Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
|
|
- Anne-Mari Elstelä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM1, Kesä /96
2 Esimerkki 16 Merkitään v 1 = (1, 2) ja v 2 = ( 3, 1). Onko jono ( v 1, v 2 ) vapaa vai sidottu? v 1 v 2 LM1, Kesä /96
3 Oletetaan, että c 1 v 1 + c 2 v 2 = 0 joillakin reaaliluvuilla c 1 ja c 2. Tällöin c 1 (1, 2) + c 2 ( 3, 1) = (0, 0) eli komponenteittain: { c1 3c 2 = 0 2c 1 c 2 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r Ainoa ratkaisu on c 1 = 0 ja c 2 = 0. Jono ( v 1, v 2 ) on vapaa. LM1, Kesä /96
4 Esimerkki 17 Merkitään v 1 = (1, 2), v 2 = ( 3, 1) ja v 3 = ( 1, 1). Onko jono ( v 1, v 2, v 3 ) vapaa vai sidottu? v 3 v 1 v 2 LM1, Kesä /96
5 Oletetaan, että c 1 v 1 + c 2 v 2 + c 3 v 3 = 0 joillakin c 1, c 2, c 3 R. Tällöin c 1 (1, 2) + c 2 ( 3, 1) + c 3 ( 1, 1) = (0, 0) eli komponenteittain: { c1 3c 2 c 3 = 0 2c 1 c 2 + c 3 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r / / /5 0 Voidaan valita esimerkiksi c 3 = 5, jolloin c 2 = 3 ja c 1 = 4. Näin 4 v 1 3 v v 3 = 0. Jono ( v 1, v 2, v 3 ) on sidottu. LM1, Kesä /96
6 5 v 3 4 v 1 3 v 2 4 v 1 3 v v 3 = 0 LM1, Kesä /96
7 Esimerkki 18 Merkitään w 1 = (2, 1) ja w 2 = ( 4, 2). Onko jono ( w 1, w 2 ) vapaa vai sidottu? w 1 w 2 Esimerkiksi 2 w 1 + w 2 = 0, joten jono ( w 1, w 2 ) on sidottu. LM1, Kesä /96
8 Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 3 Oletetaan, että v 1,..., v k R n, missä k 2 ja n {1, 2,...}. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v 1 = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM1, Kesä /96
9 Perustelun idea: (a) Tarkastellaan eri mahdollisuudet: Jos v 1 = 0, niin esim. 8 v 1 = 8 0 = 0. Siis jono ( v 1 ) on sidottu. Jos v 1 0, niin t v 1 = 0 t = 0. Siis jono ( v 1 ) on vapaa. Havaitaan, että jono ( v 1 ) on sidottu, jos ja vain jos v 1 = 0. (b) : Oletetaan, että jono ( v 1,..., v k ) on sidottu. Tällöin c 1 v c k v k = 0, missä ainakin yksi kertoimista c i 0. Oletetaan, että esim. c 2 0. Tällöin c 2 v 2 = c 1 v 1 c 3 v 3 c k v k ja v 2 = c 1 v 1 + c 3 v c k v k. c 2 c 2 c 2 Tässä jokainen c i /c 2 R, joten v 2 span( v 1, v 3,..., v k ). LM1, Kesä /96
10 : Oletetaan, että esimerkiksi v 3 span( v 1, v 2, v 4,..., v k ). Tällöin v 3 = a 1 v 1 + a 2 v 2 + a 4 v a k v k joillakin reaaliluvuilla a 1, a 2, a 4,..., a k. Siten 0 = a 1 v 1 + a 2 v 2 v 3 + a 4 v a k v k. Tässä ainakin vektorin v 3 kerroin 1 0, joten jono ( v 1,..., v k ) on sidottu. LM1, Kesä /96
11 Esimerkki 19 Merkitään v 1 = (1, 1, 0), v 2 = (1, 1, 0), v 3 = (0, 0, 2) ja v 4 = (3, 1, 0). Tällöin esimerkiksi 2 v 1 + v v 3 v 4 = 0, joten jono ( v 1, v 2, v 3, v 4 ) on sidottu. Lisäksi esimerkiksi v 2 = 2 v v 3 + v 4 mutta v 3 a v 1 + b v 2 + c v 4 kaikilla a, b, c R. LM1, Kesä /96
12 Jos virittäjäjono on vapaa, niin kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina: Lause 4 Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,...}. Jono ( v 1, v 2,..., v k ) on vapaa, jos ja vain jos jokainen aliavaruuden span( v 1, v 2,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1, v 2,..., v k lineaarikombinaationa. LM1, Kesä /96
13 Perustelu: : Oletetaan, että jono ( v 1, v 2,..., v k ) on vapaa. Oletetaan, että w span( v 1, v 2,..., v k ). Tämä tarkoittaa, että w voidaan kirjoittaa ainakin yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Oletetaan nyt, että w = a 1 v a k v k ja w = b 1 v b k v k joillakin a 1,..., a k, b 1,..., b k R. Tällöin a 1 v a k v k = b 1 v b k v k, joten a 1 v a k v k (b 1 v b k v k ) = 0 ja edelleen (a 1 b 1 ) v (a k b k ) v k = 0. Jono ( v 1,..., v k ) on oletuksen mukaan vapaa, joten viimeisestä yhtälöstä seuraa, että a 1 b 1 = 0, a 2 b 2 = 0,..., a k b k = 0. Siten a 1 = b 1,..., a k = b k. Näin ollen vektoria w ei voida kirjoittaa lineaarikombinaationa usealla eri tavalla. LM1, Kesä /96
14 : Oletetaan, että jokainen aliavaruuden span( v 1,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1,..., v k lineaarikombinaationa. Osoitetaan, että jono ( v 1,..., v k ) on vapaa. Sitä varten oletetaan, että luvut c 1,..., c k R ovat sellaisia, että c 1 v 1 + c 2 v c k v k = 0. Koska vektori 0 on aliavaruuden span( v 1,..., v k ) alkio, se voidaan kirjoittaa vektorien lineaarikombinaationa täsmälleen yhdellä tavalla. Tiedetään, että 0 v v v k = 0, joten täytyy päteä c 1 = 0, c 2 = 0,..., c k = 0. Siten jono ( v 1, v 2,..., v k ) on vapaa. LM1, Kesä /96
15 Kanta Oletetaan, että v 1,..., v j R n, missä n {1, 2,...}. Merkitään W = span( v 1,..., v j ); ts. W on vektoreiden v 1,..., v j virittämä aliavaruus. Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden W kanta, jos (a) W = span( w 1, w 2,..., w k ) (b) ( w 1, w 2,..., w k ) on vapaa. LM1, Kesä /96
16 Kanta Esimerkki 20 Merkitään ē 1 = (1, 0) ja ē 2 = (0, 1). Osoitetaan, että jono (ē 1, ē 2 ) on avaruuden R 2 kanta. ē 2 ē 1 Huom. Lukion merkinnöillä kysymyksessä on jono (ī, j). Vastaavasti voidaan osoittaa, että jono (ē 1,..., ē n ) on avaruuden R n kanta. Vektorin ē i komponentit ovat nollia lukuunottamatta i:nnettä komponenttia, joka on 1. LM1, Kesä /96
17 Esimerkin 20 ratkaisu Käytetään kannan määritelmää: (a) Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Havaitaan, että w = w 1 (1, 0) + w 2 (0, 1) = w 1 ī + w 2 j. Näin mikä tahansa avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. Siten span(ī, j) = R 2. (b) Oletetaan, että c 1 ī + c 2 j = 0 joillakin c 1, c 2 R. Tällöin c 1 (1, 0) + c 2 (0, 1) = (0, 0) eli (c 1, c 2 ) = (0, 0), mistä seuraa, että c 1 = 0 ja c 2 = 0. Siis jono (ī, j) on vapaa. LM1, Kesä /96
18 Lause 5 Kanta ja koordinaatit Jono ( w 1,..., w k ) on aliavaruuden W kanta, jos ja vain jos jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Lause 5 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( w 1,..., w k ) on aliavaruuden W kanta. Oletetaan, että ū W. Vektorin ū koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla ū = a 1 w a k w k. LM1, Kesä /96
19 Lauseen 5 perustelu: : Oletetaan, että jono ( w 1,..., w k ) on aliavaruuden W kanta. Tällöin kannan määritelmän nojalla W = span( w 1,..., w k ) ja jono ( w 1,..., w k ) on vapaa. Lauseesta 4 seuraa, että jokainen aliavaruuden W = span( w 1,..., w k ) vektori voidaan kirjoittaa tasan yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. : Oletetaan, että jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Tästä seuraa ensinnäkin, että W = span( w 1,..., w k ). Tämän jälkeen voidaan käyttää lausetta 4, jonka mukaan jono ( w 1,..., w k ) on tällöin vapaa. Näin kannan määritelmän molemmat ehdot täyttyvät. Siis ( w 1,..., w k ) on aliavaruuden W kanta. LM1, Kesä /96
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
Lisätiedot8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotMatemaattinen Analyysi, s2016, L2
Matemaattinen Analyysi, s2016, L2 riippumattomuus, 1 Esimerkkejä esimerkki Dieetti-välipala 1: Opiskelija Ken Obi on dieetillä. Lenkin jälkeen Ken pysähtyy välipalalle. Dieetin mukaan hänen pitäisi saada
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotEsimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68
Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8
LisätiedotMatriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 11. syyskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
LisätiedotMatemaattinen Analyysi, k2011, L2
Matemaattinen Analyysi, k2011, L2 Lineaarikombinaatio 1 Esimerkki 1 Olkoon yrityksen A osakkeen arvo 20eja yrityksen B osakkeen arvo 10e. Sijoittaja tarkastelee omaisuutensa rakennetta ryhmittelemällä
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on
LisätiedotTehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja
LisätiedotNumeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Lisätiedot5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotMatriisialgebra harjoitukset, syksy x 1 + x 2 = a 0
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:
LisätiedotAiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.
Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.
3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotRatkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
LisätiedotMatriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotRatkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
Lisätiedot