14. Haku sisällön perusteella Johdanto

Koko: px
Aloita esitys sivulta:

Download "14. Haku sisällön perusteella 14.1. Johdanto"

Transkriptio

1 4. Haku sisällön perusteella 4.. Johdanto Tietokantojen yhteydessä perinteinen kyselyn käsite on hyvin määritelty. Tiedonlouhinnassa on kyse edellistä yleisimmistä, mutta vähemmän täsmällisistä kyselyistä. Olkoon esimerkkinä lääketieteellinen data, jossa on potilastietoa, kuten demografista (ikä, sukupuoli jne.), verikokeiden tuloksia ja muita fysiologisia testituloksia sekä biolääketieteellisiä aikasarjoja ja röntgenkuvia. Lääkäriä kiinnostaisi tietää, sisältääkö sairaalan tietokanta ketään samankaltaista potilasta ja myönteisessä tapauksessa tämän diagnoosit, hoidot ja tulokset. Ongelman vaikea osa on määritellä samanlaisuus potilaiden joukossa eri datatyyppeihin pohjautuen (tässä monimuuttujaiset, aikasarjat ja kuvadata). Tarkan täsmäyksen käsite on tällöin jokseenkin epätarkoituksenmukainen, koska on sangen epätodennäköistä, että olisi toista täsmälleen samanlaista potilasta käytettyjen mittausten suhteen. 4. luku 580 Tarkastellaan em. kaltaisia ongelmia ja varsinkin niihin liittyen teknisiä ongelmia, joihin on vastattava kyselyiden mahdollistamiseksi yleismuotoisista datajoukoista: Etsi datajoukosta k kohdetta, jotka ovat samanlaisimmat määrätyn kyselyn tai kohteen kanssa. Esimerkkejä voivat olla: Satelliittikuvatietokannasta etsitään maasta kuvia, jotka sisältävät todisteita tulivuorenpurkauksista Keski Amerikassa. Etsitään tietoverkosta dokumentteja, jotka käsittelevät tietoa Tampereen ravintoloista. 4. luku 58 Tällaista hakumuotoa pidetään vuorovaikutteisena tiedonlouhintana, koska käyttäjä vaikuttaa suoraan datan tutkimiseen määrittämällä kyselyjä ja tulkitsemalla tuloksia prosessin kuluessa. Tämä on vastakohtainen tilanne verrattuna moniin ennustavan ja kuvaavan tiedonlouhinnan tehtäviin. Tavallisesti on esimerkkitapaus sille, mitä pyritään etsimään, kyselyhahmo Q. Siitä johdetaan, mitkä tietokannan muut kohteet ovat samanlaisimmat sen kanssa. Lähestymistapa tunnetaan hakuna sisällön perusteella. Tunnetuin sovellus on tekstihaku. Kyselyhahmo Q on yleensä suppea (kyselysanojen lista) ja se täsmätään suuren dokumenttien joukon kanssa. 4. luku 582 Keskitytään lähinnä tekstidokumentteihin, koska tämä on tunnetuin ja kypsin sovellusalue. Yleisen ongelman voidaan ymmärtää käsittävän kolme peruskomponenttia: miten määritellään kohteiden välinen samanlaisuusmitta, miten toteutetaan laskennallisesti tehokas hakualgoritmi (tunnettaessa samanlaisuusmitta) ja miten sisällytetään käyttäjän palaute ja vuorovaikutus hakuprosessiin. Pohditaan pääasiassa ensimmäistä ja kolmatta kysymystä; toista tarkasteltiin luvussa luku 583

2 Haku sisällön perusteella nojautuu voimakkaasti samanlaisuuden tai sen vastakohdan etäisyyden käsitteeseen. Luvussa 2 käsiteltiin erilaisia etäisyyksiä. Näistä on hyvä huomata, esim. euklidisesta, että kysymys on matemaattisista etäisyysfunktioista, jotka eivät välttämättä vastaa intuitiota samanlaisuudesta ihmisen näkökulmasta. Esim. tekstidokumenttien yhteydessä semanttinen sisältö voi olla merkittävä. 4. luku Hakujärjestelmien arviointi Haun tehokkuuden arvioinnin vaikeus Luokittelussa ja regressiossa mallin suorituskykyä voidaan aina arvioida objektiivisesti estimoimalla sen tarkkuutta kokeellisesti. Haussa sisällön perusteella suorituskykyarvioinnin ongelma on vaikeampi. Perimmäinen vaikeus on se, että hakusysteemin hyvyys määrätään haetun informaation hyödyllisyydellä. Sovelluksissa tällainen mitta on luonteeltaan subjektiivinen. Haku on käyttäjäkeskeistä ja vuorovaikutteista, mikä tekee suorituskykyarvioinnista vaikeaa. Joitakin melko objektiivisia menetelmiä voidaan arviointia varten kuitenkin antaa tehtäessä ensin muutama yksinkertaistus. Oletetaan, että jokaiselle kyselylle on olemassa tieto (binääri luokitteluarvo), mikä kohde on relevantti kyseiselle kyselylle. Käytännön kannalta tällainen arvo on luonnollisesti yksinkertaistus, sekä arvon binäärisyys että oletus sen olemassaolosta jokaiselle tapaukselle. 4. luku Täsmällisyys vastaan palautus Arvioidaan jonkin hakualgoritmin suorituskykyä määrätyn kyselyn Q tilanteessa riippumattomalla datajoukolla. Tämän kohteet on luokiteltu etukäteen joko relevanteiksi tai epärelevanteiksi kyselyn Q suhteen. Oletetaan luonnollisesti, että testidataa ei ole käytetty hakualgoritmin suorituskyvyn säätämiseen. Voidaan siis ajatella algoritmin yksinkertaisesti luokittelevan kohteet kyselyn Q suhteen, jolloin todelliset luokka arvot ovat tietysti piilossa algoritmilta, mutta ovat käytettävissä testitulosten arvioimiseksi tavanomainen testaustilanne. Jos algoritmi käyttää etäisyysmittaa (kohteen ja kyselyn välillä) arvioidakseen joukon kohteet, se parametrisoidaan tavallisesti kynnysarvolla T. Algoritmi palauttaa K T lajiteltua kohdetta, jotka ovat lähempänä kuin kynnysarvon T verran kyselyä Q. 4. luku 586 Kynnysarvon muuttaminen mahdollistaa algoritmin suorituskyvyn muuttamisen. Kynnysarvon ollessa matala, luokitellaan kohteita säästeliäästi relevanteiksi, mutta joitakin ehkä relevantteja saatetaan menettää. Sen ollessa korkea palautetaan enemmän kohteita, mutta mahdollisuus kasvaa, että ne eivät ehkä ole relevantteja. Olkoon datajoukossa N kohdetta, ja hakualgoritmi palauttaa K T mahdollisesti relevanttia. Algoritmin suorituskyky on ilmaistavissa taulukon 4.. mukaisesti, jossa N = TP + FP + FN + TN on kohteiden kokonaismäärä, TP + FP = K T on algoritmin hakemien kohteiden määrä ja TP + FN on relevanteiksi leimattujen kohteiden määrä. Täsmällisyys (precision) määritellään niiden kohteiden osuutena haetuista, jotka ovat oikeasti relevantteja, ts. TP / (TP + FP). Palautus (recall) määritellään haettujen oikeasti relevanttien osuutena kaikista datajoukon relevanteista kohteista, ts. TP / (TP + FN). Näille käsitteille on olemassa muitakin nimikkeitä, mutta näitä käytetään tässä yhteydessä. 4. luku 587

3 todellisuus: relevantti todellisuus: epärelevantti algoritmi: relevantti algoritmi: epärelevantti TP FN Taulukko 4.. Kaavakuva neljästä mahdollisesta tuloksesta haulle, jossa dokumentteja nimetään relevanteiksi tai epärelevanteiksi kyselyn Q suhteen. Sarakkeet vastaavat todellista tilannetta ja rivit algoritmin päättelyä. Lyhenteet TP, FP, FN ja TN viittaavat oikeaan positiiviseen, väärään positiiviseen, väärään negatiiviseen ja oikeaan negatiiviseen päättelyyn. Täysin oikein toimiva algoritmi tuottaisi tuloksen halkaisijalta, jolloin olisi FP = FN = 0. FP TN Näiden kahden käsitteen välillä on vastakkainen vaikutus. Kun saatujen kohteiden lukumäärää K T nostetaan nostamalla kynnysarvoa, palautusarvon voidaan odottaa kasvavan (enimmillään tietysti ), kun taas täsmällisyysarvon voidaan odottaa vähenevän. Ajettaessa hakualgoritmia eri kynnysarvoilla T saadaan palautus ja täsmällisyysarvopareja. Nämä kuvataan käytännössä, ei yhden kyselyn suhteen, vaan keskimääräisenä suorituskykynä kyselyjen joukon suhteen (esim. kuva 4..). Tämä vastaa suoraan nk. ROC kuvausta (receiver operating characteristic), tosin akselit on nimetty eri tavoin. 4. luku luku täsmällisyys algoritmi C algoritmi A algoritmi B palautus Kuva 4.. Kuvitteellinen esimerkki täsmällisyys palautuskäyristä kolmen hypoteettisen algoritmin tapauksessa. Algoritmilla A on suurimmat täsmällisyysarvot muihin verrattuna pienillä palautusarvoilla, kun taas algoritmilla B on suurimmat täsmällisyysarvot suurilla palautusarvoilla. Algoritmi C on yleisesti huonompi kuin muut. Käyrät ovat tyypillisiä tekstidokumenttialgoritmien tapauksessa, missä 50 % täsmällisyys ja palautusarvo sattuvat algoritmille B. 4. luku Tekstihaku Tekstipohjainen informaation etsiminen on perinteisesti nimetty informaationhauksi (IR, information retrieval), ja se on käynyt entistäkin tärkeämmäksi tietoverkkojen ja näissä hakukoneiden tulon jälkeen. Tekstin katsotaan koostuvan kahdesta perusyksiköstä, nimittäin dokumentista ja termistä. Edellinen mielletään sekä perinteiseksi kirjaksi tai lehtiartikkeliksi että yleisemmin miksi tahansa rakenteiseksi tekstisegmentiksi, jossa on lukuja, osia, kappaleita, tai jopa sähköpostiviestiksi, wwwsivuksi, ohjelman lähdekoodiksi jne. Termi voi olla sana, sanapari tai fraasi dokumentissa, esim. tieto tai tiedonlouhinta. Tekstikyselyt ymmärretään informaationhaussa termien joukkona. Vaikka dokumentit ovat kyselyjä paljon pitempiä, voidaan molemmat mieltää ja esittää yksikköinä, joiden välinen etäisyys lasketaan. 4. luku 59

4 4.3.. Tekstin esitysmuotoja Merkittävissä määrin on tutkittu dokumenttien yleisiä esitysmuotoja, jotka tukevat kykyä säilyttää mahdollisimman paljon semanttista sisältöä datasta ja etäisyysmittojen laskentaa kyselyjen ja dokumenttien välillä tehokkaalla tavalla. Informaationhaussa ei lähdetä liikkeelle semantiikan käsittelystä tekoälyn tässä keskeisen alueen, luonnollisen kielen ymmärtämisen valossa, koska siinä törmättäisiin vaikeisiin kysymyksiin esim. homonyymeistä (samalla sanalla eri merkityksiä) ja synonyymeistä (eri sanoja saman käsitteen ilmaisemiseksi). Sitä vastoin tarkastellaan yksinkertaisia termien täsmäyksiä ja esiintymiä. 4. luku 592 Dokumentin sisältö kuvataan tavallaan termien esiintymismääriä esittävällä vektorilla. Oletetaan, että on etukäteen määrätty termien t j joukko, j =,,T, hakua varten. Joukon koko voi olla melko suuri (esim. T = termiä). Jokainen yksittäinen dokumentti D i, i =,, N, esitetään termivektorina D i = (d i, d i2,, d it ), missä d ij edustaa jotakin informaatiota j:nnen termin esiintymästä i:nnessä dokumentissa. Yksittäiset arvot d ij ovat termien painoarvoja (termivektorin komponentteja). Boolen esityksenä painoarvot ilmaisevat, esiintykö vai ei määrätyt termit dokumentissa (d ij =, jos esiintyy, ja d ij = 0, jos ei). Reaaliarvoisina ne voivat merkitä termien esiintymismääriä tai suhteellisia frekvenssejä dokumenteissa. 4. luku Kyselyjen ja dokumenttien täsmääminen Useimpia luvussa 2 esitettyjä etäisyysmittoja voidaan käyttää dokumenttienkin yhteydessä. Yksi laajasti sovellettu mitta tässä yhteydessä on kosinietäisyys, jossa kosinimitta d c vähennetään :stä. T dikd jk d (, ) = k= c Di D j. T T 2 2 d ik d jk k= k= Tämä on kahden vektorin välisen kulman kosini (ekvivalentisti niiden välinen pistetulo, kun vektorit on normoitu yksikkövektorin pituisiksi). Se kuvastaa samanlaisuutta termikomponenttien suhteellisen jakauman mielessä. Kysely on esitettävissä loogisena Boolen funktiona soveltuvalle termien osajoukolle. Tyypillinen kysely voisi olla data AND mining AND NOT(coal). Perushaku käsittää tällöin käänteistiedoston selaamisen dokumenttien löytämiseksi, jotka tarkasti täsmäävät kyselyn kanssa. Perustilanteeseen voidaan lisätä mm. painokertoimia osoittamaan joidenkin termien suhteellista tärkeyttä. Boolen esityksen puutteena on, ettei se mahdollista semantiikkaa käsitteelle etäisyys kyselyjen ja dokumenttien välille ja täten dokumenttien asettamista arvojärjestykseen niiden relevanttiuden suhteen. Toisinaan on myös vaikeaa esittää Boolen kyselyinä käyttäjän (ihmisen) esittämiä kysymyksiä. 4. luku luku 595

5 Vektoriavaruusesityksessä kysely ilmaistaan painoarvojen vektorina. Ne termit, jotka eivät esiinny kyselyssä, määrätään implisiittisesti nolliksi. Yksinkertaisin kyselymuoto asettaa yksikköpainon jokaiselle kyselyn termille. Käyttäjä voi antaa yleisemmän, termin suhteellisen tärkeyden osoittavan arvon (tyypillisesti väliltä [0,]). Käytännössä näiden asettaminen voi olla hankalaa, joten on muodostettu laskennallisia keinoja sellaisten arvojen asettamiseksi (esim. relevanssipalaute). Olkoon d ik painoarvo (komponentti), k =,,T, dokumentissa D i. Informaationhaussa on käytetty useita erilaisia (ad hoc) menettelyjä määrätä painoarvot niin, että relevantit dokumentit saisivat korkeamman sijan arvojärjestyksessä kuin epärelevantit. Boolen arvon käyttäminen dokumentissa esiintyvälle termille on taipuvainen suosimaan laajoja dokumentteja (relevanttien asemesta) yksinkertaisesti, koska laajat dokumentit todennäköisemmin sisältävät kyseisen termin. 4. luku 596 Eräs painoarvojen laskentatapa on osoittautunut erityisen hyväksi. Kyse on TF IDF painoarvoista, joissa TF tarkoittaa termin frekvenssiä, so. jokainen termivektorin komponentti kerrotaan termin esiintymisfrekvenssillä dokumentissa. Tämä lisää usein esiintyvien termien painoarvoa. Toisaalta, jos jokin termi esiintyy usein monessa dokumentissa, TF painoarvoilla saattaa olla vähän erottelukykyä haussa, ts. se kasvattaa palautusta, mutta saattaa aiheuttaa huonon täsmällisyyden. Käänteinen dokumenttifrekvenssi (IDF) painoarvo parantaa erottelukykyä. Se määritellään arvona log(n/n j ) eli termin j sisältävien dokumenttien (n j ) osuuden käänteisluvun logaritmina koko dokumenttijoukkoon N nähden. IDF painoarvot suosivat termejä, jotka esiintyvät melko harvoissa dokumenteissa, ts. sillä on erottelukykyä. Logaritmista IDF painoarvoa käytettäessä pelkän IDF:n asemesta tekee siitä epäherkän dokumenttien lukumäärälle N. 4. luku Automaattiset suosittelijajärjestelmät 4.5. Dokumenttien ja tekstin luokittelu Yhden käyttäjän mieltymysten mallintamisen sijasta voidaan yleistää tilanteeseen, missä tietokannassa on informaatiota useiden käyttäjien kiinnostuksesta suureen määrään kohteita. Yhteissuodatuksen menetelmä on yksinkertainen lähestymistapa. Olkoon esimerkkinä sovellus, jossa käyttäjä haluaa ostaa määrätyn musiikkityypin CD levyn tietoverkon kautta. Mahdollisesti lukuisat muut käyttäjät ovat ostaneet saman CD levyn ja on todennäköistä, että ainakin osalla heistä on samanlainen musiikkimaku. Tätä voidaan yleistää eri suuntiin. Pidetään käyttäjien kiinnostuksen kohteista ja ostoista vektoriesitystä yllä. Tällaisten välillä lasketaan sitten etäisyyksiä samanlaisuusmetriikoilla. Vertailemalla näiden tuloksia suosittelija algoritmi voi esittää suosituksia mahdollisesti käyttäjää kiinnostavista kohteista. Koska termivektorit ovat tavallisesti hyvin suuridimensioisia (esim termiä tai enemmän), luokittelumenetelminä tulevat kyseeseen pääasiassa valintamenetelmät. Luokittelupuut eivät ole tällöin tarpeeksi informatiivisia, puhumattakaan monikerroksisista perseptron neuroverkoista, jotka eivät ole käytännössä mahdollisiakaan suoritettaviksi niin suurille dimensioille. Bayesin luokittelijat tai erinäiset painoarvojen lineaarikombinaatiot toimivat melko hyvin dokumenttiesityksille, koska ne voivat yhdistää tietoa monesta piirteestä suhteellisen yksinkertaisella (lineaarilla) tavalla. 4. luku luku 599

6 4.6. Kuvanhaku Kuvien ymmärtäminen Kuva ja videodatan merkitys on kasvanut viime aikoina merkittävästi. Haku sellaisen datan yhteydessä on monesti erityisen hyödyllistä. Esim. voidaan tutkia lääketieteessä radiologisten kuvien samanlaisuutta. Ihminen oppii hämmästyttävän hyvin erottamaan ja muistamaankin kuvia. Algoritmisesti tämä on erittäin vaikea ongelma, mikä on todettu usean vuosikymmenen tutkimuksissa hahmontunnistuksessa ja konenäössä. Niinpä useimmat menetelmät perustuvat melko matalantason visuaalisiin vihjeisiin Kuvanesitysmuodot Alkuperäinen pikselidata voidaan abstrahoida piirre esityksiksi hakutarkoituksia varten. Piirteet esitetään primitiivien suhteen. Näitä ovat väri ja tekstuuripiirteet. Kuten dokumenteilla, alkuperäiset kuvat muunnetaan standardimaisempaan muotoon datamatriiseiksi, joissa rivit (kohteet) esittävät kuvia ja sarakkeet (muuttujat) kuvien piirteitä. Tällainen esitysmuoto on yleensä paljon epäherkempi skaalaukselle ja siirroille kuin välittömät pikseliesitykset. Toisaalta ne saattavat olla vain vähäisissä määrin invariantteja valon, varjon, katsomissuunnan jne. suhteen. Yleensä kuvien piirteet lasketaan ja talletetaan etukäteen kuvatietokantaan hakuja varten. Etäisyyslaskenta voidaan sitten suorittaa näiden piirreavaruuksien suhteen. Kuvien piirredata talletetaan näin N d datamatriisiin, jossa kukin kuva on esitetty d dimensioisena piirrevektorina. 4. luku luku Kuvakyselyt Tekstidatan tapaan kuvien abstraktin esityksen luonne (lasketut piirteet) määräävät olennaisesti, mitä kysely ja hakutyyppejä voidaan suorittaa. Kyselyt voivat olla kahdentyyppisiä. Kyselyssä esimerkin mukaan annetaan esimerkkikuva tai luonnos kiinnostavan kohteen muodoista. Piirteet lasketaan sitten näistä ja etsitään piirteiden avulla täsmääviä kuvia tietokannasta. Vaihtoehtoisesti kysely voidaan esittää suoraan piirreesityksenä. Esim. etsitään kuvia, joilla on 50 % alastaan punaista väriä ja jotka sisältävät määrätyntyyppistä tekstuuria. Tällöin vain piirteiden osajoukkoa on käytetty kyselyssä, joten vastaavia muuttujia on käytettävä etäisyyslaskennassakin. Piirrevektoreiden käyttö kuvilla on melko samantapaista kuin tekstihaussa. Nyt hyödynnetään kuitenkin usein reaaliarvoisia muuttujia. 4. luku Aikasarjat ja sekvenssien haku Hahmojen tehokas löytäminen aikasarjoista ja sekvenssidatasta on lukuisissa yhteyksissä tarpeellista, mutta vaikea ongelma. Esimerkkejä ovat asiakkaiden etsiminen, joiden kulutustottumukset ovat samanlaisia annetun ajan mittaan, samanlaisten epätyypillisten sensorisignaalien tapahtumien reaaliaikainen seuranta ja vikadiagnostiikka esim. lentokoneessa ja kohinainen (häiriöitä sisältävä) täsmäys proteiinisekvenssien osajonoista. Sekvenssidata voi olla yksidimensioista tai kaksidimensioista (kuvadataa). Aikasarjoissa dataa on mitattu ajan suhteen, jolloin jokainen havainto on indeksoitu aikamuuttujan t suhteen. Yleensä näytteiden välillä on vakiomittainen aikaintervalli, jolloin voidaan aika määrittää kokonaisluvuilla väliltä [,T]. Kukin mittaus voi olla myös monimuuttujainen. Sovellusaloja on lukemattomia, kuten talous, lääke, luonnon ja teknisistä tieteistä. Sekvenssidatan käsite on yleisempi kuin aikasarjojen riippuessaan muusta kuin ajasta. Esim. molekyylibiologiassa proteiineja indeksoidaan paikan mukaan sekvensseihin. 4. luku 603

7 Perinteinen aikasarjamallintaminen perustuu globaaleihin lineaareihin malleihin. Esimerkkinä on Box Jenkinsin autoregressiiviset mallit, joissa nykyinen arvo y(t) mallinnetaan aiempien arvojen y(t k) painotetulla lineaarikombinaatiolla sekä lisätyllä kohinalla seuraavasti y( t) = k αi y( t i) + e( t), i= missä α:t i ovat painokertoimia ja e(t) kohina (tavallisesti oletettu nollakeskiarvoisena normaalijakautuneeksi) ajanhetkellä t. Käsite autoregressio tulee regressiomenetelmän käytöstä saman muuttujan aiemmille arvoille. Luvun tekniikat soveltuvat parametrien α i estimointiin. Mallirakenteen (arvon k) määrääminen perustuu mm. ristiinvalidointiin. Tätä voidaan yleistää käyttäen epälineaarisuutta (g(.)) hyväksi muodolla k y( t) = g i y( t i) α + e( t). i= 4. luku 604

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku.

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku. Boolen haut Tiedonhakumenetelmät Rankkaukseen perustuva tiedonhaku Boolen haussa dokumentti joko täyttää hakuehdon tai ei täytä hakuehtoa Hakuehdon täyttäviä vastauksia voi olla runsaasti (tuhansia - miljoonia)

Lisätiedot

Tiedonlouhinta rakenteisista dokumenteista (seminaarityö)

Tiedonlouhinta rakenteisista dokumenteista (seminaarityö) Tiedonlouhinta rakenteisista dokumenteista (seminaarityö) Miika Nurminen (minurmin@jyu.fi) Jyväskylän yliopisto Tietotekniikan laitos Kalvot ja seminaarityö verkossa: http://users.jyu.fi/~minurmin/gradusem/

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys .. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan?

Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? 2012-2013 Lasse Lensu 2 Ihmisen, eläinten ja kasvien hyvinvoinnin kannalta nykyaikaiset mittaus-,

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Arkkitehtuurikuvaus. Ratkaisu ohjelmistotuotelinjan monikielisyyden hallintaan Innofactor Oy. Ryhmä 14

Arkkitehtuurikuvaus. Ratkaisu ohjelmistotuotelinjan monikielisyyden hallintaan Innofactor Oy. Ryhmä 14 Arkkitehtuurikuvaus Ratkaisu ohjelmistotuotelinjan monikielisyyden hallintaan Innofactor Oy Ryhmä 14 Muutoshistoria Versio Pvm Päivittäjä Muutos 0.4 1.11.2007 Matti Eerola 0.3 18.10.2007 Matti Eerola 0.2

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Tehtävä 2: Loppuosataulukko

Tehtävä 2: Loppuosataulukko Tehtävä 2: Loppuosataulukko Tutustu tarkoin seuraavaan tekstiin ja vastaa sitä hyväksi käyttäen tehtävän loppuosassa esitettyihin viiteen kysymykseen. Annetun merkkijonon (ns. hahmo) esiintymän haku pidemmästä

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

2. Olio-ohjelmoinnin perusteita 2.1

2. Olio-ohjelmoinnin perusteita 2.1 2. Olio-ohjelmoinnin perusteita 2.1 Sisällys Esitellään peruskäsitteitä yleisellä tasolla: Luokat ja oliot. Käsitteet, luokat ja oliot. Attribuutit, olion tila ja identiteetti. Metodit ja viestit. Olioperustainen

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys 10.2. Säteenjäljitys ja radiositeettialgoritmi Säteenjäljitys Säteenjäljityksessä (T. Whitted 1980) valonsäteiden kulkema reitti etsitään käänteisessä järjestyksessä katsojan silmästä takaisin kuvaan valolähteeseen

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

POHDIN - projekti. Funktio. Vektoriarvoinen funktio POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

TIEDONHAKU INTERNETISTÄ

TIEDONHAKU INTERNETISTÄ TIEDONHAKU INTERNETISTÄ Internetistä löytyy hyvin paljon tietoa. Tietoa ei ole mitenkään järjestetty, joten tiedonhaku voi olla hankalaa. Tieto myös muuttuu jatkuvasti. Tänään tehty tiedonhaku ei anna

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri } 135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

The OWL-S are not what they seem

The OWL-S are not what they seem The OWL-S are not what they seem...vai ovatko? Verkkopalveluiden koostamisen ontologia OWL-S Seminaariesitelmä 15.4.2013 Emilia Hjelm Internet on hankala Nykyinternet on dokumenttien verkko Asiat, joita

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos. TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto) Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot