Martingaalit ja informaatioprosessit
|
|
- Hannu Lehtilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu satunnaisprosessi on martingaali. Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 4A1 Markov-ketjut ja martingaalit. Keksi tai googlaa esimerkki satunnaisprosessista (M 0, M 1,... ), joka (ks. luentomoniste, luku 6.5) Ratkaisu. Muistetaan, että Markov-ketju on muistiton satunnaisprosessi ajassa kun taas martingaali saa olla muistillinen, mutta paras arvaus tulevaisuudesta on nykytila. Näiden kuvailujen perusteella seuraavat arvaukset ovat luonnollisia tarkistetaan niiden oikeellisuus lopuksi. (a) on Markov-ketju ja martingaali, Ratkaisu. Symmetrinen satunnaiskävely Z:lla (b) on Markov-ketju mutta ei martingaali, Ratkaisu. Epäsymmetrinen satunnaiskävely Z:lla. (c) on martingaali mutta ei Markov-ketju, Ratkaisu. Asetetaan M t = X 2 t t, missä X t on symmetrinen satunnaiskävely. (d) ei ole martingaali eikä Markov-ketju. Ratkaisu. Nostetaan kortteja pakasta palauttamatta niitä siihen. Olkoon M t nyt t:nnen kortin arvo. Ratkaisu. Tarkastetaan, että yllä keksityt ketjut täyttävät halutut ominaisuudet. a) Symmetrinen satunnaiskävely on selvästi Markov-ketju. Tarkistetaan, että jono M t on martingaali itsensä suhteen. Muistetaan, että prosessi M on martingaali satunnaisjonon X suhteen E M t < t M t σ(x 0,..., X t ) E{M t+1 X 0,..., X t } = M t. Symmetrinen satunnaiskävely määritellään M t+1 = M t + (2B t+1 1), jossa B t+1 Ber(1/2) on riippumaton prosessin historiasta. Osoitetaan, että M on martingaali askeleiden B suhteen. Ensimmäinen martingaaliominaisuus pätee 1 / 8
2 tässä, koska M t t aina. Toinen on selvä. Kolmas voidaan todistaa käyttämällä ehdollisen odotusarvon ominaisuuksia Leskelä 2015, Lause 6.3 saadaan E{M t+1 B 0,..., B t } = E{M t + (2B t+1 1) B 0,..., B t } (lineaarisuus) = E{M t B 0,..., B t } + E{(2B t+1 1) B 0,..., B t } (tunnetun arvon ulosveto) = M t + E{(2B t+1 1) B 0,..., B t } (r-ttoman informaation poisto) = M t + E{(2B t+1 1)} = M t. Edellä todistettiin martingaaliominaisuus jonon B suhteen. Muistetaan kuitekin Leskelä 2015, Lause 6.9, että tästä seuraa, että M on martingaali itsensä suhteen. b) Epäsymmetrinen satunnaiskävely tiedetään Markov-ketjuksi. Se ei ole matringaali, koska kolmas martingaaliominaisuus ei päde. Todistetaan tämä samanlaisella laskulla kuin edellä. Ensin, M t+1 = M t + (2B t+1 1), jossa B t+1 Ber(p), p 1/2 on riippumaton prosessin historiasta. Identtisellä laskulla saadaan =... E{M t+1 B 0,..., B t } = M t + E{(2B t+1 1)} = M t + 2p 1 M t. Tarkemmin sanottuna havaitaan, että prosessi on ylimartingaali, kun p < 1/2 (eli satunnaiskävely ajautuu alaspäin) ja alimartingaali, kun p > 1/2 (SK ajautuu ylöspäin). c) Tämä ketju ei ole Markov-ketju: on helppo osoittaa, että M voi saada saman arvon m kahdella eri ajan hetkellä siten, että mahdolliset siirtymät arvosta m ovat eri. Esimerkiksi jos X 2 = 0, niin M 2 = 2, ja X 3 = ±1, jolloin myös M 3 = 2, eli ajan hetkellä 2 prosessin M ainoa siirtymä 2:sta on 2:een. Mutta kun X 3 = ±1 ja M 3 = 2, niin X 4 = ±2 tai 0, ja M 4 = 0 tai 4. Näin ollen ajan hetkellä 3 saatiin eri siirtymät prosessille M tilasta 2. Todistetaan seuraavaksi että M on martingaali. Ensimmäinen martingaaliominai- 2 / 8
3 suus seuraa, koska X t < t. Toinen on selvä. Kolmas: E{M t+1 B 0,..., B t } = E{X 2 t+1 (t + 1) B 0,..., B t } sij. X t+1 = X t + (2B t+1 1) = E{X t + (2B t+1 1) 2 (t + 1) B 0,..., B t } (lineaarisuus) = E{X 2 t + 2X t (2B t+1 1) + (2B t+1 1) 2 B 0,..., B t } (t + 1) (lin. & tunnetun arvon ulosveto) = X 2 t + 2X t E{(2B t+1 1) B 0,..., B t } +E{(2B t+1 1) 2 B 0,..., B t } (t + 1) (r-ttoman informaation poisto) = X 2 t + 2X t E{(2B t+1 1)} + E{(2B t+1 1) 2 } (t + 1) = X 2 t t 1 = X 2 t t = M t. d) Ei Markov: jos viimeisin kortti oli kolmonen, tn nostaa seuraavaksi kakkonen riippuu aiempien kakkosten määrästä. Ei martingaali: jos ensimmäinen nostettu kortti ykkönen, seuraavan kortin odotusarvo tälle ehdollistettuna yli yksi. 4A2 Ennustusmartingaali. Olkoon U reaaliakselin yksikkövälillä 0, 1 tasajakautunut satunnaisluku ja määritellään X t = 2t U 2 t, t = 0, 1, 2,..., missä u tarkoittaa luvun u alaspäin pyöristämistä lähimpään kokonaislukuun. Olkoon M t = E U X0,..., X t satunnaisluvun U ennustusmartingaali informaatioprosessin (X 0, X 1,... ) suhteen (ks. luentomoniste, esimerkki 6.8). (a) Piirrä funktion u 2t u kuvaaja ja perustele sen jälkeen, miksi X 2 t s σ(x t ) kaikilla s t. Ratkaisu. Fuktio u 2t u arvioi lukua u alaspäin murtolukuun hilalla Z/2 t, 2 t ts. kertoo mihin hilan Z/2 t puoliavoimeen soluun j/2 t, (j + 1)/2 t ) luku u kuuluu antamalla solun vasemman laidan j/2 t. Kuvaajia on piirretty pienille t:n arvoille kuvassa 1. X s σ(x t ) kaikilla s t, koska hila Z/2 s sisältyy hilaan Z/2 t, joten hilan Z/2 t solusta voidaan päätellä hilan Z/2 t solu. (b) Perustele, miksi E U X 0,..., X t = E U X t kaikilla t 0. Ratkaisu. Koska X s koodaavat eri hilojen soluja, joihin U kuuluu, voidaan ehto X 0 = x 0,..., X t = x t kirjoittaa ekvivalentisti U S 0,..., U S t, jossa S s ovat hilojen soluja. Koska solut ovat sisäkkäisiä, on nyt tämä ehto edelleen ekvivalentti ehdolle U S t. (c) Kirjoita eksplisiittinen lauseke M t :lle satunnaisvektorin (X 0,..., X t ) funktiona. 3 / 8
4 y y y y MS-C2111 Stokastiset prosessit 1 t = 0 1 t = y=u y = b 2 0 u c / y=u y = b 2 1 u c / u u 1 t = 2 1 t = y=u y = b 2 2 u c / y=u y = b 2 3 u c / u u Kuva 1: Funktion u 2t u 2 t kuvaajia pienille t. 4 / 8
5 Ratkaisu. Havaitaan, että X t = x t U x t, x t + 2 t ), Joten M t = E U X0,..., X t (kohta b) = E U X t (perustelu yllä) = E U U Xt, X t + 2 t ) = X t + 2 t 1. Viimeinen askel seuraa siitä, että tapahtumalle U X t, X t + 2 t ) ehdollistettuna U on tasajakautunut välillä X t, X t + 2 t ). Lisäys. Nimensä mukaisesti ehdollisen odotusarvon avulla määritelty ennustusmartingaali on aina martingaali Leskelä 2015, Esimerkki 6.8. Osoita suoraan ylläolevan perusteella, että tämän tehtävän M t on matringaali. (d) Suppeneeko jono (M t ) t Z+, kun t? Jos suppenee, niin mihin ja millä todennäköisyydellä? Ratkaisu. Jono M t suppenee aina U:hun. Tämä johtuu siitä, että t t M t U 2 0. Jonon M t raja-arvo on siis aina olemassa ja on tasajakautunut satunnaismuuttuja. (Vertaa Leskelä 2015, Lause 2.13.) 5 / 8
6 Kotitehtävät 4A3 Keskitetty satunnaiskulku. Satunnaisjono (S 0, S 1,... ) määritellään rekursiivisesti kaavalla S 0 = x 0 ja S t = S t 1 + X t, t 1, missä x 0 R ja X 1, X 2,... ovat riippumattomia ja samoin jakautuneita odotusarvonaan m. (a) Todista, että keskitetty satunnaiskulku S t = S t mt on informaatiojonon (x 0, X 1, X 2,... ) suhteen martingaali riippumatta m:n arvosta. Ratkaisu. Tarkistetaan martingaalien ominaisuudet, Ensimmäinen seuraa, koska E S t < t S t σ(x 0,..., X t ) E{ S t+1 X 0,..., X t } = S t. S t = x 0 + S t x 0 + t X i mt i=1 t X i + m t i=1 E S t x 0 + m t + t E X i i=1 = x 0 + t( m + E X 1 ), ja E X 1 <, koska X 1 :llä on olemassa odotusarvo m. Toinen ominaisuus määräytyy suoraan kaavasta S t = x 0 + t X i mt. i=1 Kolmanteen tarvitaan pieni lasku, johon käytetään jälleen ehdollisen odotusarvon perusominaisuuksia Leskelä 2015, Lause 6.3: E{ S t+1 X 0,..., X t } = E{ S t + X t+1 m X 0,..., X t } (tunnettu ulos) = S t + E{X t+1 m X 0,..., X t } (r-ton ehto pois) = S t + E{X t+1 m} = S t. (b) Onko ( S t ) martingaali itsensä suhteen? 6 / 8
7 Ratkaisu. On. Tämä on sanottu suoraan luentomonisteen lauseessa Leskelä 2015, Lause 6.9. Vaihtoehtoisesti voidaan tarkistaa taas martingaalien ominaisuudet, E S t < t S t σ( S 0,..., S t ) E{ S t+1 S 0,..., S t } = S t. Ensimmäinen pätee suoraan edellisen kohdan laskulla. Toinen on triviaali. Kolmas saadaan edellisen kohdan laskulla, kun huomataan, että X t+1 on riippumaton keskitetym kävelyn polusta S 0,..., S t : E{ S t+1 S 0,..., S t } = E{ S t + X t+1 m S 0,..., S t } (tunnettu ulos) = S t + E{X t+1 m S 0,..., S t } (r-ton ehto pois) = S t + E{X t+1 m} = S t. 4A4 Huijareiden kasino. Kasinon kolikonheittopelissä on kahdenlaisia kolikoita: 90% pöydistä käyttää tavallista (kruunan tn on 1/2) ja loput painotettua (kruunan tn on 1/4) kolikkoa. Mallinnetaan satunnaisesti valitun pelipöydän yksittäisen pelin tuottoa satunnaisluvulla { +1, jos U W, X = 2 1 {U W } 1 = 1, muuten, missä U ja W ovat riippumattomia, P W = 1/2 = 0.90 = 1 P W = 1/4, ja U noudattaa välin (0, 1) tasajakaumaa. (a) Laske pelin odotettu tuotto E X ulkopuolisen havainnoijan näkökulmasta. Ratkaisu. E X (harhattomuus) = E W EU X W = 0.9E U X W = 1/ EU X W = 1/4 = 0.9 P(U 1/2) P(U > 1/2) P(U 1/4) P(U > 1/4) = ( 1/2) = (b) Kirjoita satunnaisluvun E X W lauseke W :n funktiona. 7 / 8
8 Ratkaisu. E X W = E 2 1 {U W } 1 W = P U (U W ) P U (U > W ) 1, W < 0 = 2W 1, 0 W 1 1, W > 1 Toinen askel käytti U:n ja W :n riippumattomuutta ja kolmas U:n tasajakaumaa. W :n jakaumaa ei itse asiassa tarvittu! Annetulla W :n jakaumalla kiinnostavat arvot ovat siis E X { 1/2, W = 1/4 W = 0, W = 1/2. (c) Kirjoita satunnaisluvun E X U, W lauseke W :n ja U:n funktiona. Ratkaisu. U ja W määräävät X:n, joten kysymys on kompa: { +1, jos U W, X = 2 1 {U W } 1 = 1, muuten. 8 / 8
Martingaalit ja informaatioprosessit
6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
LisätiedotMarkov-ketjut pitkällä aikavälillä
2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin
LisätiedotErilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotV ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
LisätiedotMarkov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on
LisätiedotGeneroivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotSatunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
LisätiedotSatunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
LisätiedotDerivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Lisätiedot(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Lisätiedot4. Martingaalit ja lokaalit martingaalit
STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
LisätiedotX k+1 X k X k+1 X k 1 1
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 4 1. Oletetaan, että X n toteuttaa toisen kertaluvun differenssiyhtälön X k+2 2X k+1 + 2X k = ξ k,
LisätiedotJatkuva-aikaisten Markov-prosessien aikakehitys
5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.
LisätiedotSallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Lisätiedot6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
LisätiedotStokastiikan perusteet
Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
LisätiedotTodennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Lisätiedot= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja
44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan
LisätiedotDiskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Lisätiedotk S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotDiskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotTodennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
LisätiedotMarkov-ketjuja suurilla tila-avaruuksilla
3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa
Lisätiedot(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
LisätiedotJatkuva-aikaisia Markov-prosesseja
5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa
Lisätiedot8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotJohdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Lisätiedot3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Lisätiedot3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
LisätiedotEpäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
LisätiedotJOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotMatematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
Lisätiedot3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
LisätiedotBayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
LisätiedotJatkuvan aikavälin stokastisia prosesseja
6A Jatkuvan aikavälin stokastisia prosesse Tämän harjoituksen tavoitteena on tutustua uusiutumisprosesseihin tkuva-aikaisiin Markovprosesseihin harjoitella laskemaan niihin liittyviä hetkittäisiä kaumia
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
LisätiedotThe Metropolis-Hastings Algorithm
The Metropolis-Hastings Algorithm Chapters 6.1 6.3 from Monte Carlo Statistical Methods by Christian P. Robert and George Casella 08.03.2004 Harri Lähdesmäki The Metropolis-Hastings Algorithm p. 1/21 Taustaa
LisätiedotNollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
LisätiedotKuinka määritellään 2 3?
Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin
LisätiedotJohdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.
LisätiedotDiskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Lisätiedot5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:
5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..
LisätiedotTässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotH0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta
22.1.2019/1 MTTTA1 Tilastomenetelmien perusteet Luento 22.1.2019 Luku 3 2 -yhteensopivuus- ja riippumattomuustestit 3.1 2 -yhteensopivuustesti H0: otos peräisin tietystä jakaumasta H1: otos ei peräisin
LisätiedotSatunnaismuuttujan odotusarvo ja laskusäännöt
Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotMatematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
Lisätiedot(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotTodennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
LisätiedotIlkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotTutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Lisätiedot3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
LisätiedotYleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on ma 18.12. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 10.1.2018 klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika
LisätiedotOtosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
LisätiedotHarjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)
Lisätiedot1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
Lisätiedot