ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012"

Transkriptio

1 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m, n; // oletetaan, että molemmat > 0 while (m >= n) m = m - n; if (m == 0) return true; return false; (b) Lasketaan lukumäärää laskuriin. Aluksi osoitin c merkkijonon alkuun. Siirretään c:tä yhdellä askeleella eteenpäin ja verrataan ensimmäiseen merkkiin. Jatketaan kunnes tulee eri merkki tai kunnes merkkijono loppuu. string mjono; // oletetaan, että pituus > 0 laskuri = 1; // ainakin yksi sama merkki c = ensimmainen(mjono); while (c!= viimeinen(mjono) c = seuraava(c); if (c == ensimmainen(mjono)) laskuri = laskuri + 1; break; // lopetetaan silmukka return laskuri; 1.2. (a) Käydään koko taulukko läpi ja etsitään sekä suurin että pienin luku, minkä jälkeen voidaan laskea erotus. // taulukko t, koko n > 0 // Suoritusaika: suurin = t[0]; // vakio pienin = t[0]; // vakio for (i = 1; i < n; i++) // silmukka suoritetaan n-1 kertaa if (t[i] > suurin) // ehtolause joka kierroksella suurin = t[i]; // sijoituslause tarvittaessa if (t[i] < pienin) // ehtolause joka kierroksella pienin = t[i]; // sijoituslause tarvittaessa erotus = suurin - pienin; // vakio Suoritusaika muotoa T (n) = n t 1 + t 2 = O(n). 1

2 (b) Muuttuja j osoittaa viimeisimpään eri lukuun. Muuttuja i käy läpi taulukon loput luvut. Jos i ja j osoittavat samansuuruiseen lukuun, paikka i nollataan ja j ei muutu. Muuten j siirtyy i:n kohdalle. // taulukko t, koko n > 0 // Suoritusaika: j = 0; // vakio laskuri = 0; // vakio for (i = 1; i < n; i++) // silmukka suoritetaan n-1 kertaa if (t[i] == t[j]) // ehtolause joka kierroksella t[i] = 0; // sijoituslauseet laskuri++; // tarvittaessa j = i; // sijoituslause tarvittaessa // nollien lukumäärä on nyt muuttujassa laskuri Suoritusaika muotoa T (n) = n t 1 + t 2 = O(n) Luentomateriaalin perusteella tiedetään: Kertaluokan määrää termi, joka kasvaa nopeimmin kun n kasvaa. Joidenkin peruskertaluokkien suuruusjärjestys on log 2 n, n, n log 2 n, n 2, n 3, 2 n. Yleisesti n k kasvaa sitä nopeammin mitä suurempi k on. Tämä pätee myös kun k ei ole kokonaisluku, toisin sanoen n = n 1/2 on kertaluokaltaan pienempi kuin n. Siten saadaan (a) f(n) = O(n 5 ) (b) f(n) = O(n) (c) f(n) = O(2 n ) (d) f(n) = O(n) (e) f(n) = O(n log 2 n) (f) f(n) = O(n) Tarkempi perustelu laskemalla raja-arvot: Tiedetään, että f(n) = O(g(n)), jos = C 0. Saadaan lim n f(n) g(n) (a) lim n 3n 5 + 3n n n n + 3n (b) lim n n ( 4n n 4n 3 (c) lim = lim n 2 n n (d) lim n 4 log 2 n + 10n n (e) lim n 3n log 2 n + 5n n log 2 n ( = lim n n + 24 ) 2 n 4 = 3 ( 800 = lim n n + 50 ) + 3 = 3 n ) = 1 n ( ) 4 log2 n = lim + 10 = 10 n n ( = lim n log 2 n 2 ) = 3

3 (f) lim n 2n/ log 2 n + n n ( ) 2 = lim n log 2 n + 1 = 1 Kohtien (c) ja (d) raja-arvoja laskettaessa seuraava L Hôpitalin sääntö voi olla f hyödyllinen: Jos lim n a f(n) = lim n a g(n) = 0 tai ja raja-arvo lim (n) n a g (n) f(n) on olemassa, niin lim n a = lim g(n) n a f (n). [Ei tarvitse osata tällä kurssilla.] g (n) 1.4. (a) Minuutti = ms, joten laskutoimituksia on N = kpl. 25n = N = n = N/25 = = n 2 = N = n = N/ = n3 = N = n = 3 2N 49.3 = 49 2 n = N = n = log 2 N = ln N/ ln = 15 (b) Laskutoimitusten lkm kasvaa 10-kertaiseksi. Merkitään n old = m = n = 10 25m = n = 10m = = n 2 = 10 5m 2 = n = 10m = n3 = m3 = n = 3 10m = n = 10 2 m = n = log m = (a) d = 0; // vakio for (i = 0; i < n; i++) // silmukka n kertaa c[i] = 0; // vakio for (j = 0; j < n; j++) // silmukka n kertaa c[i] += a[i][j]*b[j]; // vakio d += b[i]*c[i]; // vakio Sisimmän silmukan sisältö suoritetaan n n kertaa = O(n 2 ). (b) for (i = 0; i < n; i++) // silmukka n kertaa if (i%2 == 0) // vakio for (j = 0; j <= i; j++) // silmukka i+1 kertaa a = 2*a; // vakio for (j = i; j < n; j++) // silmukka n-i kertaa b = b/2; // vakio // (j-silmukat vain parillisilla i) Molemmat j-silmukat suoritetaan vain jos i on parillinen, ts. vain joka toisella i-silmukan kierroksella. Siten sisempien silmukoiden sisällöt suoritetaan n 2 (i n i) = 1 2 n2 + 1 n (jos n parillinen) 2 tai n + 1 (i n i) = n2 + n kertaa = O(n 2 ). 3 (jos n pariton)

4 (c) for (i = 1; i < n; i++) // silmukka n-1 kertaa for (j = n-1; j >= i; j--) // silmukka n-i kertaa if (t[j] < t[j-1]) // vakio swap(t[j-1], t[j]); // tod.näk. vakio Sisemmän silmukan sisältö suoritetaan n 1 (n i) = (n 1)n i=1 kertaa = O(n 2 ). (n 1)n 2 = 1 2 n2 1 2 n (d) for (i = 1; i < n; i++) // silmukka n-1 kertaa k = 0; // vakio p = t[i]; // vakio for (j = i-1; j >= 0; j--) // silmukka i kertaa if (t[j] <= p) // vakio leap(j, k); // tod.näk. vakio t[j+1] = t[j]; // vakio t[k] = p; // vakio Sisemmän silmukan sisältö suoritetaan kertaa = O(n 2 ). n 1 i = i=1 (n 1)n 2 = 1 2 n2 1 2 n 2.1. (a) etsipienin(t, n) if (n == 1) return t[0]; return min(etsipienin(t, n-1), t[n-1]); Ei-rekursiivinen: Silmukka suoritetaan n 1 kertaa = O(n). Rekursiivinen: Suoritusaika on muotoa a, kun n = 1, T (n) = T (n 1) + b, kun n > 1, missä a, b > 0 vakioita = T (n) = T (n 1) + b = T (n 2) + 2b = T (n 3) + 3b = = T (1) + (n 1)b = a b + bn = O(n). 4

5 (b) asetaluku(t, n, luku) if (n == 1) t[0] = luku; t[n-1] = luku; asetaluku(t, n-1, luku); return; Ei-rekursiivinen: Silmukka suoritetaan n kertaa = O(n). Rekursiivinen: Suoritusaika samaa muotoa kuin (a)-kohdassa = O(n). (c) laskenollat(t, int n) if (n == 0) return 0; if (t[n-1] == 0) return (laskenollat(t, n-1) + 1); return (laskenollat(t, n-1)); Ei-rekursiivinen: Silmukka suoritetaan n kertaa = O(n). Rekursiivinen: Suoritusaika muuten samaa muotoa kuin (a)-kohdassa paitsi että rekursio päättyy vasta kun n = 0 = T (n) = T (n 1) + b = = T (0) + nb = a + bn = O(n) (a) Aputilaa tarvitaan vain vakiomäärä (muuttujat a, b ja c). operate(yhdiste,pino) if (size(pino) < 2) return error; a = pop(pino); b = pop(pino); c = yhdiste(a,b); push(c,pino); 5

6 (b) Siirretään muut alkiot apupinoon, josta ne siirretään takaisin alkuperäiseen pinoon sitten kun päällimmäinen alkio on ensin sijoitettu pohjalle. Aputilaa tarvitaan apupinolle (ja muille muttujille), joten aputilan koko on samaa kertaluokkaa kuin alkuperäisen pinon koko. sink(pino) if (size(pino) < 1) return error; a = pop(pino); while (!isempty(pino)) b = pop(pino); push(b,apu); // siirretään apupinoon push(a,pino); while (!isempty(apu)) b = pop(apu); push(b,pino); // siirretään takaisin (c) Käytetään aputilana taulukkoa, josta alkiot on helppo poimia halutussa järjestyksessä. Aputilan koko on siis samaa kertaluokkaa kuin alkuperäisen pinon koko. flip(pino) n = size(pino); for (i = 1; i <= n; i++) a[i] = pop(pino); for (i = 1; i <= n; i++) push(a[i],pino); 2.3. (a) Lisätään merkki s pinoon p operaatiolla push(s,p) ja poistetaan merkki pinosta operaatiolla pop(p). Pinoon ei saa lisätä merkkiä sellaisen merkin päälle, joka on aakkosissa aikaisemmin, koska silloin alle jäänyttä merkkiä ei voi poistaa oikealla hetkellä. Tarvitaan vähintään neljä pinoa: push(d,1), push(a,1), pop(1), push(g,2), push(e,2), push(b,1), pop(1), push(f,3), push(i,4), push(c,1), pop(1), pop(1), pop(2), pop(3), pop(2), push(h,1), pop(1), pop(4) (b) Tarvitaan vähintään kaksi pinoa: push(i,1), push(d,1), push(c,1), push(b,1), push(h,2), push(g,2), push(a,1), pop(1), pop(1), pop(1), pop(1), push(f,1), push(e,1), pop(1), pop(1), pop(2), pop(2), pop(1) 6

7 (c) Lisätään merkki s jonoon q operaatiolla enq(s,q) ja poistetaan merkki jonosta operaatiolla deq(q). Jonoon ei saa lisätä merkkiä sellaisen merkin perään, joka on aakkosissa myöhemmin, koska silloin taakse jäänyttä merkkiä ei voi poistaa oikealla hetkellä. Tarvitaan vähintään kolme jonoa: enq(d,1), enq(a,2), deq(2), enq(g,1), enq(e,2), enq(b,3), deq(3), enq(f,2), enq(i,1), enq(c,3), deq(3), deq(1), deq(2), deq(2), deq(1), enq(h,2), deq(2), deq(1) (d) Tarvitaan vähintään viisi jonoa: enq(i,1), enq(d,2), enq(c,3), enq(b,4), enq(h,2), enq(g,3), enq(a,5), deq(5), deq(4), deq(3), deq(2), enq(f,4), enq(e,5), deq(5), deq(4), deq(3), deq(2), deq(1) 2.4. (a) Täytyy etsiä listan viimeinen tietue. Joudutaan käymään läpi koko lista, joten suoritusaika on O(n), missä n listan koko. if (first == null) // erikoistapaus: tyhjä lista last = null; p = first; while (p.next!= null) p = p.next; // nyt p osoittaa listan loppuun last = p; (b) Operaatio mielekäs vain jos listassa on vähintään kaksi tietuetta. Täytyy etsiä listan viimeinen ja toiseksi viimeinen tietue, joten suoritusaika on O(n). if (first == null) // tyhjä lista return; if (first.next == null) // vain yksi tietue return; q = null; p = first; while (p.next!= null) q = p; p = p.next; // nyt p osoittaa listan loppuun, q edeltävään tietueeseen if (q == first) // käsiteltävä erikseen... p.next = first; p.next = first.next; q.next = first; first.next = null; first = p; 7

8 2.5. Kaikissa tapauksissa tarvittaviin tietueisiin päästään käsiksi suoraan (ilman listan läpikäyntiä), joten suoritusajat ovat O(1). (a) if (first == null) // tyhjä lista return; if (first.next == null) // vain yksi tietue first = last = null; first = first.next; first.prev = null; (b) (c) // p osoitin lisättävään tietueeseen p.next = null; p.prev = last; if (first == null) // lisäys tyhjään listaan first = p; last.next = p; last = p; if (first!= null) // vain ei-tyhjälle listalle first.prev = last; last.next = first; // siinä kaikki! 3.1. (a) F / \ C G / \ \ A D I \ \ / \ B E H J korkeus 3 lehtisolmuja 4 (b) F / \ B I / \ / \ A D G J / \ \ C E H korkeus 3 lehtisolmuja 5 (c) F / \ E I / / \ C G J / \ \ B D H / A korkeus 4 lehtisolmuja (a) Esijärjestys: 30, 20, 15, 16, 23, 37, 32, 31, 33, 40 Sisäjärjestys: 15, 16, 20, 23, 30, 31, 32, 33, 37, 40 Jälkijärjestys: 16, 15, 23, 20, 31, 33, 32, 40, 37, 30 8

9 (b) Haetaan solmua h, jolle h.key=32: 1. c -> null, p -> p -> 37 c -> 37, p -> 32 c -> 32, p -> 31 p -> null 3. c.key == h.key joten löytyi (c == h) (c) Haetaan solmua h, jolle h.key=24: 1. c -> null, p -> c -> 30, p -> 20 p -> 23 p -> null 3. c.key!= h.key joten ei löytynyt 3.3. (a) Poistetaan ensimmäinen solmu (h.key=15): 1. q -> null, p -> q -> 30, p -> 20 / \ q -> 20, p -> q.left=p.right / \ / \ / \ (b) Poistetaan solmu h, jolle h.key=32: 1. c -> null, q -> null, p -> q -> 30, p -> 37 / \ cp -> 30, c -> 37, q -> 37, p -> cp -> 37, c -> 32, q -> 32, p -> 31 / \ / \ 3. c.key == h.key joten jatketaan p.right=c.right \ \ (tässä tapauksessa q == c) cp.left=p (c) Poistetaan solmu h, jolle h.key=37: 1. c -> null, q -> null, p -> q -> 30, p -> 37 / \ cp -> 30, c -> 37, q -> 37, p -> q -> 32, p -> 33 / \ / \ 3. c.key == h.key joten jatketaan p.right=c.right \ / (tässä tapauksessa q!= c) q.right=p.left, p.left=c.left cp.right=p 9

10 3.4. Tasapainottaminen: Solmut sisäjärjestykseen; keskimmäisestä solmusta uusi juuri; pienemmistä solmuista vasen alipuu (rekursiivisesti); suuremmista solmuista oikea alipuu (rekursiivisesti). Jos solmujoukossa parillinen määrä solmuja, valitaan seuraavassa keskimmäiseksi solmuksi aina kahdesta vaihtoehdosta pienempi: ^^ / \ ^^ ^^ / \ / \ ^^ ^^ ^^ ^^ \ \ \ ^^ ^^ ^^ Alkuperäisen puun korkeus 3, tasot 0, 1 ja 2 täynnä. Tasapainotetun puun korkeus 3, tasot 0, 1 ja 2 täynnä. Ei oleellista muutosta Riittää tutkia vain puun rakenteellisessa järjestyksessä ensimmäinen ja viimeinen solmu. Etsitään nämä kaksi solmua, lasketaan molemmat etäisyydet ja valitaan niistä suurempi. p = juurisolmu; // tutkitaan vasen alipuu if (p.left == null) // vasen alipuu tyhjä vasenetaisyys = -ääretön; while (p.left!= null) p = p.left; vasenetaisyys = p.key - juurisolmu.key ; p = juurisolmu; // tutkitaan oikea alipuu if (p.right == null) // oikea alipuu tyhjä oikeaetaisyys = -ääretön; while (p.right!= null) p = p.right; oikeaetaisyys = p.key - juurisolmu.key ; suurinetaisyys = max(vasenetaisyys, oikeaetaisyys); Kaksi hakuoperaatiota, joiden askelten lukumäärä puun korkeus = aikavaativuus tasapainoiselle puulle O(log n), degeneroituneelle puulle O(n). 10

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Algoritmit 1. Luento 10 Ke Timo Männikkö

Algoritmit 1. Luento 10 Ke Timo Männikkö Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 2. Luento 8 To Timo Männikkö

Algoritmit 2. Luento 8 To Timo Männikkö Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

4 Tehokkuus ja algoritmien suunnittelu

4 Tehokkuus ja algoritmien suunnittelu TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Algoritmit 2. Luento 10 To Timo Männikkö

Algoritmit 2. Luento 10 To Timo Männikkö Algoritmit 2 Luento 10 To 11.4.2019 Timo Männikkö Luento 10 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutusmenetelmä Osajoukon summa Algoritmit 2 Kevät 2019 Luento 10 To

Lisätiedot

Algoritmit 2. Luento 10 To Timo Männikkö

Algoritmit 2. Luento 10 To Timo Männikkö Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien

Lisätiedot

List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen

List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan soveltamista List-luokan metodeja Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan metodeja List-luokan

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Kysymyksiä koko kurssista?

Kysymyksiä koko kurssista? Kysymyksiä koko kurssista? Lisää kysymyksesi osoitteessa slido.com syötä event code: #8777 Voit myös pyytää esimerkkiä jostain tietystä asiasta Vastailen kysymyksiin luennon loppupuolella Tätä luentoa

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

4. Algoritmien tehokkuus

4. Algoritmien tehokkuus 4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 10.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 10.2.2010 1 / 43 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29

Lisätiedot

Tietorakenteet, laskuharjoitus 1,

Tietorakenteet, laskuharjoitus 1, Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

Koe ma 28.2 klo salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 28.2 klo salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 28.2 klo 16.00-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsin tehty, itse kirjoitettu lunttilappu Neuvontapaja (Joel ja Nyman)

Lisätiedot

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ... 1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin

Lisätiedot

Taulukoiden käsittely Javalla

Taulukoiden käsittely Javalla 1 Taulukoiden käsittely Javalla Mikä taulukko on? Taulukon syntaksi Merkkijonotaulukko Lukutaulukko Taulukon kopiointi 1 Mikä taulukko on? Taulukko on rakenne, minne saadaan talteen usea saman tyyppinen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 22. huhtikuuta 2016 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille! Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Algoritmit 2. Luento 12 To Timo Männikkö

Algoritmit 2. Luento 12 To Timo Männikkö Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua. A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos

Lisätiedot

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot