Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Koko: px
Aloita esitys sivulta:

Download "Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon"

Transkriptio

1 Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b]) D. Kun f : D R on integroituva pitkin polkuja [tj 1,t j ] kaikilla j = 1,..., k, niin funktion f polkuintegraali pitkin polkua on fds = fds + + fds. [t0,t 1 ] [tk 1,t k ] Huomautus Kun Määritelmässä funktio f on jatkuva, niin t1 tk fs = f((t)) (t) dt + + f((t)) (t) dt t 0 t k 1 = b a f((t)) (t) dt, missä Riemann-integraali lasketaan vastaavasti paloittain.

2 Esimerkki Olkoon kaikilla t [ 1, 1] ja olkoon (t) = ( t, t) f(x 1, x 2 ) = x 1 x 2 2 kaikilla x 1, x 2 R. Silloin ei ole C 1 -polku, mutta on paloittain C 1 -polku ja 0 fds = f( t, t) d( t, t) 1 dt dt + f( t, t) d( t, t) dt dt = = = t t 2 ( 1, 1) dt + 0/ 1 4 t / 1 4 t t t 2 (1, 1) dt

3 Lause Olkoon : [a, b] R m ja : [c, d] R m injektiivisiä paloitttain C 1 -polkuja, joiden kuvajoukoille pätee ([a, b]) = ([c, d]). Jos f : D R m R on sellainen jatkuva funktio, että ([a, b]) D, niin fds = fds Huomautus Vastaava tulos on näytetty aiemmin, kun f 1 ja sekä ovat sileitä (Määr. 3.2,4) ja injektiivisiä polkuja (eli ([a, b]) on yksinkertainen sileä kaari (Määr ) ). Yllä oleva tulos pätee löysemmillä oletuksilla. Korjataan Määritelmää seuraavalla tavalla, joka poistaa eräitä muuttujanvaihdossa esiintyviä ongelmia: Määritelmä Olkoon C R m käyrä ja olkoot : [a, b] R m ja : [c, d] R m käyrän C parametriesityksiä. Parametriesitykset j ovar ekvivalentteja, jos löytyy sellainen surjektio φ : [a, b] [c, d], että φ on C 1 -funktio, (t) = φ(t) kaikilla t [a, b] ja joko φ (t) > 0 kaikilla t [a, b] tai φ (t) < 0 kaikilla t [a, b].

4 Polkuintegraalit yhtyvät myös ekvivalenteille C 1 -poluille (joiden ei tarvitse olla injektiivisiä, Määr ). Tämä vahvistaa Lausetta 3.2.3, jossa vastaava tulos näytettiin funktiolle f 1. Huom! myös Lauseessa kuvauksen φ tulee olla C 1! Lause Olkoon C R m käyrä, jolla on ekvivelentit parametriesitykset : [a, b] C ja : [c, d] C. Jos f : D R m R on sellainen funktio, että C D, niin fds = fds Todistus. Olkoot ja lauseen oletusten mukaiset. Ekvivalenttisuuden määritelmän nojalla löytyy sellainen ja aidosti monotoninen surjektio φ : [a, b] [c, d], että = φ. Tehdään polkuintegraalissa fds = d c f( (t)) (t) dt muuttujanvaihto t = φ(s), jolloin saadaan φ 1 (d) fds = f( (φ(s))) (φ(s)) φ (s)ds, φ 1 (c) missä (i) φ > 0 (aidosti kasvava) tai (ii) φ < 0 (aidosti vähenevä). Käsitellään ensin tapaus (i): fds = φ 1 (d)=b φ 1 (c)=a f( φ(s)) (φ(s))φ (s) ds = φ = }{{} ( φ) fds.

5 Vastaavasti (ii) fds = φ 1 (d)=a φ 1 (c)=b f( φ(s)) (φ(s)) φ (s) ( 1) ds = }{{} φ (s) fds. Seuraava määritelmä laajentaa kaaren käsitteen joukoille, joiden parametriesitykset eivät ole sileitä. Määritelmä Olkoon C R m. Joukko C on yksinkertainen kaaari, jos löytyy sellainen jatkuva bijektio : [a, b] C, että on paloittain C 1 -polku. Kuvausta sanotaan kaaren C yksinkertaiseksi parametriesitykseksi. Määritelmä Olkoon C R m yksinkertainen kaari, jonka yksinkertainen parametriesitys on : [a, b] C. Funktion f (kaari-)integraali yli kaaren C on b fds = f((t)) (t) dt. (4.1.1) C a Kun f 1, integraalin (4.1.1) arvoa sanotaan kaaren C pituudeksi, jota merkitään l(c). Huomautus Lauseesta seuraa, että kaari-integraalin arvo ei riipu yksinkertaisen parametriesityksen valinnasta.

6 Esimerkki a) Olkoon C = {(x 1, x 2 ) R 2 : x 2 = x 1, x 1 [ 1, 1]}. Silloin C on yksinkertainen kaari, jonka yksinkertainen parametriesitys on (t) = (t, t ), kaikilla t [ 1, 1]. Funktion f(x 1, x 2 ) = x 2 1x 2 integraali yli kaaren C on 0 fds = t 2 t d(t, t ) 1 dt dt + t 2 t d(t, t ) dt dt = 1. 2 C 1 b) Olkoon C R 2 joukko, joka koostuu sellaisen origokeskisen neliön kolmesta sivusta, että neliön sivut, joiden pituus on 2, ovat koordinaattiakselien suuntaiset ja sivu, jolla x 2 = 1, ei sisälly joukkoon C. Laske funktion f(x 1, x 2 ) = x 1 + 3x 2 2 kaari-integraali yli kaaren C. Joukko C on yksinkertainen kaari, sillä (1, t 2), 1 t 3 (t) = (4 t, 1), 3 t 5 ( 1, 6 t), 5 t 7 on joukon C injektiivinen parametriesitys, joka on paloittain C 1 - polku. Tällöin fds = 1 + 3(t 2) 2 dt + 4 t + 3 dt (6 t) 2 dt C } 1 {{}} 3 {{}} 5 {{} =4 =6 0 =0

7 4.1.1 Vektorikentän polkuintegraali Määritelmä Olkoon f = (f 1,..., f m ) : D R m R m jatkuva vektorikenttä ja olkoon = ( 1,..., m ) : [a, b] R m sellainen (paloittain) C 1 -polku, että ([a, b]) D. Vektorikentän f (polku)integraali pitkin polkua on b b f d = f((t)) (t)dt = f 1 ((t)) 1(t) + + f m ((t)) m(t)dt Esimerkki Olkoon a a f(x 1, x 2 ) = 1 4 ( x 2, x 1 ) kaikilla x 1, x 2 R ja olkoon (t) = (t, t 2 ) kaikilla t [ 1, 1]. Silloin on C 1 -polku ja (t) = (1, 2t) t [ 1, 1]. Funktion f polkuintegraali pitkin polkua on 1 f d = f((t)) (t)dt = = = f(t, t 2 ) (1, 2t)dt 1 4 ( t2, t) (1, 2t)dt 1 t 2 + 2t 2 dt = 1 6.

8 Kuva 4.1: Vektorikentän f(x 1, x 2 ) = 1 4 ( x 2, x 1 ) arvot polulla (t) = (t, t 2 ).

9 Fysikaalinen tulkinta Luvun alussa todettiin, että reaaliarvoisen funktion polkuintegraali on funktion kuvaajan ja polun väliin jäävän alueen pinta-ala. Mikä on vektorikentän polkuintegraalin tulkinta? Fysiikassa vektorikentän f polkuintegraali pitkin polkua kuvaa voimakentän f tekemää työtä, kun voimakentässä f oleva hiukkanen siirtyy pisteestä (a) pisteeseen (b) pitkin polkua. Kuva 4.2: Vakiokentän f = (0, c) työtä tekevä komponentti riippuu hiukkasen liikkeen suunnasta. Kuvassa hiukkanen liikkuu matkan l pitkin eri suoria. Tapaus (a): kenttä ei tee työtä, Tapaus (c) Kentän tekemä työ on lc. Tapaus (b) kentän tekemä työ on l c cos(θ).

10 Esimerkiksi kun hiukkanen liikkuu vakiovoimakentässä f yksikkövektorin u suuntaan matkan l, niin vektorikentän tekemä työ on W = missä θ on vektorien f ja u välinen kulma eli }{{} l f cos(θ) }{{} matka työtä tekevä komponentti cos(θ) = f u f u. Tarkastellaan tapausta, jossa f ei ole vakiokenttä ja hiukkanen liikkuu pitkin polkua. Käytetään välin [a, b] jakoa P = {a = t 0 < < t k = b}. Väliarvolauseen (Lemma 3.4.1) nojalla löytyy sellainen piste p j [ j 1, t j ], että (t j ) (t j 1 ) = (p j )(t j t j 1 ). Arvioidaan hiukkasen rataa paloittain lineaarisella polulla kaikilla t [t j 1, t j ], missä j = 1,..., k. (t) (p j )(t t j ) + (t j 1 )

11 Hetkellä p j [t j 1, t j ] hiukkanen on pisteessä (p j ), jolloin siihen vaikuttaa voima f((p j )). Kun väli [t j 1, t j ] on hyvin lyhyt, niin voima f((t)) f((p j )) kaikilla t [t j 1, t j ]. Kun hiukkanen kulkee lineaarisesti pisteestä (t j 1 ) pisteeseen (t j ), sen kulkema matka on tj t j 1 (p j ) dt = (p j ) (t j t j 1 ). Vakiokentän f((p j )) tekemä työ, kun hiukkanen siirtyy pisteestä (t j 1 ) pisteeseen (t j ) lineeaarisesti, on W j = (p j ) (t j t j 1 ) f((p j )) cos(θ j ) missä cos(θ j ) = f((p j)) (p j ) f((p j )) (p j ) Kentän f tekemää kokonaistyötä voidaan approksimoida Riemannin summalla k W f((p j )) cos(θ j ) (p j ) (t j t j 1 ) (4.1.2) = j=1 k f((p j )) (p j )(t j t j 1 ). j=1 (4.1.2)

12 Vektorikentän polkuintegraalin ominaisuuksia Lause Olkoon f, g : D R m R m kaksi jatkuvaa funktiota ja olkoon : [a, b] R m sellainen (paloittain) C 1 -polku, että ([a, b]) D. Silloin (f + g) d = f d + g d ja cf d = c f d jokaisella c R. Todistus. Seuraa Riemannin integraalin vastaavista ominaisuuksista.

13 Lause Olkoon f : D R m R m jatkuva. Olkoon : [a, b] R m ja : [c, d] R m kaksi sellaista C 1 -polkua, että ([a, b]) D ja löytyy sellainen C 1 -funktio φ : [a, b] [c, d], että = φ. Silloin 1. Jos φ(a) = c ja φ(b) = d, niin f d = f d. 2. Jos φ(a) = d ja φ(b) = c, niin f d = f d. Todistus. Tarkastellaan kohta (1): Olkoon = φ. Tällöin b b F d = f((t)) (t)dt = f( φ) (φ(t))φ (t)dt. Muutujanvaihdolla s = φ(t) saadaan F d = Kohdan (2) todistus etenee vastaavasti. a d c a f( (s)) (s)ds.

14 Vektorikentän kaari-integraali Aiemmin nähtiin, että kaaren sileys ei ole välttämätöntä hyvin määritellylle integraalille. Tässä luvussa rajoitutaan kuitenkin esityksen yksinkertaistamiseksi sileisiin yksinkertaisiin kaariin. Palautetaan aluksi mieleen, että yksinkertaisen sileän kaaren kaikki sileät parametriesitykset ovat yksinkertaisia ja ekvivalentteja keskenään (Lause 3.2.4, jonka todistuksessa on helppo nähdä että differentioituva φ on myös C 1 -funktio). Määritelmä Olkoon C R m yksinkertainen sileä kaari ja olkoon C 1 -polut : [a, b] R m ja : [c, d] R m kaaren C sileitä parametriesityksiä. Parametriesitykset ja ovat aidosti ekvivalentteja, jos sellaisella C 1 -surjektiolla φ : [a, b] [c, d], että = φ pätee φ > 0. Esimerkki Olkoon Silloin parametriesitykset ja C = {(x 1, x 2 ) R 2 : x 2 = x 1, x 1 [0, 1]}. (t) = (t, t), t [0.1] (t) = (1 2t, 1 2t), t [0, 1/2] ovat ekvivalentteja mutta eivät aidosti ekvivalentteja, sillä φ(t) = 1 t 2 kuvaa välin [0, 1] välille [0, 1/2] ja (t) = (φ(t))., mutta φ (t) = 1/2 kaikilla t [0, 1].

15 Aidon ekvivalenttisuuden tutkimiseen on helpompikin tapa kuin funktion φ konstruointi: Lemma Olkoon C R m yksinkertainen sileä kaari ja olkoon C 1 -polut : [a, b] R m ja : [c, d] R m kaaren C sileitä parametriesityksiä. Parametriesitykset ja ovat aidosti ekvivalentteja, jos (a) = (c) (eli polkujen alkupisteet yhtyvät). Todistus. Yksinkertaisen sileän kaaren sileät parametriesitykset ovat ekvivalentteja (Lause 3.2.4), jolloin sellainen C 1 -bijektio φ : [a, b] [c, d], että = φ, on olemassa. Jos φ > 0, niin φ(a) = c, jolloin (a) = (c). Jos φ < 0, niin φ(a) = d, jolloin (a) = (d). Lause Olkoon f : D R m R jatkuva ja C R m sileä yksinkertainen kaari. Jos kaaren C sileät parametriesitykset : [a, b] R m ja : [c, d] R m ovat aidosti ekvivalentteja, niin f d = f d. Todistus. Väite seuraa lauseesta Huomautus Lauseen nojalla kaaren parametriesityksen polkuintegraalin merkki vaihtuu erilaisilla poluilla. Tämän perusteella on luonnollista jakaa kaaren parametriesitykset kahteen luokkaan.

16 Määritelmä Olkoon C yksinkertainen sileä kaari ja : [a, b] C sen sileä (yksinkertainen) parametriesitys. Yksinkertainen kaari C on suunnistettu päätepisteestä (a) päätepisteeseen (b), jos sen sileiksi parametriesityksiksi sallitaan vain sellaisia polkuja, joiden alkupiste on (a) ja loppupiste on (b). Suunnistettua kaarta merkintään C +. Lisäksi merkitään C sellaista suunnistettua kaarta, joka on suunnistettu päätepisteestä (b) päätepisteeseen (a) ja sanotaan, että C on suunnistettu vastakkaiseen suuntaan kuin C +. Huomautus Yksinkertaisella sileällä kaarella on ainoastaan kaksi suunnistusta. Määritelmä Olkoon C + R m suunnistettu sileä yksinkertainen kaari ja f : D R m R m sellainen jatkuva funktio, että C D. Funktion f (kaari-)integraali yli suunnistetun kaaren C + on b f ds = f((t)) (t)dt, C + a missä on suunnistetun kaaren C + jokin sileä parametriesitys.

17 Esimerkki Olkoon f(x 1, x 2 ) = (x 1 x 2, x 1 ) kaikilla x 1, x 2 R ja C = {(x 1, x 2 ) R 2 : x 2 = x 2 1, x 1 [ 1, 0]} Tällöin (t) = (t, t 2 ), t [ 1, 0] on käyrän C injektiivinen parametriesitys ja (t) = (1, 2t) 0. Täten C on sileä yksinkertainen kaari. Suunnistetaan kaari C pisteestä ( 1) = ( 1, 1) pisteesen (0) = (0, 0) ja merkitään suunnistettua kaarta C +. Kaari-integraali 0 0 fds = f(t, t 2 ) (1, 2t)dt = (t 3, t) (1, 2t)dt = 11 C Kuva 4.3: Yksinkertainen suunnistettu kaari C + (punainen käyrä). Kaaren C suunnistus merkitty nuolella.

18 Vektorifunktion kaari-integraalilla ja skalaarifunktion kaari-integraalilla on seuraava yhteys: Lause Olkoon C + R m yksinkertainen sileä suunnistettu kaari. Olkoon f : D R m R m sellainen jatkuva vektorikenttä, että C D. Silloin 1 f ds = f C + C 1ds (4.1.3) aina, kun on kaaren C + jokin sileä (yksinkertainen) parametriesitys. Todistus. Määritelmän mukaan sileä parametriesitys : [a, b] C toteuttaa ehdon (t) 0 kaikilla t [a, b]. Lisäksi Lauseen nojalla on injektiivinen, joten sen käänteiskuvaus 1 : C [a, b] on myös jatkuva. Erityisesti 1 : C R m on hyvin määritelty jatkuva kuvaus. Täten yhtälön (4.1.3) oikea puoli on jatkuvan reaalifunktion kaari-integraali. Jatkuvan funktion kaari-integraalin arvo on sama injektiivisille parametriesityksille (Lause 4.1.3). Täten kaari-integraali voidaan laskea käyttäen esimerkiksi sileää parametriesitystä, jolloin suoraan nähdään että C f 1 1ds = eli yhtälö (4.1.3) pätee. b a f((t)) 1 ((t) 1 ((t) (t) dt = b a f((t)) (t)dt

19 Määritelmä Yhtälössä (4.1.3) esiintyvää vektoria τ x := (t) (t), missä (t) = x eli t = 1 (x),nimitetään suunnistetun kaaren C + yksikkötangenttivektoriksi pisteessä x C. Esimerkki Suunistetun kaaren C +, missä C = ([0, 2π]) ja (t) = (t sin(t), t cos(t)) kaikilla t [0, 2π], yksikkötangenttivektori pisteessä x, kun x = (t 0 ), t 0 [0, 2π], on τ x = (sin(t 0 ) + t 0 cos(t 0 ), cos(t 0 ) t 0 sin(t 0 )) (sin(t0 ) + t 0 cos(t 0 )) 2 + (cos(t 0 ) t 0 sin(t 0 )) 2.

20 Kuva 4.4: Vasemmalla yksinkertaisen sileän suunnistetun kaaren C + yksikkötangenttivektoreita käyrän pisteisiin piirrettynä. Oikealla yksinkertaisen sileän suunnistetun kaaren C yksikkötangenttivektoreita käyrän pisteisiin piirrettynä.

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1]. Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2 LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Tasokäyrän kaarevuus LUKU 1

Tasokäyrän kaarevuus LUKU 1 LUKU Tasokäyrän kaarevuus.. Käyrät Määritelmä.. Polku (eli parametrisoitu käyrä) on jatkuva kuvaus α: I R n, missä I R on väli. Polku α = (α,..., α n ) on (jatkuvasti) derivoituva, jos jokainen α j, j

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

4.3 Moniulotteinen Riemannin integraali

4.3 Moniulotteinen Riemannin integraali 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,

Lisätiedot

1 Supremum ja infimum

1 Supremum ja infimum Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,

Lisätiedot

Käyrän kaarevuus ja kierevyys

Käyrän kaarevuus ja kierevyys Käyrän kaarevuus ja kierevyys LuK-tutkielma Recardt Jua Opiskelijanumero 2435589 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2017 Sisältö 1 Jodanto 2 2 Esitietoja 3 2.1 Derivointi polulla.........................

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi

Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi . Pinnoista.. Pinnan määritelmästä. Monisteen [] määritelmän 4.. mukainen pinta S on sama olio, jollaista abstraktimmassa differentiaaligeometriassa kutsutaan avaruuden R n alimonistoksi (tarkemmin upotetuksi

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Viivaintegraali ja Greenin lause

Viivaintegraali ja Greenin lause TAMPEREEN YLIOPISTO Pro gradu -tutkielma Markus Vaajala Viivaintegraali ja Greenin lause Informaatiotieteiden yksikkö Matematiikka Tammikuu 213 Tampereen yliopisto Informaatiotieteiden yksikkö Vaajala,

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Vastaa kaikkiin kysymyksiin (kokeessa ei saa käyttää laskinta)

Vastaa kaikkiin kysymyksiin (kokeessa ei saa käyttää laskinta) Helsingin yliopisto, Matematiikan ja tilastotieteen osasto Vektorianalyysi II (MAT22, syksy 28 Kurssitentti, Ma 7228 (RATKAISUEHDOTUKSET Tentaattori: Ville Tengvall (villetengvall@helsinkifi Vastaa kaikkiin

Lisätiedot

Differentiaalimuodot

Differentiaalimuodot LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä

Lisätiedot

Fr ( ) Fxyz (,, ), täytyy integroida:

Fr ( ) Fxyz (,, ), täytyy integroida: 15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

= ( F dx F dy F dz).

= ( F dx F dy F dz). 17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Motivaatio Tässä tutustutaan

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 / M-A3x ifferentiaali- ja integraalilaskenta 3, IV/217 ifferentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 / 2. 24.3. Harjoitustehtäviä 1 6 lasketaan alkuviikon harjoituksessa. Harjoituksessa laskematta

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

Pinnan tangenttivektorit

Pinnan tangenttivektorit LUKU 5 Pinnan tangenttivektorit Tästä lähtien oletetaan, että annetut polut, pinnat, funktiot ja vektorikentät ovat C. Vastaavasti, konstruoiduista poluista, pinnoista, funktioista ja vektorikentistä pitää

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

Pistetulo eli skalaaritulo

Pistetulo eli skalaaritulo Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

LUKU 6. Weingartenin kuvaus

LUKU 6. Weingartenin kuvaus LUKU 6 Weingartenin kuvaus 6.1. Vektorikentän derivaatta Seuraavassa määritellään pinnalla määritellyn reaaliarvoisen funktion ja vektorikentän derivaatta. Nämä tulevat olemaan hyvinmääriteltyjä, kunhan

Lisätiedot

edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.

edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti. 1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2014 Luennoitsija: Jukka Maalampi Luennot: 53-55, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 16 ja 17 eli 14 274 Harjoitusassistentti: Ville Kotimäki Laskuharjoitukset:

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot