Fysiikkamoottori. Katri Roos. Seminaariraportti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Koko: px
Aloita esitys sivulta:

Download "Fysiikkamoottori. Katri Roos. Seminaariraportti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos"

Transkriptio

1 Fysiikkamoottori Katri Roos Seminaariraportti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 7. joulukuuta 2017

2 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta Fakultet Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Katri Roos Työn nimi Arbetets titel Title Tietojenkäsittelytieteen laitos Fysiikkamoottori Oppiaine Läroämne Subject Tietojenkäsittelytiede Työn laji Arbetets art Level Aika Datum Month and year Sivumäärä Sidoantal Number of pages Seminaariraportti 7. joulukuuta sivua Tiivistelmä Referat Abstract Fysiikkamoottori on osa pelimoottoria. Sen avulla mallinnetaan fysiikan ilmiöitä pelimaailmassa ja hoidetaan törmäyksen tunnistus ja reagointi siihen. Laskennan on oltava riittävän tehokasta ja hyvin optimoitua, jotta peli toimisi sujuvasti, realistisesti ja pätkimättä. Fysiikkamoottoreita on useita, niin kaupallisia kuin avoimeen lähdekoodiinkiin perustuvia. Tässä seminaariraportissa olen esitellyt Unity pelimoottorin fysiikkamoottoria PhysX ja Unityn fysiikkamoottorin perusominaisuuksia. The ACM Computing Classification System (CCS rev.2012): Software and its engineering Software creation and management Designing software Software design engineering Avainsanat Nyckelord Keywords Fysiikkamoottori; Pelikehitys; Pelimoottori; Törmäyksentunnistus Säilytyspaikka Förvaringsställe Where deposited Muita tietoja Övriga uppgifter Additional information

3 Sisältö 1 Johdanto 1 2 Kappaleiden fysiikka 2 3 Törmäyksen tunnistus 4 4 Törmäykseen reagointi 6 5 Yhteenveto 8 Lähteet 9 ii

4 Kuva 1: InXile Entertainmentin Wasteland 3 on tekeillä Unity pelimoottorilla. Kaikki peliobjektit, joihin halutaan kohdistaa painovoiman vaikutus, käyttävät jäykän kappaleen mekaniikkaa [1]. Lähde: 1 Johdanto Fysiikan simulointi tietokonepeleissä on oleellinen osa pelikokemusta. Lähes kaikki pelit tarvitsevat jonkinlaista fysiikkasimulaattoria toimiakseen järkevästi. Fysiikan simuloinnin on oltava tasaisen toimivaa, eikä se saa hidastua tai kaatua. Fysiikan simuloinnin hoitaa pelimoottorin fysiikkamoottori. Pelien fyysiikkamoottorien ei tarvitse simuloida fysiikkaa kuten tieteelliseen tutkimukseen tarkoitetut simulaattorit. Fysiikkamoottorit yksinkertaistavat Newtonin mekaniikkaa, jotta simuloinnista saadaan tarpeeksi nopeaa ja sujuvaa pelien tarpeisiin. Pelikokemus ei kuitenkaan huonone, sillä se, miten ihmiset ajattelevat fysiikkaa ja odottavat asioiden tapahtuvan, on kuin yksinkertaistettua Newtonin mekaniikkaa [6]. Monien pelien fysiikkamoottorien tärkein osa on jäykkien kappaleiden mekaniikan käsittely. Tosi maailmassa suurimman osan kappaleista voidaan ajatella käyttäytyvän kuten jäykät kappaleet eli kappaleet, joiden koko ja muoto eivät muutu, vaikka todellisuudessa kappaleet koostuvat atomeista ja molekyyleistä, joiden sidokset ovat joustavia. Tämän takia peleistä saadaan todellisen tuntuisia ja viihdyttäviä. Jäykän kappaleen mekaniikka on myös melko suoraviivaista toteuttaa. Kuva 1 on vuonna 2019 julkaistavasta Wasteland 3 pelistä, mikä toteutetaan Unity pelimoottorilla. Unityn 1

5 fysiikkamoottori käyttää jäykän kappaleen mekaniikkaa lähes kaikkien peliobjektien toteutukseen. Jäykkien kappaleiden lisäksi Unity-pelimoottorin fysiikkamoottorista löytyy esimerkiksi kangaskappaleiden käsittelylle oma luokkansa. Tässä seminaarityössä käyn läpi Unityn fysiikkamoottorin perusominaisuudet. Luvussa kaksi käsittelen miten peliobjektit toteutetaan Unityssä ja miten fysiikkaa käytetään niihin. Luvussa kolme on törmäyksen tunnistuksesta ja viimeisenä luvussa neljä, on siitä miten peliobjektit käyttäytyvät törmäyksen tapahtuessa. Pelimoottoreita on monia esimerkiksi Unreal ja Unity. Unreal- ja Unitypelimoottorit käyttävät fysiikanmallinnukseen PhysX fysiikkamottoria [2] [1]. PhysX on vapaan lähdekoodin fysiikkamoottori. Unity sisältää kaksi fysiikkamoottoria, 2D-fysiikalle ja toinen 3D-fysiikalle. Molemmille ulottuvuuksille on omat metodinsa. 2 Kappaleiden fysiikka Unityn fysiikkamoottori perustuu jäykkien kappaleiden (Rigidbody) mekaniikkaan. Tämä peruskappale mahdollistaa fysiikan käyttämisen pelin toiminnallisuudessa. Näiden kappaleiden liikettä ei määritellä muuttamalla niiden liikekoordinaatteja suoraan, vaan fysiikkamoottori laskee ne pelin aikana vaikuttavista voimista. Esimerkiksi biljardipelin pallo on paikoillaan kunnes toinen pallo osuu siihen, vaikuttava voima siirtyy ensimmäiseen palloon ja liikuttaa sitä. Voi olla tapauksia, missä halutaan kappaleen reagoivan painovoimaan ja törmäyksiin, kuten jäykkä kappale ja silti hallita sen liikkeitä koodista käsin. Unityssa Rigidbody-kappaleelle voidaan määrittää boolean arvo IsKinematic, mikä kertoo käytetäänkö fysiikkaa liikkeeseen vai ei [1]. Unityn fysiikkamoottori käyttää Newtonin mekaniikkaa liikeradan ja nopeuden laskemiseen. F = ma (1) Yhtälössä 1 on dynamiikan peruslaki eli voima (F) antaa kappaleelle sen kiihtyvyyden (a) ja yhtälöön vaikuttaa myös massa m. Tämä on pohjana fysiikkamoottorien laskennassa. Suureita käsitellään vektoreina ja ne voidaan laskea jokaiselle koordinaatille erikseen; kolmiulotteisessa pelimaailmassa siis X, Y ja Z koordinaateille. Dynamiikan peruslakia hyväksi käyttäen saadaan laskettua kappaleen kiihtyvyys, kun tiedetään massa ja siihen vaikuttava voima. Kiihtyvyydestä voidaan integroida nopeus v ja nopeudesta saadaan edelleen integroimalla kappaleen sijainti S. Fysiikkamoottorissa integrointi tapahtuu numeerisella analyysillä. Numeerisista menetelmistä voi lukea lisää esimerkiksi John Butcherin Numerical methods for ordinary differential equations -kirjasta [4]. Unity pelimoottorin 2

6 Kuva 2: Eulerin menetelmällä voidaan approksimoida integraalifunktio. käyttämän PhysX fysiikkamoottorin numeerista integrointimenetelmää ei ole kerrottu, koska moottori on kaupallinen [3]. Eulerin menetelmä on ehkä yksinkertaisin näistä menetelmistä (mutta sinällään ei kovin tarkka) ja monet edistyneemmät menetelmät myös perustuvat siihen. Perusajatus on se, että koska tiedämme pelissä olevan kappaleen massan ja voiman, mikä vaikuttaa kappaleeseen, voidaan niistä laskea kappaleen kiihtyvyys kaavalla 1. Kiihtyvyys integroidaan numeerisella menetelmällä ja tulokseksi saadaan nopeus. Koska kiihtyvyys on nopeuden derivaatta eli tangentin kulmakerroin tietyssä pisteessä, voidaan riittävän pienellä askeleella approksimoida nopeuden funktio käyttäen tangenttiviivoja. Olkoon kuvan 2 funktio y = f(x) kiihtyvyyden funktio. Koska tiedämme sen arvon eli nopeuden derivaatan pisteessä x 0, voidaan piirtää tangentti pisteestä x 0 pisteeseen x 0 + h, missä h on haluttu askelpituus. Peliohjelmoinnissa se on loopin pituus. Näin saamme arvion integraalista. Mitä pienempi askelpituus, sitä tarkempi approksimaatio. Jäykkien kappaleiden liikkeen hallintaa voidaan Unityssä helpottaa erilaisilla nivelillä (Joints). Kun on kaksi Rigidbody-objektia, joiden liikettä fysiikkamoottori hallitsee, mutta halutaan kuitenkin jonkinlaista kontrollia kappaleiden yhteiseen liikkeeseen, voidaan liittää ne yhteen nivelellä. Niveliä on erityyppisiä. Heilurinivel (Hinge Joint) sallii kiertoliikkeen tietyn pisteen ympäri ja sarananivel (Spring Joint) pitää kaksi kappaletta irti toisistaan, mutta pitää etäisyyden joustavana. Näitä rakenteita voi käyttää heilureissa, ketjuissa ja muissa vastaavissa rakenteissa [1]. Usein pelihahmo on ensimmäisessä tai kolmannessa persoonassa ja pelihahmon odotetaan liikkuvan ripeämmin kuin fysiikanlait sallisivat tosi maailmassa. Hahmo liikkuu nopeammin kuin oikeassa maailmassa olisi mahdollista ja pysähtyy kuin seinään, kun hahmon ohjaus lopetetaan. Hahmo myös pystyy kääntymään suoraan kovasta vauhdista. Jos pelihahmo olisi fysiikanlakien mukaan liikkuva jäykkä kappale, mihin vaikuttaa nopeus ja kitka, sen ohjaaminen hankaloituisi huomattavasti. Pelihahmoa varten Uni- 3

7 Kuva 3: Pelihahmon kontrolli-ikkuna. Lähde: tyssä on oma Character Controller -luokka. Se ei reagoi fysiikkaan vaan sille tehdään omat määritykset. Jäykät kappaleet voidaan laittaa reagoimaan hahmoon törmätessään, mutta hahmo itse ei reagoi. Tämä luokka määrittelee hahmolle kapselin muotoisen törmäyttimen (näistä lisää luvussa 3) (Collider) kuten kuvassa 3. Hahmo reagoi staattisiin taustalla oleviin kappaleisiin, kuten lattiat ja rappuset, eikä putoa niistä läpi. Fysiikkamoottoreissa käytetään optimointina unitilaa. Myös Unityn fysiikkamoottorissa on sleep -tila [1]. Fysiikkamoottorissa on määritelty kynnysarvo lineaariselle nopeudelle ja kulmanopeudelle. Kun kappaleen nopeus alittaa kynnysarvon, se menee unitilaan, eikä kappaleen tilan päivittämiseen enää käytetä prosessointiaikaa. Kappale herää kun siihen kohdistuu törmäys. Kappale voidaan herättää myös tarkoitukseen tehdyllä funktiolla. Tämä voi olla aiheellista, jos esimerkiksi pelissä olevan kappaleen alta hajoaa lattia ja kappaleen on tarkoitus pudota lattian mukana eikä jäädä roikkumaan ilmaan. 3 Törmäyksen tunnistus Törmäyksen tunnistusta (Collision detection) varten peliobjektit kääritään yhteen tai useampaan törmäytin (Collider)-objektiin. Näitä objekteja on kolmea alkeistyyppiä (primitive collider): pallo (sphere), kapseli (capsule) ja laatikko (box). 2D-grafiikkaa käytettäessä alkeistörmäyttimiä ovat laatikko ja ympyrä. Monet peliobjektit saadaan luontevasti kuorrutettua näillä alkeistyypeillä, kuten kuvassa 4. Tämä vähentää prosessointia ja optimoi törmäyksen tunnistusta [1]. Unityssa on myös mahdollista käyttää verkkotörmäytintä (Mesh colli- 4

8 Kuva 4: Alkeistyypin törmäyttimiä (primitive collider) käyttämällä voidaan optimoida ja vähentää prosessointiaikaa. Lähde: der). Tämä muotoutuu nimensä mukaisesti peliobjektin ympäri kuin verkko. Verkkotörmäyttimellä saadaan yksityiskohtaisempi törmäyksentunnistus monimutkaisille peliobjekteille, mutta verkkotörmäyttimen käyttö lisää myös prosessorin käyttöä. Unityn dokumentaatiossa kehoitetaankin käyttämään verkkotörmäytintä pelikohtauksen taustalla oleviin staattisiin liikkumattomiin objekteihin. Nämä staattiset objektit eivät itse reagoi kun niihin törmätään. Alkeistörmäyttimiä suositellaan käytettäväksi objekteihin, jotka reagoivat törmäykseen [1]. Törmäyttimeen voi myös liittää Trigger-ominaisuuden. Silloin törmäytin ei käyttäydy törmäyksessä kuten jäykkä kappale, ei esimerkiksi kimpoa toisesta esineestä, vaan toimii vain tapahtumanlaukaisimena kun toinen objekti siirtyy sen läheisyyteen. Verkkotörmäyttimen asetuksissa on vakiona, ettei se reagoi toisiin verkkotörmäyttimiin. Jos kuitenkin kaikesta huolimatta halutaan käyttää tätä ominaisuutta esimerkiksi yksityiskohtaisessa pelihahmo objektissa, voidaan valita tälle ominaisuus Convex eli kupera. Tämä ominaisuus muotoilee verkkotörmäyttimestä kuperan, jolloin se ei sisällä yhtään koveraa kohtaa ja silloin objekti voi reagoida törmäyksiin. Tämä perustuu erottavan akselin teoreemaan (Separating Axis Theorem), mikä tekee törmäyksen helpommin laskettavaksi. Kuvassa 5, näkyy kuinka kaksi kaksiulotteista kappaletta projisoidaan suoralle ja tarkistetaan löytyykö projektioiden välistä aukko. Jos löytyy, niin kappaleet eivät törmää. Kolmiulotteisessa avaruudessa kappaleet projisoidaan tasoihin. Erottavan akselin teoreema pätee vain kuperiin kappaleisiin. 5

9 Kuva 5: Erottavan akselin teoreema [5]. 4 Törmäykseen reagointi Kahden törmäyttimiin liitetyn peliobjektin törmätessä, kutsutaan OnCollisionEnter-funktiota. Peliobjektien ollessa kosketuksissa, kutsutaan OnCollisionStay- ja objektien irtaantuessa, OnCollisionExit-funktioita. Näihin fuktioihin voidaan ohjelmoida mitä tahansa tapahtumia, vaikka tietty musiikki tai ääniefekti. Jos törmäytin on tyypiltään Trigger, kutsutaan fuktioita OnTriggerEnter, OnTriggerStay ja OnTriggerExit. Törmäyttimeen voidaan myös määrittää Physic Material luokan avulla, miten peliobjekti reagoi törmäykseen. Luokan avulla voidaan määrittää kappaleelle esimerkiksi kitka ja kimmoisuus (bounciness). Normaaleissa törmäyksissä on otettava huomioon, että ainakin yhden törmäyttimen on oltava ei-kinemaattinen (Is Kinematic -ominaisuus pois päältä) eli fysiikkamoottori laskee kyseisen objektin liikeradan. Jos näin ei ole, funktiota OnCollisionEnter ei kutsuta. Trigger-törmäyksissä ei ole tätä rajoitetta [1]. Unityssä on useita sääntöjä peliobjekteille, riippuen siitä miten niiden halutaan reagoivan. Staattinen törmäytin (Static Collider) on objekti, mihin 6

10 Kuva 6: Peliobjektien reagointi törmäyksessä. Lähde: ei ole liitetty Rigidbody-komponenttia. Näitä ovat pelin taustalla olevat rakenteet, mihin törmätessä halutaan reaktio, mutta ei haluta liikuttaa kyseistä objektia. Jäykkä kappale ja törmäytin (Rigidbody Collider) on peliobjekti, jonka liikettä fysiikkamoottori hallitsee ja joka reagoi törmäyksiin ja koodista käsin tehtäviin muutoksiin. Kinemaattinen jäykkä kappale ja törmäytin (Kinematic Rigidbody Collider) on liikuteltavissa koodista käsin muuttamalla sen koordinaatteja. Se toimii kuten staattinen törmäytin, se ei reagoi toisen kappaleen törmätessä siihen. Tästä esimerkkinä liukuovi; sitä liikutetaan tarvittaessa, mutta se ei reagoi törmäykseen. Rigidbody-elementin kinemaattisuus voidaan laittaa päälle ja pois pelin aikana koodista käsin. Tämä on hyödyllistä silloin, kun halutaan Ragdoll-efekti. Ragdoll-efekti tarkoittaa sitä, kun esimerkiksi pelihahmon raajat ovat omat peliobjektinsa. Normaali tilanteessa hahmo on kinemaattinen ja sitä liikutetaan pelaajan toimesta, mutta räjähdyksen tai rajun törmäyksen ansiosta hahmon raajojen kinemaattisuus otetaan pois päältä, jotta ne heilahtavat iskun voimasta fysiikkamoottorin laskemiin suuntiin kuten räsynukella [1]. Kuvassa 6 on taulukoitu erilaisia peliobjektityyppeja ja ne ovat merkattu Y-kirjaimella, jos kumpikin tai ainakin toinen reagoi törmäyksessä. Perusajatuksena on, että jos haluaa fysiikkamoottorin tekevän objektille jotain, sen on oltava jäykkä kappale eli Riginbody-objekti. 7

11 5 Yhteenveto Unity pelimoottorin käyttämä PhysX on avoimen lähdekoodin fyysikkamoottori. Niin Unityn, kuin monen muunkin pelimoottorin fysiikkamoottorin toiminta perustuu Newtonin mekaniikkaan ja tosi maailman fysiikan ilmiöiden yksinkertaistamiseen. Tämä tekee laskennasta tarpeeksi yksinkertaista ja nopeaa, jotta peli toimisi juohevasti. Pelikokemus ei häiriinny, jos kumista palloa käsitellään fysiikan näkökulmasta törmäyksissä samalla tavalla kuin esimerkiksi lentävää lehmää, sillä ihminen olettaa fysiikan ilmiöiden, kuten törmäyksen, kimpoamisen, kaatumisen ja niin edelleen, tapahtuvan melko samalla tavalla käsiteltävästä kappaleesta riippumatta. Jäykkien kappaleiden mekaniikan lisäksi peliin saadaan fysiikalta vaikuttavia tehosteita magnetismillä, kangasmateriaaleilla ja muilla erikoisuuksilla. Näiden liike ja toiminta ei kuitenkaan varsinaisesti liity fysiikkamoottorin laskentaan kuten jäykkien kappaleiden mekaniikka. Esimerkiksi Unityssä kangaskappaleisiin törmäyksellä ei ole mitään vaikutusta ja magneettisen kappaleen saa ohjelmoimalla magneettiselle kappaleelle sitä kohden vetävän voiman, mikä vaikuttaa fysiikkamoottorin laskentaan jäykän kappaleen lähestyessä sitä. Fysiikkamoottorit sisältävät algoritmit kappaleiden nopeuden ja liikeratojen laskemiseen, törmäyksen tunnistamiseen ja siihen reagoimiseen. Fysiikkamoottorien suurimmat erot ovatkin näiden perusalgoritmien optimoinnissa ja erillaisissa versioissa. 8

12 Lähteet [1] Unity Documents. class-rigidbody.html. Accessed: [2] Unreal Engine Documents. Accessed: [3] Boeing, Adrian ja Bräunl, Thomas: Evaluation of real-time physics simulation systems. Teoksessa Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia, sivut ACM, [4] Butcher, John Charles: Numerical methods for ordinary differential equations. John Wiley & Sons, [5] Huynh, Johnny: Separating Axis Theorem for Oriented Bounding Boxes. URL: jkh. me/files/tutorials/separating% 20Axis% 20Theorem% 20for% 20Oriented% 20Bounding% 20Boxes. pdf, [6] Ullman, Tomer D., Spelke, Elizabeth, Battaglia, Peter ja Tenenbaum, Joshua B.: Mind Games: Game Engines as an Architecture for Intuitive Physics. Trends in Cognitive Sciences, 21(9): , 2017, ISSN pii/s

Selainpelien pelimoottorit

Selainpelien pelimoottorit Selainpelien pelimoottorit Teemu Salminen Helsinki 28.10.2017 Seminaaritutkielma Helsingin yliopisto Tietojenkäsittelytiede ! 1 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta

Lisätiedot

arvostelija OSDA ja UDDI palveluhakemistoina.

arvostelija OSDA ja UDDI palveluhakemistoina. Hyväksymispäivä Arvosana arvostelija OSDA ja UDDI palveluhakemistoina. HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty/Section Laitos Institution

Lisätiedot

Pelimatematiikka ja ohjelmointi ATMOS, Mikkeli - 16.11.2012

Pelimatematiikka ja ohjelmointi ATMOS, Mikkeli - 16.11.2012 Pelimatematiikka ja ohjelmointi ATMOS, Mikkeli - 16.11.2012 Teemu Saarelainen, lehtori teemu.saarelainen@kyamk.fi GameLab gamelab.kyamk.fi & facebook.com/kyamk.gamelab Sisältö Miksi pelimatematiikkaa?

Lisätiedot

Työn laji Arbetets art Level Aika Datum Month and year Sivumäärä Sidoantal Number of pages

Työn laji Arbetets art Level Aika Datum Month and year Sivumäärä Sidoantal Number of pages Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Tekijä Författare Author Työn nimi Arbetets titel Title Oppiaine Läroämne Subject Työn laji Arbetets art Level Aika Datum Month

Lisätiedot

Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA. Karoliina Ljungberg

Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA. Karoliina Ljungberg Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA Karoliina Ljungberg 16.04.2009 Ohjaajat: Ari Venäläinen, Jouni Räisänen

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

Aika/Datum Month and year Kesäkuu 2012

Aika/Datum Month and year Kesäkuu 2012 Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos/Institution Department Filosofian, historian, kulttuurin ja taiteiden tutkimuksen laitos Humanistinen tiedekunta Tekijä/Författare Author Veera Lahtinen

Lisätiedot

Koht dialogia? Organisaation toimintaympäristön teemojen hallinta dynaamisessa julkisuudessa tarkastelussa toiminta sosiaalisessa mediassa

Koht dialogia? Organisaation toimintaympäristön teemojen hallinta dynaamisessa julkisuudessa tarkastelussa toiminta sosiaalisessa mediassa Kohtdialogia? Organisaationtoimintaympäristönteemojenhallinta dynaamisessajulkisuudessatarkastelussatoiminta sosiaalisessamediassa SatuMariaPusa Helsinginyliopisto Valtiotieteellinentiedekunta Sosiaalitieteidenlaitos

Lisätiedot

Luonnontieteiden popularisointi ja sen ideologia

Luonnontieteiden popularisointi ja sen ideologia Luonnontieteiden popularisointi ja sen ideologia Tapauksina Reino Tuokko ja Helsingin Sanomat 1960-luvulla Ahto Apajalahti Helsingin yliopisto Humanistinen tiedekunta Suomen ja Pohjoismaiden historia Pro

Lisätiedot

Arkkitehtuurinen reflektio

Arkkitehtuurinen reflektio Arkkitehtuurinen reflektio Toni Ruokolainen Toni.Ruokolainen@cs.helsinki.fi Helsinki 6.10.2003 Tiivistelmä HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

! #! %! & #!!!!! ()) +

! #! %! & #!!!!! ()) + ! #! %! & #!!!!! ()) + Tiedekunta/Osasto Fakultet/Sektion Faculty Humanistinen tiedekunta Laitos Institution Department Taiteiden tutkimuksen laitos Tekijä Författare Author Matti Pesonen Työn nimi Arbetets

Lisätiedot

Maailman muutosta tallentamassa Marko Vuokolan The Seventh Wave -valokuvasarja avauksena taidevalokuvan aikaan

Maailman muutosta tallentamassa Marko Vuokolan The Seventh Wave -valokuvasarja avauksena taidevalokuvan aikaan Maailman muutosta tallentamassa Marko Vuokolan The Seventh Wave -valokuvasarja avauksena taidevalokuvan aikaan Pro gradu -tutkielma 31.1.2012 Helsingin yliopisto Humanistinen tiedekunta Filosofian, historian,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton) Dynamiikka Liike ja sen muutosten selittäminen Miksi esineet liikkuvat? Physics Miksi paikallaan oleva 1 esine lähtee liikkeelle? Miksi liikkuva esine hidastaa ja pysähtyy? Dynamiikka käsittelee liiketilan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Pong-peli, vaihe Koordinaatistosta. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana

Pong-peli, vaihe Koordinaatistosta. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana Muilla kielillä: English Suomi Pong-peli, vaihe 2 Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana Laitetaan pallo liikkeelle Tehdään kentälle reunat Vaihdetaan kentän taustaväri Zoomataan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Katsaus korruption vaikutuksesta Venäjän alueelliseen talouskasvuun ja suoriin ulkomaisiin investointeihin

Katsaus korruption vaikutuksesta Venäjän alueelliseen talouskasvuun ja suoriin ulkomaisiin investointeihin INSTITUUTIOTTALOUSKASVUNEDELLYTYKSENÄ KatsauskorruptionvaikutuksestaVenäjänalueelliseentalouskasvuunjasuoriin ulkomaisiininvestointeihin2000 2010 AshekMohamedTarikHossain HelsinginYliopisto Valtiotieteellinentiedekunta

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Dominointianalyysi. Teppo Niinimäki. Helsinki Approksimointialgoritmit HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Dominointianalyysi. Teppo Niinimäki. Helsinki Approksimointialgoritmit HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Dominointianalyysi Teppo Niinimäki Helsinki 10.5.2010 Approksimointialgoritmit HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Tiedekunta/Osasto Fakultet/Sektion Faculty Valtiotieteellinen tiedekunta

Tiedekunta/Osasto Fakultet/Sektion Faculty Valtiotieteellinen tiedekunta Tiedekunta/Osasto Fakultet/Sektion Faculty Valtiotieteellinen tiedekunta Laitos Institution Department Politiikan ja talouden tutkimuksen laitos Tekijä Författare Author Virta, Mikko Antero Työn nimi Arbetets

Lisätiedot

Mekaniikkan jatkokurssi

Mekaniikkan jatkokurssi Mekaniikkan jatkokurssi Tapio Hansson 16. joulukuuta 2018 Mekaniikan jatkokurssi Tämä materiaali on suunnattu lukion koulukohtaisen syventävän mekaniikan kurssin materiaaliksi. Kurssilla kerrataan lukion

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka Oppilaan nimi: Pisteet: / 77 p. Päiväys: Koealue: kpl 13-18, s. 91-130 1. SUUREET. Täydennä taulukon tiedot. suure suureen tunnus suureen yksikkö matka aika

Lisätiedot

Hallintomallit Suomen valtionhallinnon tietohallintostrategioissa

Hallintomallit Suomen valtionhallinnon tietohallintostrategioissa Hallintomallit Suomen valtionhallinnon tietohallintostrategioissa Lauri Eloranta Helsingin yliopisto Valtiotieteellinen tiedekunta Viestintä Pro gradu -tutkielma, 2014 Hallintomallit)Suomen)valtionhallinnon)tietohallintostrategioissa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia?

Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia? Muilla kielillä: English Suomi Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia? Kun kaksi fysiikkaoliota törmää toisiinsa, syntyy törmäystapahtuma. Nämä tapahtumat voidaan ottaa kiinni

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

UNITYN 2D-FYSIIKKAMOOTTORI

UNITYN 2D-FYSIIKKAMOOTTORI Olli Ketola UNITYN 2D-FYSIIKKAMOOTTORI Opinnäytetyö Tietojenkäsittely Marraskuu 2014 KUVAILULEHTI Opinnäytetyön päivämäärä 06.11.2014 Tekijä(t) Olli Ketola Koulutusohjelma ja suuntautuminen Tietojenkäsittely

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Laskennallinen yhteiskuntatiede

Laskennallinen yhteiskuntatiede Laskennallinen yhteiskuntatiede Matti Nelimarkka Helsinki 5.5.2011 LuK tutkielma HELSINGIN YLIOPISTO Tietojenkasittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Tasohyppelypeli. Piirrä grafiikat. Toteuta pelihahmon putoaminen ja alustalle jääminen:

Tasohyppelypeli. Piirrä grafiikat. Toteuta pelihahmon putoaminen ja alustalle jääminen: Tasohyppelypeli 1 Pelissä ohjaat liikkuvaa ja hyppivää hahmoa vaihtelevanmuotoisessa maastossa tavoitteenasi päästä maaliin. Mallipelinä Yhden levelin tasohyppely, tekijänä Antonbury Piirrä grafiikat Pelaajan

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Muilla kielillä: English Suomi Pong-peli, vaihe 3 Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Jaetaan ohjelma pienempiin palasiin (aliohjelmiin) Lisätään peliin maila (jota ei voi vielä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Kontrollilaitteet. Arsenaali

Kontrollilaitteet. Arsenaali Arsenaali Kontrollilaitteet Tietokonepeleissä käytettäviä kontrollilaitteita on valtava määrä Kaikilla alustoilla, joilla pelejä pelataan on jokin vakio kontrolleri PC: Hiiri ja näppäimistö Konsolit: Controller

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Pong-peli, vaihe Aliohjelmakutsu laskureita varten. 2. Laskurin luominen. Muilla kielillä: English Suomi

Pong-peli, vaihe Aliohjelmakutsu laskureita varten. 2. Laskurin luominen. Muilla kielillä: English Suomi Muilla kielillä: English Suomi Pong-peli, vaihe 7 Tässä vaiheessa lisäämme peliin pistelaskun. Pong-pelissä pelaaja saa pisteen kun pallo ohittaa toisen pelaajan mailan. 1. Aliohjelmakutsu laskureita varten

Lisätiedot

FYSA210/2 PYÖRIVÄ KOORDINAATISTO

FYSA210/2 PYÖRIVÄ KOORDINAATISTO FYSA210/2 PYÖRIVÄ KOORDINAATISTO Johdanto Inertiaalikoordinaatisto on koordinaatisto, jossa Newtonin mekaniikan lait pätevät. Tällaista koordinaatistoa ei reaalimaailmassa kuitenkaan ole. Epäinertiaalikoordinaatisto

Lisätiedot

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä Talousmatematiikan perusteet: Luento 16 Integraalin käsite Integraalifunktio Integrointisääntöjä Integraalin käsite Tarkastellaan auton nopeusmittarilukemaa v(t) ajan t funktiona aikavälillä klo 12.00-17.00

Lisätiedot

Oppimateriaalin kokoaminen ja paketointi

Oppimateriaalin kokoaminen ja paketointi Oppimateriaalin kokoaminen ja paketointi Pekka Simola Helsinki 14.4.2004 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Suhteellisuusteorian vajavuudesta

Suhteellisuusteorian vajavuudesta Suhteellisuusteorian vajavuudesta Isa-Av ain Totuuden talosta House of Truth http://www.houseoftruth.education Sisältö 1 Newtonin lait 2 2 Supermassiiviset mustat aukot 2 3 Suhteellisuusteorian perusta

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

Seminaari: HL7 versio 2

Seminaari: HL7 versio 2 hyväksymispäivä arvosana arvostelija Seminaari: HL7 versio 2 Markus Koski Helsinki 29.9.2014 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

T Digitaalisen median työvälineet (3 op) ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mediatekniikan laitos / Informaatioverkostot

T Digitaalisen median työvälineet (3 op) ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mediatekniikan laitos / Informaatioverkostot Selainohjelmointi Edistynyt verkkosivujen (JavaScript) kehitys T-111.1100 Digitaalisen median työvälineet (3 op) ME-C2300 Verkkojulkaisemisen perusteet (5 op) DI Mari Markku HirviLaine Mediatekniikan laitos

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta)

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) Mekanismisynteesi Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) 1 Sisältö Synteesin ja analyysin erot Mekanismisynteesin vaiheita Mekanismin konseptisuunnittelu Tietokoneavusteinen mitoitus

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot