tai suhteellisia frekvenssejä dokumenteissa. 4. luku Kyselyjen ja dokumenttien täsmääminen Useimpia luvussa 2 esitettyjä etäisyysmittoja voidaan käyttää dokumenttienkin yhteydessä. Yksi laajasti sovellettu mitta tässä yhteydessä on kosinietäisyys, jossa kosinimitta d c vähennetään :stä. T dikd jk d (, ) = k= c Di D j. T T 2 2 d ik d jk k= k= Tämä on kahden vektorin välisen kulman kosini (ekvivalentisti niiden välinen pistetulo, kun vektorit on normoitu yksikkövektorin pituisiksi). Se kuvastaa samanlaisuutta termikomponenttien suhteellisen jakauman mielessä. Kysely on esitettävissä loogisena Boolen funktiona soveltuvalle termien osajoukolle. Tyypillinen kysely voisi olla data AND mining AND NOT(coal). Perushaku käsittää tällöin käänteistiedoston selaamisen dokumenttien löytämiseksi, jotka tarkasti täsmäävät kyselyn kanssa. Perustilanteeseen voidaan lisätä mm. painokertoimia osoittamaan joidenkin termien suhteellista tärkeyttä. Boolen esityksen puutteena on, ettei se mahdollista semantiikkaa käsitteelle etäisyys kyselyjen ja dokumenttien välille ja täten dokumenttien asettamista arvojärjestykseen niiden relevanttiuden suhteen. Toisinaan on myös vaikeaa esittää Boolen kyselyinä käyttäjän (ihmisen) esittämiä kysymyksiä. 4. luku luku 595

5 Vektoriavaruusesityksessä kysely ilmaistaan painoarvojen vektorina. Ne termit, jotka eivät esiinny kyselyssä, määrätään implisiittisesti nolliksi. Yksinkertaisin kyselymuoto asettaa yksikköpainon jokaiselle kyselyn termille. Käyttäjä voi antaa yleisemmän, termin suhteellisen tärkeyden osoittavan arvon (tyypillisesti väliltä [0,]). Käytännössä näiden asettaminen voi olla hankalaa, joten on muodostettu laskennallisia keinoja sellaisten arvojen asettamiseksi (esim. relevanssipalaute). Olkoon d ik painoarvo (komponentti), k =,,T, dokumentissa D i. Informaationhaussa on käytetty useita erilaisia (ad hoc) menettelyjä määrätä painoarvot niin, että relevantit dokumentit saisivat korkeamman sijan arvojärjestyksessä kuin epärelevantit. Boolen arvon käyttäminen dokumentissa esiintyvälle termille on taipuvainen suosimaan laajoja dokumentteja (relevanttien asemesta) yksinkertaisesti, koska laajat dokumentit todennäköisemmin sisältävät kyseisen termin. 4. luku 596 Eräs painoarvojen laskentatapa on osoittautunut erityisen hyväksi. Kyse on TF IDF painoarvoista, joissa TF tarkoittaa termin frekvenssiä, so. jokainen termivektorin komponentti kerrotaan termin esiintymisfrekvenssillä dokumentissa. Tämä lisää usein esiintyvien termien painoarvoa. Toisaalta, jos jokin termi esiintyy usein monessa dokumentissa, TF painoarvoilla saattaa olla vähän erottelukykyä haussa, ts. se kasvattaa palautusta, mutta saattaa aiheuttaa huonon täsmällisyyden. Käänteinen dokumenttifrekvenssi (IDF) painoarvo parantaa erottelukykyä. Se määritellään arvona log(n/n j ) eli termin j sisältävien dokumenttien (n j ) osuuden käänteisluvun logaritmina koko dokumenttijoukkoon N nähden. IDF painoarvot suosivat termejä, jotka esiintyvät melko harvoissa dokumenteissa, ts. sillä on erottelukykyä. Logaritmista IDF painoarvoa käytettäessä pelkän IDF:n asemesta tekee siitä epäherkän dokumenttien lukumäärälle N. 4. luku Automaattiset suosittelijajärjestelmät 4.5. Dokumenttien ja tekstin luokittelu Yhden käyttäjän mieltymysten mallintamisen sijasta voidaan yleistää tilanteeseen, missä tietokannassa on informaatiota useiden käyttäjien kiinnostuksesta suureen määrään kohteita. Yhteissuodatuksen menetelmä on yksinkertainen lähestymistapa. Olkoon esimerkkinä sovellus, jossa käyttäjä haluaa ostaa määrätyn musiikkityypin CD levyn tietoverkon kautta. Mahdollisesti lukuisat muut käyttäjät ovat ostaneet saman CD levyn ja on todennäköistä, että ainakin osalla heistä on samanlainen musiikkimaku. Tätä voidaan yleistää eri suuntiin. Pidetään käyttäjien kiinnostuksen kohteista ja ostoista vektoriesitystä yllä. Tällaisten välillä lasketaan sitten etäisyyksiä samanlaisuusmetriikoilla. Vertailemalla näiden tuloksia suosittelija algoritmi voi esittää suosituksia mahdollisesti käyttäjää kiinnostavista kohteista. Koska termivektorit ovat tavallisesti hyvin suuridimensioisia (esim termiä tai enemmän), luokittelumenetelminä tulevat kyseeseen pääasiassa valintamenetelmät. Luokittelupuut eivät ole tällöin tarpeeksi informatiivisia, puhumattakaan monikerroksisista perseptron neuroverkoista, jotka eivät ole käytännössä mahdollisiakaan suoritettaviksi niin suurille dimensioille. Bayesin luokittelijat tai erinäiset painoarvojen lineaarikombinaatiot toimivat melko hyvin dokumenttiesityksille, koska ne voivat yhdistää tietoa monesta piirteestä suhteellisen yksinkertaisella (lineaarilla) tavalla. 4. luku luku 599

6 4.6. Kuvanhaku Kuvien ymmärtäminen Kuva ja videodatan merkitys on kasvanut viime aikoina merkittävästi. Haku sellaisen datan yhteydessä on monesti erityisen hyödyllistä. Esim. voidaan tutkia lääketieteessä radiologisten kuvien samanlaisuutta. Ihminen oppii hämmästyttävän hyvin erottamaan ja muistamaankin kuvia. Algoritmisesti tämä on erittäin vaikea ongelma, mikä on todettu usean vuosikymmenen tutkimuksissa hahmontunnistuksessa ja konenäössä. Niinpä useimmat menetelmät perustuvat melko matalantason visuaalisiin vihjeisiin Kuvanesitysmuodot Alkuperäinen pikselidata voidaan abstrahoida piirre esityksiksi hakutarkoituksia varten. Piirteet esitetään primitiivien suhteen. Näitä ovat väri ja tekstuuripiirteet. Kuten dokumenteilla, alkuperäiset kuvat muunnetaan standardimaisempaan muotoon datamatriiseiksi, joissa rivit (kohteet) esittävät kuvia ja sarakkeet (muuttujat) kuvien piirteitä. Tällainen esitysmuoto on yleensä paljon epäherkempi skaalaukselle ja siirroille kuin välittömät pikseliesitykset. Toisaalta ne saattavat olla vain vähäisissä määrin invariantteja valon, varjon, katsomissuunnan jne. suhteen. Yleensä kuvien piirteet lasketaan ja talletetaan etukäteen kuvatietokantaan hakuja varten. Etäisyyslaskenta voidaan sitten suorittaa näiden piirreavaruuksien suhteen. Kuvien piirredata talletetaan näin N d datamatriisiin, jossa kukin kuva on esitetty d dimensioisena piirrevektorina. 4. luku luku Kuvakyselyt Tekstidatan tapaan kuvien abstraktin esityksen luonne (lasketut piirteet) määräävät olennaisesti, mitä kysely ja hakutyyppejä voidaan suorittaa. Kyselyt voivat olla kahdentyyppisiä. Kyselyssä esimerkin mukaan annetaan esimerkkikuva tai luonnos kiinnostavan kohteen muodoista. Piirteet lasketaan sitten näistä ja etsitään piirteiden avulla täsmääviä kuvia tietokannasta. Vaihtoehtoisesti kysely voidaan esittää suoraan piirreesityksenä. Esim. etsitään kuvia, joilla on 50 % alastaan punaista väriä ja jotka sisältävät määrätyntyyppistä tekstuuria. Tällöin vain piirteiden osajoukkoa on käytetty kyselyssä, joten vastaavia muuttujia on käytettävä etäisyyslaskennassakin. Piirrevektoreiden käyttö kuvilla on melko samantapaista kuin tekstihaussa. Nyt hyödynnetään kuitenkin usein reaaliarvoisia muuttujia. 4. luku Aikasarjat ja sekvenssien haku Hahmojen tehokas löytäminen aikasarjoista ja sekvenssidatasta on lukuisissa yhteyksissä tarpeellista, mutta vaikea ongelma. Esimerkkejä ovat asiakkaiden etsiminen, joiden kulutustottumukset ovat samanlaisia annetun ajan mittaan, samanlaisten epätyypillisten sensorisignaalien tapahtumien reaaliaikainen seuranta ja vikadiagnostiikka esim. lentokoneessa ja kohinainen (häiriöitä sisältävä) täsmäys proteiinisekvenssien osajonoista. Sekvenssidata voi olla yksidimensioista tai kaksidimensioista (kuvadataa). Aikasarjoissa dataa on mitattu ajan suhteen, jolloin jokainen havainto on indeksoitu aikamuuttujan t suhteen. Yleensä näytteiden välillä on vakiomittainen aikaintervalli, jolloin voidaan aika määrittää kokonaisluvuilla väliltä [,T]. Kukin mittaus voi olla myös monimuuttujainen. Sovellusaloja on lukemattomia, kuten talous, lääke, luonnon ja teknisistä tieteistä. Sekvenssidatan käsite on yleisempi kuin aikasarjojen riippuessaan muusta kuin ajasta. Esim. molekyylibiologiassa proteiineja indeksoidaan paikan mukaan sekvensseihin. 4. luku 603

7 Perinteinen aikasarjamallintaminen perustuu globaaleihin lineaareihin malleihin. Esimerkkinä on Box Jenkinsin autoregressiiviset mallit, joissa nykyinen arvo y(t) mallinnetaan aiempien arvojen y(t k) painotetulla lineaarikombinaatiolla sekä lisätyllä kohinalla seuraavasti y( t) = k αi y( t i) + e( t), i= missä α:t i ovat painokertoimia ja e(t) kohina (tavallisesti oletettu nollakeskiarvoisena normaalijakautuneeksi) ajanhetkellä t. Käsite autoregressio tulee regressiomenetelmän käytöstä saman muuttujan aiemmille arvoille. Luvun tekniikat soveltuvat parametrien α i estimointiin. Mallirakenteen (arvon k) määrääminen perustuu mm. ristiinvalidointiin. Tätä voidaan yleistää käyttäen epälineaarisuutta (g(.)) hyväksi muodolla k y( t) = g i y( t i) α + e( t). i= 4. luku 604

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku.

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku. Boolen haut Tiedonhakumenetelmät Rankkaukseen perustuva tiedonhaku Boolen haussa dokumentti joko täyttää hakuehdon tai ei täytä hakuehtoa Hakuehdon täyttäviä vastauksia voi olla runsaasti (tuhansia - miljoonia)

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys .. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

Tehtävä 2: Loppuosataulukko

Tehtävä 2: Loppuosataulukko Tehtävä 2: Loppuosataulukko Tutustu tarkoin seuraavaan tekstiin ja vastaa sitä hyväksi käyttäen tehtävän loppuosassa esitettyihin viiteen kysymykseen. Annetun merkkijonon (ns. hahmo) esiintymän haku pidemmästä

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

POHDIN - projekti. Funktio. Vektoriarvoinen funktio POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

TIEDONHAKU INTERNETISTÄ

TIEDONHAKU INTERNETISTÄ TIEDONHAKU INTERNETISTÄ Internetistä löytyy hyvin paljon tietoa. Tietoa ei ole mitenkään järjestetty, joten tiedonhaku voi olla hankalaa. Tieto myös muuttuu jatkuvasti. Tänään tehty tiedonhaku ei anna

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri } 135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Epäeuklidista geometriaa

Epäeuklidista geometriaa Epäeuklidista geometriaa 7. toukokuuta 2006 Sisältö 1 Johdanto 1 1.1 Euklidinen geometria....................... 1 1.2 Epäeuklidinen geometria..................... 2 2 Poincarén kiekko 2 3 Epäeuklidiset

Lisätiedot

ECDL Tietokannat. Copyright 2015 ECDL Foundation ECDL Tietokannat Sivu 1 / 7

ECDL Tietokannat. Copyright 2015 ECDL Foundation ECDL Tietokannat Sivu 1 / 7 ECDL Tietokannat Copyright 2015 ECDL Foundation ECDL Tietokannat Sivu 1 / 7 Tavoite Tässä esitellään tutkintovaatimukset moduulille ECDL Tietokannat, joka määrittelee tarvittavat tiedot ja taidot näyttökokeen

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B igitaalitekniikan matematiikka Luku 5 Sivu (22).9.2 e = + = ( + ) = + = Espresso igitaalitekniikan matematiikka Luku 5 Sivu 2 (22).9.2 e Johdanto Tässä luvussa esitetään perusteet lausekemuodossa esitettyjen

Lisätiedot

Ovid Medline käyttöohjeita (10/2010)

Ovid Medline käyttöohjeita (10/2010) Ovid Medline käyttöohjeita (10/2010) Sisältö 1. Pikahaku - Basic Search:... - 1-2. Tarkennettu haku asiasanoilla - Advanced Ovid Search... - 1-3. Tulosjoukkojen yhdistely... - 5-4. Vapaasanahaku yksittäisellä

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

ALGORITMIT & OPPIMINEN

ALGORITMIT & OPPIMINEN ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto Avoimet aineistot tulevat Tekijä: Lauri Vanhala yhdistä, kuvita, selitä, ennusta! Tekijä: Logica Mitä voidaan automatisoida? Algoritmi

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

10. Globaali valaistus

10. Globaali valaistus 10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Puumenetelmät. Topi Sikanen. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu

Puumenetelmät. Topi Sikanen. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu Puumenetelmät Topi Sikanen Puumenetelmät Periaate: Hajota ja hallitse Jaetaan havaintoavaruus alueisiin. Sovitetaan kuhunkin alueeseen yksinkertainen malli (esim. vakio) Tarkastellaan kolmea mallia Luokittelu-

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Etiikan mahdollisuudesta tieteenä. Henrik Rydenfelt Helsingin yliopisto

Etiikan mahdollisuudesta tieteenä. Henrik Rydenfelt Helsingin yliopisto Etiikan mahdollisuudesta tieteenä Henrik Rydenfelt Helsingin yliopisto Etiikka tieteenä? Filosofit ja ei-filosofit eivät pidä etiikkaa tieteenä Tiede tutkii sitä, miten asiat ovat, ei miten asioiden tulisi

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

1. Tutkitaan tavallista kahden selittäjän regressiomallia

1. Tutkitaan tavallista kahden selittäjän regressiomallia TA7, Ekonometrian johdantokurssi HARJOITUS 5 RATKAISUEHDOTUKSET 232215 1 Tutkitaan tavallista kahden selittäjän regressiomallia Y i = β + β 1 X 1,i + β 2 X 2,i + u i (a) Kirjoita regressiomalli muodossa

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot