Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Koko: px
Aloita esitys sivulta:

Download "Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia"

Transkriptio

1 Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä Kahden solmun u ja v väliset suhteet hierarkiassa: Tietorakenteet, syksy 00 Tietorakenteet, syksy 00 u on solmun v vanhempi (parent) u on solmun v välitön edeltäjä (askelta ylempänä hierarkiassa) solmut u ja v yhdistetty kaarella ja u on v:n yläpuolella vanhemman sijaan joskus termi isä (father) u on solmun v lapsi (child) u on solmun v välitön seuraaja (askelta alempana hierarkiassa) solmut u ja v yhdistetty kaarella ja u on v:n alapuolella Tietorakenteet, syksy 00 Tietorakenteet, syksy 00

2 u on solmun v esivanhempi (ancestor) u = v tai u on solmun v vanhemman esivanhempi u on v tai jokin sitä edeltävä solmu kukin solmu v on itsensä esivanhempi! u on solmun v jälkeläinen (descendant) v on solmun u esivanhempi kukin solmu v on itsensä jälkeläinen! Tietorakenteet, syksy 00 Tietorakenteet, syksy 00 Puurakenteen määritelmä Puu T on sellainen solmujen joukko, jossa: on yksikäsitteinen juuri (root) r (tai puu tyhjä) ylimmän tason solmu kullakin solmulla on yksikäsitteinen vanhempi ainoa poikkeus: juuri ( kantaisä ) kukin solmu on juuren r jälkeläinen tai yhtäpitävästi: juuri r on kunkin solmun esivanhempi Jos puussa on n solmua, niin kaaria on? n Tietorakenteet, syksy 00 Puurakenteen määritelmä Puu? ei: lla kaksi vanhempaa Puu? ei: sekä lla että lla ei vanhempaa Tietorakenteet, syksy 00

3 Puurakenteen määritelmä Esim. www-osoiteavaruuden hierarkkinen ositus stanford.edu un.org uta. tut. Puu? Kyllä Tietorakenteet, syksy 00 Solmut u ja v ovat sisaruksia (siblings) solmuilla u ja v on sama vanhempi stanford.edu un.org uta. tut. Tietorakenteet, syksy 00 0 Solmu v on sisäsolmu (internal node) solmulla v on vähintään yksi lapsi Solmu v on ulkoli lehti (internal node / leaf) solmulla v ei ole yhtään lapsisolmua stanford.edu un.org uta. tut. stanford.edu un.org uta. tut. Tietorakenteet, syksy 00 Tietorakenteet, syksy 00

4 Solmun v alipuu (subtree): puun osa, jossa ainoastaan solmun v jälkeläiset sekä niiden väliset kaaret Solmun v syvyys: solmun v esivanhempien lukumäärä - kuinka monta kaarta ylitetään kuljettaessa puun juuresta solmuun v stanford.edu un.org uta. tut. stanford.edu un.org uta. tut. Tietorakenteet, syksy 00 Tietorakenteet, syksy 00 Solmun v korkeus: pisin etäisyys (kaarien lkm) solmun v ja sen alipuun jonkin lehtisolmun välillä suurin ylitettävien kaarien määrä kuljettaessa solmusta v johonkin sen alipuun lehtisolmuun (kun kaaria kuljetaan aina alaspäin) Puun taso d: niiden solmujen joukko, joiden syvyys on d stanford.edu un.org uta. tut. stanford.edu un.org uta. tut. Tietorakenteet, syksy 00 Puun korkeus: juurisolmun r korkeus = suurin kyseisen puun lehtisolmun syvyys Tietorakenteet, syksy 00

5 Solmun v syvyyden laskenta, Depth(v), yksinkertaista rekursiivisesti solmun v syvyys on yhtä suurempi kuin sen vanhemman syvyys jos v on juuri, on sen syvyys 0 Aikavaativuus? O(n) Depth(v) if v on juuri then return 0 else return + Depth(Parent(v)) Tietorakenteet, syksy 00 Solmun v korkeuden laskenta, Height(v), samaan tapaan rekursiivisesti solmun v korkeus on yhtä suurempi kuin suurin sen lapsen korkeus jos v on lehti, on sen korkeus 0 Height(v) if v on lehti then return 0 else h max{height(u) : u Children(v)} return h + Aikavaativuus? O(n) Tietorakenteet, syksy 00 Järjestetty puu Järjestetty puu (ordered tree): kunkin solmun lapsisolmuilla tietty lineaarinen järjestys esim. vasemmalta oikealle tietty järjestys:. lapsi,. lapsi,. lapsi, jne. (binary tree): järjestetty puu, jossa kullakin solmulla korkeintaan lasta aito (strict/proper) binääripuu: lapsia joko 0 tai Tietorakenteet, syksy 00 Tietorakenteet, syksy 00 0

6 voidaan kuvata aidoksi binääripuuksi lisätään vajaisiin paikkoihin tyhjät solmut Tässä esim. asetetaan tyhjä solmu null-viitteen paikalle lehtisolmut aina tyhjiä solmuja, kaikki alkiot sisäsolmuissa Tietorakenteet, syksy 00 Eräs binääripuun sovellus: päätöspuu kyllä hylätään kyllä hyväksytään Luottohäiriöitä? kyllä Vakituinen työ? ei laina > 0000 $ ei hylätään sisäsolmu: kyllä/ei -kysymys ei hyväksytään lehtisolmu: matkalla juuresta lehtisolmuun annettujen vastausten tuottama johtopäätös Tietorakenteet, syksy 00 n kussakin solmussa kaksi viitettä lapsisolmuihin vasen (left) lapsi ja oikea (right) lapsi solmun v vasen (oikea) alipuu: solmun v vasemman (oikean) lapsen alipuu LeftChild() RightChild() LeftChild() RightChild() RightChild() ssa solmun v lapsilla sekä solmulla v keskenään tietty järjestys vahvempi järjestys kuin järjestetyssä puussa lapsisolmun paikka (vasen/oikea) lapsisolmun järjestysnumero (ensimmäinen/toinen) LeftChild() RightChild() RightChild() Tietorakenteet, syksy 00 Tietorakenteet, syksy 00

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ... 1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan. 5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 4: Binäärihakupuut Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Sisältö Binäärihakupuut Avainten lisääminen,

Lisätiedot

Sekvenssi: kokoelma peräkkäisiä alkioita (lineaarinen

Sekvenssi: kokoelma peräkkäisiä alkioita (lineaarinen Sekvenssi Sekvenssi: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Timo Esim. pino, jono ja kaksiloppuinen jono ovat sekvenssin erikoistapauksia sekvenssejä, jotka kohdistavat operaationsa ensimmäiseen/viimeiseen

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Oppijan saama palaute määrää oppimisen tyypin

Oppijan saama palaute määrää oppimisen tyypin 281 5. KONEOPPIMINEN Älykäs agentti voi joutua oppimaan mm. seuraavia seikkoja: Kuvaus nykytilan ehdoilta suoraan toiminnolle Maailman relevanttien ominaisuuksien päätteleminen havaintojonoista Maailman

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015 TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free

Lisätiedot

7. Tasapainoitetut hakupuut

7. Tasapainoitetut hakupuut 7. Tasapainoitetut hakupuut Tässä luvussa jatketaan järjestetyn sanakirjan tarkastelua esittämällä kehittynyt puutietorakenne. Luvussa 7.1. esitetään monitiehakupuun käsite. Se on järjestetty puu, jonka

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Datatähti 2000: alkukilpailun ohjelmointitehtävä

Datatähti 2000: alkukilpailun ohjelmointitehtävä Datatähti 2000: alkukilpailun ohjelmointitehtävä 1 Lyhyt tehtävän kuvaus Tehtävänä on etsiä puurakenteen esiintymiä kirjaintaulukosta. Ohjelmasi saa syötteenä kirjaintaulukon ja puun, jonka jokaisessa

Lisätiedot

private TreeMap nimella; private TreeMap numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

Tietorakenteet ja algoritmit Puurakenteet Ari Korhonen

Tietorakenteet ja algoritmit Puurakenteet Ari Korhonen Tietorakenteet ja algoritmit Puurakenteet ri Korhonen 13.10.2015 Tietorakenteet ja algoritmit 1 7. PUURKNTT 7.1 Käsitteistöä 7.2 Binääripuu (binary tree) 7.3 Puiden esitys- ja toteutustapoja 7.4 Puussa

Lisätiedot

Muita linkattuja rakenteita

Muita linkattuja rakenteita 1 Muita linkattuja rakenteita Johdanto Aikaisemmin on käsitelty listan, jonon ja pinon toteutus dynaamisesti linkattuna rakenteena. Dynaamisella linkkauksella voidaan toteuttaa mitä moninaisimpia rakenteita.

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa)

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) Antti Leino 4. huhtikuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

8 XSLT-muunnoskieli XSLT-muunnoskieli

8 XSLT-muunnoskieli XSLT-muunnoskieli 8 XSLT-muunnoskieli 51 8 XSLT-muunnoskieli XML-dokumentti kuvaa siis vain tiedon sisältöä eikä määritä ulkoasua mitenkään. CSS on suunniteltu HTML-dokumenttien ulkoasun kuvaamiseen eli tiedon esittämiseen

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00 A274101 TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE 9.2.2005 KLO 12:00 PISTETILANNE: www.kyamk.fi/~atesa/tirak/harjoituspisteet-2005.pdf Kynätehtävät palautetaan kirjallisesti

Lisätiedot

5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat:

5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: 5. Keko Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: Insert(S, x): lisää avaimen x prioriteettijonoon S Maximum(S):

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Yhteydettömät kieliopit [Sipser luku 2.1]

Yhteydettömät kieliopit [Sipser luku 2.1] Yhteydettömät kieliopit [ipser luku 2.1] Johdantoesimerkkinä tarkastelemme kieltä L = { a n b m a n n > 0, m > 0 }, joka on yhteydetön (mutta ei säännöllinen). Vastaavan kieliopin ytimenä on säännöt eli

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 3: Puut Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Sisältö Puut yleisesti Matemaattinen määrittely Puiden läpikäynti

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

4. Puut. Kuva 4.1. Sukupuu Puun abstrakti tietotyyppi

4. Puut. Kuva 4.1. Sukupuu Puun abstrakti tietotyyppi 4. Puut Aabraham Seuraavaksi käsitellään yhtä tärkeimmistä tietojenkäsittelytieteen ei-lineaarisista käsitteistä, puuta (tree). Puut ovat olleet keksintönä todellinen läpimurto, koska niissä luotiin tehokas

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

6. Sanakirjat. 6. luku 298

6. Sanakirjat. 6. luku 298 6. Sanakirjat Tässä luvussa tarkastellaan käsitettä sanakirja (dictionary). Tällaisen tietorakenteen tehtävä on tallettaa alkioita niin, että tiedonhaku rakenteesta on tehokasta. Nimi vastaa melko hyvin

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

Täydentäviä muistiinpanoja jäsennysalgoritmeista

Täydentäviä muistiinpanoja jäsennysalgoritmeista äydentäviä muistiinpanoja jäsennysalgoritmeista Antti-Juhani Kaijanaho 7. helmikuuta 2012 1 simerkki arleyn algoritmin soveltamisesta arkastellaan kielioppia G : + () c ja sovelletaan arleyn algoritmia

Lisätiedot

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet

Lisätiedot

Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla.

Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. 4.2 Fibonacci-kasat Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. Pääsiallinen ero on, että paljon Decrease-Key-operaatioita sisältävät jonot nopeutuvat. Primin algoritmi pienimmälle

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Paikkatiedon käsittely 6. Kyselyn käsittely

Paikkatiedon käsittely 6. Kyselyn käsittely HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino antti.leino@cs.helsinki.fi 1.2.2007 Tietojenkäsittelytieteen laitos Kysely indeksin

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

Lisää segmenttipuusta

Lisää segmenttipuusta Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko

Lisätiedot

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

Luento 3: Tietorakenteiden esittäminen

Luento 3: Tietorakenteiden esittäminen Luento 3: Tietorakenteiden esittäminen AS-0.110 XML-kuvauskielten perusteet Janne Kalliola Tietorakenteiden esittäminen XML-dokumentti puuna Muunnokset muodosta toiseen Perustietorakenteet listat puut

Lisätiedot

Hohde Consulting 2004

Hohde Consulting 2004 Luento 5: XQuery AS-0.110 XML-kuvauskielten perusteet Janne Kalliola XQuery XQuery uudet funktiot sekvenssit muuttujat Iterointi järjestys suodatus järjestäminen Ehtorakenteet Muita toimintoja www.hohde.com

Lisätiedot

Kuva 1: J+-puun rakenne [HXS09].

Kuva 1: J+-puun rakenne [HXS09]. Johdanto Tietotekniikka on kehittynyt viime vuosikymmenten aikana nopeata vauhtia. Tämä on näkynyt niin tietokoneiden tehoissa kuin myös hinnoissa. Myös tietokoneiden keskusmuistit ovat kasvaneet ja ovat

Lisätiedot

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl.

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl. iskreetti matematiikka, syksy 00 arjoitus, ratkaisuista. seta 8 nollaa ja 8 ykköstä renkaaksi niin, että jokainen yhdistelmä 0000, 000,..., esiintyy täsmälleen kerran. Vihje: Tulkitse de ruijnin jonon

Lisätiedot

6. Hakupuut. Hakupuu (engl. search tree) on listaa huomattavasti edistyneempi tapa toteuttaa abstrakti tietotyyppi joukko

6. Hakupuut. Hakupuu (engl. search tree) on listaa huomattavasti edistyneempi tapa toteuttaa abstrakti tietotyyppi joukko 6. Hakupuut Hakupuu (engl. search tree) on listaa huomattavasti edistyneempi tapa toteuttaa abstrakti tietotyyppi joukko Puurakenteelle on tietojenkäsittelyssä myös muuta käyttöä, esim. algoritmin suoritusajan

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Tietorakenteita 163. Yhteen suuntaan linkitetyn listan rakenne on siis seuraavan kuvan kaltainen:

Tietorakenteita 163. Yhteen suuntaan linkitetyn listan rakenne on siis seuraavan kuvan kaltainen: Tietorakenteita 163 7 Tietorakenteita Luvussa käsitellään tietorakenteita, joita voidaan kasvattaa dynaamisesti ajon aikana. Tällöin tilaa ei varata etukäteen, staattisesti, vaan tarpeen mukaan. 7.1 Listat

Lisätiedot

18. Abstraktit tietotyypit 18.1

18. Abstraktit tietotyypit 18.1 18. Abstraktit tietotyypit 18.1 Sisällys Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Verkon virittävät puut

Verkon virittävät puut Verkon virittävät puut Olkoon G = (V, E) suuntaamaton yhtenäinen verkko verkon yhtenäisyydellä tarkoitamme että kaikki verkon solmut ovat saavutettavissa toisistaan, eli verkossa ei ole erillisiä osia

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Union-find-delete-algoritmien vertailua. Sari Itäluoma

Union-find-delete-algoritmien vertailua. Sari Itäluoma Union-find-delete-algoritmien vertailua Sari Itäluoma Tampereen yliopisto Informaatiotieteiden yksikkö Tietojenkäsittelyoppi Pro gradu -tutkielma Ohjaaja: Erkki Mäkinen Kesäkuu 2015 Tampereen yliopisto

Lisätiedot

Kognitiivinen mallintaminen 1

Kognitiivinen mallintaminen 1 Kognitiivinen mallintaminen 1 Uutta infoa: Kurssin kotisivut wikissä: http://wiki.helsinki.fi/display/kognitiotiede/cog241 Suorittaminen tentillä ja laskareilla (ei välikoetta 1. periodissa) Ongelmanratkaisu

Lisätiedot

Lisätään avainarvo 1, joka mahtuu lehtitasolle:

Lisätään avainarvo 1, joka mahtuu lehtitasolle: Helsingin Yliopisto, Tietojenkäsittelytieteen laitos Tietokannan hallinta, kurssikoe 14.5.2004, J. Lindström Ratkaisuehdotuksia 1. Hakemistorakenteet, 15p. Tutkitaan tyhjää B+-puuta, jossa jokaiselle hakemistosivulle

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

Stabilointi. arvosana. arvostelija. Marja Hassinen

Stabilointi. arvosana. arvostelija. Marja Hassinen hyväksymispäivä arvosana arvostelija Stabilointi Marja Hassinen Helsinki 28.10.2007 Hajautetut algoritmit -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö 1 1 Johdanto 1 2 Resynkroninen

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

B-puu. 3.3 Dynaamiset hakemistorakenteet

B-puu. 3.3 Dynaamiset hakemistorakenteet Tietokannan hallinta 2 3. Tietokannan hakemistorakenteet 3.3 Dynaamiset hakemistorakenteet Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.

Lisätiedot

Englannin lausekerakenteita ja taulukkojäsentäminen

Englannin lausekerakenteita ja taulukkojäsentäminen Englannin lausekerakenteita ja taulukkojäsentäminen Kontekstittomat jäsennysmenetelmät Lili Aunimo lili.aunimo@helsinki.fi Helsingin yliopisto Kieliteknologia Lili Aunimo Englannin lausekerakenteita ja

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Elegantti toteutus funktiolle insert_to_list_end Alkion lisäys sisällön mukaan järjestettyyn listaan (insert_to_list) Linkatun listan yleisyys alkiotyypin suhteen source-tasolla

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan

Lisätiedot