44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan suuretta ds t S t. Palutetaan mieleen Brownin liikkeen määritelmä. Oletetaan, että todennäköisyysavaruus (Ω, F, IP) on kiinnitetty ja kaikki prosessit ovat määritelty tällä todennköisyysavaruudella. Määritelmä 6.1. Stokastinen prosessi W = (W t ) t T on Brownin liike alkuarvolla, jos W = Polut t W t ovat jatkuvia. Prosessin W lisäykset W t W s ovat riippumattomat ja normaalisti jakautuneet odotusarvona ja varianssina t s (s < t T ). Huomautus 6.1. Jos oletetaan vain, että W t W s N(, t s), niin jo tästä oletuksesta seuraa, että (6.1) IE(W t W s )(W r W q ) =, kun q < r s < t. Koska kyseessä on normaalijakauma, niin tämä tarkoittaa sitä, että lisäykset ovat riippumattomat. Yhtälön (6.1) todistamiseksi riittää osoittaa, että IEW t W s = s, jos t > s. Lasketaan: t s = IE(W t W s ) 2 = IEW 2 T 2IEW t W s + IEW 2 s = t + s 2IEW t W s, mistä saadaan IEW t W s = s, kun s < t. Brownin liikkeen ja martingaalien välillä on seuraava yhteys: Lause 6.1 (Lévy). Olkoon X jatkuva-aikanen, jatkuva prosessi, jolle X =, IEX t = kaikilla t T ja Var(X t ) <. Prosessi X on standardi Brownin liike jos ja vain jos X ja X 2 t t, t T ovat (IP, IF X )- martingaaleja. Jos X on standardi Brownin liike, niin IE[X t F X s ] = IE[X t X s + X s F X s ] ( ) = X s + IE[X t X s ] =, missä yhtälössä ( ) käytettiin sitä, että X s Fs X, X t X s F X s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja on riippumaton ehdosta. Vastaavalla tavalla nähdään, että Xt 2 t on martingaali, kun X on standardi Brownin liike. Käänteinen väite on syvällisempi ja sen todistus löytyy useista Brownin liikettä käsittelevistä oppikirjoista. Brownin liikkeen poluille voidaan todistaa seuraava ominaisuus lim (W tk W tk 1 ) 2 IL2 (IP) t, π missä π = {t k : < t 1 < < t n = t} on välin [, t] jako, t T, π = max(t k t k 1 : t k π} ja IL 2 (IP) tarkoittaa konvergenssia avaruudessa IL 2 (Ω, F, IP): jos X n, X IL 2 IL (IP), niin X 2 (IP) n X, kun X n X IL 2 (IP), missä Y 2 IL 2 (IP) = IEX2.
RAHOITUSTEORIA 45 Käyttämällä Abelin summakaavaa teleskoppisummalle saadaan, että WT 2 (W tk W tk 1 ) 2 = 2 W tk 1 (W tk W tk 1 ) W s dw s = 1 2 (W 2 T T ), missä integraali ymmärretään raja-arvona (6.2) W s dw s = IL 2 (IP) lim W tk 1 (W tk W tk 1 ). π Yksinkertaisella algebralla saadaan selville, että (6.3) IL 2 (IP) lim W tk (W tk W tk 1 ) = 1 2 (W T 2 + T ). π Palautetaan mieleen, milloin jatkuva funktio f on rajoitetusti heilahteleva: var t (f) := sup f(t k ) f(t k 1 ) <. π Mikäli toistetaan edellinen päättely saadaan silloin kun funktio f on jatkuva ja rajoitetusti heilahteleva, niin havaitaan, että sillä ft 2 = 2 f tk 1 (f tk f tk 1 ) + tk f tk 1 ) (f 2 2 (f tk f tk 1 ) 2 max f t k f tk 1 var t (f), f s df s, kun π. Helposti nähdään, että integraalin arvo ei riipu siitä, miten integroitavan funktion approksimointipite valitaan väliltä [t k 1, t k ]. Voidaan tehdä seuraavat johtopäätökset: Brownin liikkeen polut ovat rajoittamasti heilahtelevia. Perustelu: (W tk W tk 1 ) 2 var T (W ) max W t k W tk 1, jos var T (W ) <. Stokastinen integraalin arvo riippuu siitä, kuinka integroitavaa stokastista prosessia approksimoidaan. Stokastisen inetrgaalin arvo saadaan määriteltyä raja-arvona, kun π, mutta raja-arvo määritellään avaruudessa IL 2 (IP), ei poluittain. Rajoitetusti heilahteleville jatkuville funktioille f pätee f 2 (T ) = 2 f(s)df(s), mutta Brownin liikkeelle tämä kaava ei päde. Kumpi approksimaatioista (6.2) vai (6.3) sitten tulee valita. Approksimaatiota (6.2) puoltaa se tosiasia, että jos tarkastellaan disreettiaikaista prosessia Y k := k W ti 1 (W ti W ti 1 ) i=1
46 E. VALKEILA historian G k := F tk suhteen, niin Y on (IP, IG) martingaali. Voidaan osoittaa, että tämä ominaisuus säilyy, kun mennään rajalle. Palataan osakkeen tuoton mallintamiseen. Asetetaan Tällöin S tk S tk 1 S tk 1 = σ(w tk W tk 1 ) + µ(t k t k 1 ). S tk = S k (1 + σ(w ti W ti 1 ) + µ(t i t i 1 )). i=1 Huomaa, että näin määritelty S tk voi olla myös negatiivinen. Voidaan osoittaa, käyttäen Brownin liikkeen ominaisuuksia että S tk S t := exp{σw t σ2 2 t + µt}, missä konvergenssi on stokastista konvergenssia. Perustelut ovat samantapaiset kuin kohdassa 3.3.1, ja nyt ne sivuutetaan. Olkoon f = n k=1 a ki [tk 1,t k ), missä a k IR; selvää on, että ainoa järkevä tapa määritellä integraali f sdw s on asettaa f s dw s = n a k (W tk W tk 1 ); k=1 tämä on yksinkertainen esimerkki Wiener-integraalista Brownin liikkeen suhteen. Havaitaan, että IE f s dw s = ja n IE( f s dw s ) 2 = a 2 k (t k t k 1 ) = fs 2 ds k=1 [tämä seuraa esimerkiksi siitä, että muuttujat a k (W tk W tk 1 ) ovat riippumattomia ja normaalisti jakautuneita; jos a k IL 2 (IP, F tk 1 ), niin edelleen pätee IE f sdw s =, mutta nyt IE( f s dw s ) 2 = IE f 2 s ds. Tarkastellaan jatkuvaa prosessia H. Oletetaan, että se on mitallinen Brownin liikkeen historian IF W suhteen. Mikäli IE H2 s ds <, niin stokastinen integraali Y T := H sdw s voidaan määritellä seuraavasti. Oletetaan aluksi, että H ja H on rajoitettu. Tällöin jono H n, missä Ht n = Ht n k 1, kun t (t k 1, t k ] approksimoi dominoidun konvergenssin lauseen perusteella prosessia H avaruudessa IL 2 (IP Leb): ( 2 IE (Hs n H s ) ds) ;
RAHOITUSTEORIA 47 saadaan, että jono H n on c-jono avaruudessa IL 2 (IP Leb). Olkoon Y n neliöintegroituva satunnaismuuttuja: Y n := H n s dw s = H tk 1 (W tk W tk 1 ). Koska H n on c-jono avaruudessa IL 2 (IP Leb), niin on olemassa n, m n ɛ siten, että Nyt IE IE(Y n Y m ) 2 = IE (H n s Hm s )2 ds < ɛ. (H n s Hm s )2 ds < ɛ. Siis Y n on c-jono avaruudessa IL 2 (IP) ja asetetaan Y = IL 2 (IP) lim Y n. Merkitään Y = H s dw s ja sanotaan, että Y on prosessin H stokastinen integraali Brownin liikken suhteen. Sille on voimassa Asetaan Y t := H si [,t] (s)dw s ; tällöin prosessi Y on jatkuva neliöintegroituva (IP, IF W )- martingaali. Integraali voidaan ymmärtää raja-arvona: H s dw s = IL 2 (IP) lim π H t k 1 (W tk W tk 1 ). Koska Y on martingaali, niin on voimassa isometria (6.4) IE( H s dw s ) 2 = IE H 2 s ds. Palataan seuraavaksi kaavaan WT 2 = 2 W sdw s + T. Olkoon f(x) = x 2 ja kirjoitetaan kaava uudestaan funktion f avulla f(w T ) = f()+ f x(w s )+ 1 T 2 f xx(w s )ds. Voidaan osoittaa, että tämä kaava pätee kaikilla f C 2 (IR). Lause 6.2 (Iton kaava). Olkoon f C 2 ; tällöin on voimassa (6.5) f(w t ) = f() + f x (W s )dw s + 1 2 f xx (W s )ds. Jos IE (f x(w s )) 2 ds <, niin stokastinen integraali f x(w s )dw s on martingaali. Integraali f xx(w s )ds ymmärretään jatkuvan funktion tavallisena integraalina, ts. se voidaan integroida poluittain, erotuksena stokastisesta integraalista. Jos g on jatkuva ja rajoitetusti heilahteleva funktio ja f C 1, niin f(g t ) = f(g ) + f x (g s )dg s. Iton kaava voidaan todistaa funktion f Taylorin sarjakehitelmällä; toditus ei sinänsä ole vaikea, mutta se on pitkä ja uuvuttava. Toinen todistus perustuu
48 E. VALKEILA osittaisintegrointikaavaan: jos U T = U + H sdw s + Hs ds ja V T = V + K sdw s + K s ds, niin (6.6) U T V T = U V + + U s Ks ds + U s K s dw s + V s Hs ds. V s H s dw s + H s K s ds Esimerkki 6.1. Olkoon Z t = e Wt ; nyt f(x) = e x = f x = f xx. Iton kaavalla saadaan Z t = e Wt = 1 + tämä voidaan kirjoittaa myös seuraaavsti Z t = 1 + tai stokastisena differentiaaliyhtälönä e Ws dw s + 1 2 Z s dw s + 1 2 dz t = Z t dw t + 1 2 Z tdt. Z s ds e Ws ds; Usein käytetään seuraavaa Iton kaavan yleistystä: jos f(t, x) C 1,2, niin (6.7) f(t, W t ) = f(, W )+ f t (s, W s )ds+ f x (s, W s )dw s + 1 2 f xx (s, W s )ds. Esimerkki 6.2. Olkoon f(t, x) = e σx 1 2 σ2t+µt, nyt f x = σf, f xx = σ 2 f, f t = (µ 1 2 σ2 )f; sijoittamalla kaikki tämä informaatio kaavaan (6.7) saadaan f(t, W t ) = 1 + Jos f(t, W t ) = St S = 1 + σ f x (s, W s )dw s + f(s, W s )dw s + µ (f t (s, W s ) + 1 2 f xx(s, W s ))ds f(s, W s )ds. niin edellinen yhtälö voidaan kirjoittaa muodossa ds t = σs t dw t + µs t dt. Tarkastellaan seuraavaksi stokastista differentiaaliyhtälöä (6.8) dx t = µ(t, X t )dt + σ(t, X t )dw t, X = x, t [, T ]; tällä tarkoitetaan itse asiassa integraaliyhtälöä X t = x + µ(s, X s ) + σ(s, X s )dw s. Tässä W on Brownin liike, joka on määritelty kentällä (Ω, F, IP). Kertoimista µ, σ oletetaan, että (6.9) µ(t, x) µ(s, y) 2 + σ(t, x) σ(t, y) 2 K x y 2 ja (6.1) µ(t, x) 2 + σ(t, x) 2 K(1 + x 2 ),
RAHOITUSTEORIA 49 missä x, y IR ja K > on jokin vakio. Ehto (6.9) on Lipschits- ehto tila-argumentille x ja ehto (6.1) on kasvuehto tila-argumentille. Voidaan todistaa seuraava lause: Lause 6.3. Olkoon W Brownin liike ja kertoimet µ, σ toteuttavat ehdot (6.9) ja (6.1). Tällöin yhtälöllä (6.8) on yksikäsitteinen ratkaisu X, jolla on ominaisuudet: X on jatkuva. X on IF W sopiva. X on rajoitettu avaruudessa IL 2 (IP): sup s T IEX 2 s <. Tämän jälkeen tiedetään, että S t = S e σwt 1 2 σ2 t+µt on stokastisen differentialiyhtälön ds t = S t (σdw t + µdt), alkuarvona S, yksikäsitteinen jatkuva ja IL 2 (IP)- rajoitettu ratkaisu. Jatkossa käytetään Iton kaavaa myös prosessin S. Voidaan osoittaa, että se on muotoa f(t, S t ) = f(, S ) + + f x (s, S s )σs s dw s f x (s, S s )µs s ds + f t (s, S s )ds + 1 2 f xx (s, S s )σ 2 S 2 s ds. 6.2. Esityslause. Olkoon W Brownin liike kentällä (Ω, IF, IP); nyt oletetaan vain, että IF W IF; Brownin liike on nyt prosessi, jolle W t W s Fs ja W t W s N(, t s). Jos H IF on jatkuva neliöintegroituva prosessi, niin tiedetään, että M t := H s dw s on neliöintegroituva (IP, IF)- martingaali. Merkintöjä: H 2 (IF) = {H : H IF ja IE H2 s ds < } ja M 2 (IF) on kaikkien neliöintegroituvien (IP, IF)- martingaalien joukko. Jos H H 2 (IF) ja W on (IP, IF)- Brownin liike, niin M t = H sdw s M 2 (IF). Olkoon kääntäen M (IP, IF)- martingaali. Olkoon M W niiden neliöintegroituvien (IP, IF)- martingaalien joukko, jotka voidaan esittää stokastisina integraaleina Brownin liikkeen suhteen. Voidaan osoittaa, että tällöin mielivaltaisella neliöintegroituvalla martingaalilla M on esitys M t = M + H M s dw s + L t, missä neliöinteroituva martingaali on ortogonaalinen avaruutta M W kohtaan; tämä perustuu siihen, että avaruus M W on suljettu normin M M := IEM 2 T suhteen. Esimerkki 6.3. Olkoon IF W Brownin liikkeen historia ja N Poissonin prosessi, joka on riippumaton Brownin liikkeestä. Olkoon IF = IF W,N historia, missä sisältää infomraation sekä Brownin liikken poluista että Poissonin prosessin poluista hetkeen t asti.
5 E. VALKEILA Tiedetään, että n t = N t t on martingaali oman historiansa IF N suhteen, ja koska N W, niin voidaan osoittaa, että n on martingaali myös historian IF suhteen. Koska prosessin n polut ovat epäjatkuvia, niin sillä ei voi olla integraaliesitystä Brownin liikkeen suhteen. Lause 6.4 (Ito-Clark esityslause). Olkoon W Brownin liike, IF = IF W ja olkoon X IL 2 (IF W T ). Tällöin on olemassa prosessi H X H 2 siten, että (6.11) X = IEX + H X s dw s. Ennen lauseen todistamista eräitä huomautuksia: mikäli X IL 1 (IP), niin esitys (6.11) on voimassa, mutta tällöin ei stokastinen integraali välttämättä enää ole martingaali. Esitettävä todistus on olemassaolotoditus. Malliavin laskennan avulla voidaan antaa sisällöllisempi tapa löytää prosessi H X 1. Todistus Tarkastellaan aluksi stokastista differentiaalityhtälöä dy t = σy t dw t ; tiedetään, että tällä yhtälöllä on ratkaisu Y T = e σw T 1 2 σ2t. Lisäksi havaitaan, että kaikilla < t < T on voimassa e σwt = e 1 2 σ2t + σ e 1 2 σ2 (u t)+σw u dw u. Koska W s+h W s, h on myös Brownin liike, niin saadaan, kun s < t T : e σ(wt Ws) = e 1 2 σ2 (t s) σ s e 1 2 σ2 (u t+s)+σw u dw u. Siis jokainen muuttuja Z = e σ(wt Ws) voidaan esittää stokastisena integraalina Z = IEZ + Hu Z dw u, missä prosessi H = välin [s, t] ulkopuolella. Nyt jos satunnaismuuttuja Z IL 2 (F T ) on muotoa n Z = exp{σ k (W tk W tk 1 )}, k=1 niin voidaan osoittaa, että myös tällaiselle muuttujalle Z on voimassa Z = IEZ + H Z s dw s jollain H Z. Yksityiskohtaiset perustelut jätetään harjoitustehtäväksi VI/6. Tästä seuraa puolestaan, että (kompleksiarvoisilla) muuttujilla n Z = exp{iσ k (W tk W tk 1 )}, k=1 on myös vastaava integraaliesitys. 1 Tommi Sottinen aloittaa luennot Malliavin laskennasta yliopistolla 29.1: http://www.math.helsinki.fi/ tsottine/teaching.html
RAHOITUSTEORIA 51 Osoitetaan seuraavaksi, että muuttujat Z ovat tiheässä kompleksiarvoisten satunnaismuutujien avaruudessa ĨL2 (IP). Olkoon IEỸ Z = kaikilla Ỹ ĨL 2 (IP). Lausekeet IEỸ Z määrittelevät merkkisen mitan µỹ (C) = IEỸ I{(W t 1 W t,..., W tn W tn 1 ) C)} karakteristisen funktion yksikäsitteisesti, joten koska karaktristinen funktio on identtisesti, niin IEỸ I C = kaikilla mitallisilla sylintereillä C. LAajentamalla mitta µỹ koko sigma-algebralle FT W saadaan, että IEỸ I A =, mistä seuraa helposti, että Ỹ =. Tästä seuraa, että kaikilla Z IL2 (FT W ) on integraaliesitys (6.11). Lause 6.5. Olkoon W Brownin liike ja M neliöintegroituva (IP, IF W ) martingaali. Tällöin M on jatkuva ja sillä on integraaliesitys Todistus Nyt M T IL 2 (F W T M t = M + H M s dw s. ), ja lauseen 6.4 nojalla on voimassa esitys M T = IEM T + H M s dw s; koska M on martingaali, niin IEM T = M ja stokastinen integraali on martingaali, joten M t = IE[M T F t ] = M + IE[ Hs M dw s F t ] = M + H M s dw s. Koska stokastiset integraalit ovat jatkuvia, niin martingaali M on myös jatkuva. Ensi viikolla Girsanovin lause ja Black & Scholes hinnoittelumallin käsittely. 19.-2.1. 24