) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 )
|
|
- Päivi Härkönen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 2 E. VALKEILA 1. Johdanto 1.1. Käytännöt. Kurssin kotisivu löytyy osoitteesta Kurssi suoritetaan kahdella välikokeella; luennot ja seuraavan viikon harjoitustehtävät ovat kurssin kotisivulla yleensä torstaisin. Välikokeisiin ilmoittaudutaan topin avulla. Kurssiin liittyvää tiedotusta varten perustetaan sähköpostilista. Kurssin loputtua pyritään järjestämään ekskursio Rahoitusteorian synty. Rahoitusteorian tavoitteena on selvittää, kuinka rahoitusmarkkinat toimivat, kuinka ne saadaan tehokkaammiksi ja kuinka niitä pitää valvoa. Kansainväliset rahoitusmarkkinat vaikuttavat jokaisen ihmisen elämään: lainoista maksettavan koron suuruus määrätään markkinoilla, valuuttakurssit määräytyvät markkinoilla... Selvää on, että markkinataloutta myös kritisoidaan 1. Nykyään rahoitusteoria on hyvin pitkälle matematisoitunut teoria ja keskeiset matemaattiset menetelmät perustuvat stokastiikkaan: todennäköisyysteroiaan, stokastisiin prosesseihin ja tilastotieteeseen. Rahoitusteorian katsotaan alkaneen Markowitzin vuonna 1952 ilmestyneestä väitöskirjasta Portfolio Selection; hän analysoi sijoitussalkkua laskemalla sen keskimääräisen tuoton ja varianssin. Keskeisiä tuloksia oli se, että salkuista, joiden keskimääräinen tuotto on vakio tulisi valita se salkku, millä on pienin varianssi. Vuonna 1969 Merton ryhtyi soveltamaan stokastista analyysiä rahoitusteoriassa. Mertonin tavoitteena oli ymmärtää sitä, kuinka hinnat määräytyvät rahoitusmarkkinoilla. Samaan aikaan Black ja Scholes kehittivät, osittain Mertonin avustuksella, tunnetun hinnoittelukaavan optioille. Kun tähän asti oli päästy, havaittiin, että jo Bachelier käytti Brownin liikettä mallintaessaan Pariisin pörssin osakkeiden hintoja vuona 1900 ilmestyneessä väitöskirjassaan. Vuosina Harrison, Kreps ja Pliska käyttivät stokastisen prosessien yleistä teoriaa ja perustelivat Black&Scholes- hinnoittelukaavan täsmällisesti. Samalla he kehittivät menetelmiä, joiden avulla voidaan, ainakin periaatteessa, hinnoitella mutkikkaitakin optiosopimuksia. Eurooppalaisen option hinnoittelukaava. Oletetaan, että optiosopimuksen eräpäivään on aikaa T päivää, option toimitushinta on K, option hinta tällä hetkellä on s. Option tuotto eräpäivänä on S T K, jos osakkeen arvo S T eräpäivänä on suurempi kuin option tomitushinta K, muutoin option on arvoton. Talletuskorko on r; tällöin siis yhden euron talletuksen arvo eräpäivänä on e rt. Osakkeen volatiliteetti on σ; tämä tarkoittaa sitä, että osakkeen arvon logaritmin varianssi Var(log S T ) = σ 2 T. Black & Scholes hinnoittelukaavaa laskettaessa oletetaan vielä, että satunnaismuuttuja log(s T ) on normaalisti jakautunut odotusarvona µ ja varianssina σ 2. Option hinta lasketaan kaavalla (1.1) sφ( log( s σ2 K ) + T (r + σ T 2 ) ) Ke rt Φ( log( s σ2 K ) + T (r σ T 1 D. Henwood Wall st,verso 1997 on yksi kritiikki, uudempiakin varmaan löytyy. 2 ) );
2 kaavassa Φ on normaalijakauman kertymäfunktio: x 1 Φ(x) = e 1 2 y2 dy. 2π RAHOITUSTEORIA 3 Kaavassa kiinnittyy huomio siihen, että hinta ei riipu lainkaan parametrista µ! Kaava (1.1) johdetaan kurssin lopussa Esitiedot. Kuten stokastiikassa on tapana ajatella, niin meillä on todennäköisyysavaruus (Ω, F, IP) ja sillä määriteltyjä satunnaismuuttujia X. Satunnaismuuttujan X odotusarvoa merkitään merkinällä IEX ja varianssia merkinnällä Var(X). Kurssin alussa tarvitaan seuraavia tietoja: Olkoot X k riippumattomia ja samoin jakautuneita satunnaismuuttujia, k = 1,..., N, IP(X k = 1) = p = 1 IP(X k = 0) ja n (1.2) Y n = X k. k=1 Tällöin Y n Bin(n, p) kaikilla n = 1,..., N. IE[Y n+1 Y 1,..., Y n ] = Y n + p. Havaitaan, että IE[Y n+1 Y 1,..., Y n ] = IE[Y n+1 X 1,..., X n ] =: IE[Y n+1 F n ]; tässä F n on satunnaismuuttujien X 1,..., X n (tai satunnaismuuttujien Y 1,..., Y n ) virittämä historia 2. Selvästi F n F n+1 : tämä seuraa siitä, että mikä tahansa satunnaismuuttujia (X 1,..., X n ) koskeva tapahtuma voidaan tulkita sellaiseksi satunnaismuuttujia (X 1,..., X n, X n+1 ) koskevaksi tapahtumaksi, missä satunnaismuuttujalle X n+1 ei anneta mitään lisäehtoja. Joskus on mukavampaa tarkastella prosessin Y n asemasta prosessia Ỹn := 2Y n n; havaitaan, että prosessi Ỹn voidaan kirjoittaa satunnaismuuttujien X k, IP( X k = 1) = p = 1 IP( X k = 1) summana Ỹn = n X k=1 k. Prosessia Ỹ = (Ỹk) k=1,...,n sanotaan satunnaiskuluksi; jos p = 1 2, niin satunnaiskulkua sanotaan symmetriseksi. Seuraava päättely on tyypillinen jatkossa. Lause 1.1. Olkoon Y = (Y k ) 1 k N kuten yhtälössä (1.2) ja olkoon f jokin funktio. Tällöin ( ) k (1.3) IE[f(Y n+k ) F n ] = f(y n + l) p l (1 p) k l l Todistus Otetaan käyttöön merkintä Y n,k := Y n+k Y n. Tiedetään, että f(y n+k ) = f(y n + l)i { Yn,k =l}. Käyttämällä tietoa, että tapahtuma { Y n,k = l} on riippumaton historiasta F n (toisin sanoen kaikista mahdollisista tapahtumista A F n ), Y n,k 2 Kirjallisuudessa merkitään usein Fn = σ(x 1,..., X n) ja sanotaan, että F n on satunnaismuuttujien X 1,..., X n virittämä σ- algebra.
3 4 E. VALKEILA Bin(k, p), ja sitä, että funktion f arvo pisteessä f(y n + l) tunnetaan, kun Y n tunnetaan, saadaan E[f(Y n+k ) F n ] = = = = IE[f(Y n + l)i { Yn,k =l} F n ] f(y n + l)ie[i { Yn,k =l} F n ] n k f(y n + l)ip( Y n,k = l) ( ) k f(y n + l) p l (1 p) k l. l Otetaan käyttöön merkintä g(x, k) := IEf(x+ Y n,k ). Havaitaan, että lauseen 1.1 tulos voidaan kirjoittaa muodossa (1.4) IE[f(Y n+k ) F n ] = g(y n, k); lause 1.1 on siis eräänlainen Feyman-Kac- lauseen muunnelma tässä yksinkertaisessa tilanteessa. 2. Hinnoittelumalli 2.1. Osake ja obligaatio. Rahoitusteorian hinnoittelumallissa ajatellaan olevan kahdenlaista varallisuutta: riskitöntä ja riskillistä. Riskitöntä varallisuutta sanotaan obligaatioksi (toinen mahdollinen termi tässä yhteydesä on talletus tai pankkitalletus). Jatkossa obligaatiota merkitään merkinnällä B. Sovitaan, että obligaation arvo hetkellä t = 0 on B 0 = 1. Obligaation arvo hetkellä t on B t (sovitaan, että arvo ilmoitetaan euroissa). Riskillistä varallisuutta sanotaan osakkeeksi; osakkeita on yleensä useita. Osakkeelle käytetään merkintää S; osakkeen arvo hetkellä t = 0 on S 0 euroa ja hetkellä t se on S t euroa. Mikäli osakkeita on useita, niin kyseessä on vektori S = (S 1,..., S d ). Jatkossa käsitellään pääasiassa yhtä osaketta ja obligaatiota. Obligaation arvo tulevaisuudessa on tunnettu, osakkeen arvo puolestaan ei ole. Tämän vuoksi osakkeen arvon S ajatellaan olevan satunnaismuuttuja, joka on määritelty todennäköisyysavaruudella (Ω, F, IP) Hinnoittelumallin säännöt. Hinnoittelumallissa on voimassa seuraavat säännöt. Kaikilla toimijoilla 3 on sama tieto osakkeen hinnasta. Obligaation talletuskorko on sama kuin lainauskorko. Osakkeen osto- ja myyntihinta on sama. Osakeita voi ostaa paloissa [tai ostaa velaksi = myydä lyhyeksi]. 3 agent
4 RAHOITUSTEORIA 5 Muutama kommentti oletuksista lienee paikallaan. Se, että kaikilla toimijoilla on sama informaatio markkinoilla on ainakin usein tavoitteena 4. Se että pankista saa velaksi rahaa samalla korolla kuin talletuksesta maksetaan koskee lähinnä suuria toimijoita. Osakkeen ostohinta on usein suurempi kuin myyntihinta, joten tämä oletus on epärealistinen. Rahaa voi panna pankkiin paloissa (ainakin yhden sentin kokoisissa paloissa), osakkeita ei kuitenkaan voi ostaa paloissa. Tätä sääntöä ei kuitenkaan pidetä yhtä epärealistsena kuin edellistä, pääasiassa siksi, että osakkeita ostetaan usein suuria määriä Salkku ja arbitraasi Yhden askeleen malli. Oletetaan että aika on diskreetti: hetki t = 0 on alkutilanne ja toimijat voivat ostaa ja myydä osakkeita sekä tehdä talletuksia tai ottaa velkaa hetkillä t = 0, missä k = 0, 1,..., T ; ajankohta T = N on erikoisasemassa, sitä sanotaan eräpäiväksi. Oletetaan seuraavassa, että T = 1. Tämä on yhden askeleen hinnoittelumalli. Jokainen toimija voi halutessaan sijoittaa varallisuutensa osakkeeseen tai obligaatioon. Merkitään toimijan varallisuutta merkinnällä V. Oletetaan, että toimijan alkupääoma on V 0 = v. Hetkellä t = 0 hän voi joko tehdä talletuksen tai ostaa (murto-osissa) osakkeen. Olkoon hetkellä t = 0 ostettujen osakkeiden määrä γ 1 ja talletuksen määrä β 1. Tehdään seuraavat oletukset: obligaation arvo hetkellä t = T = 1 on (1 + r)b 0 = 1 + r ja että osakkeen arvo hetkellä t = T = 1 on S 1. Vakio r on korko. Edelleen, hetkellä t = 0, toimija K. sijoittaa alkupääomansa obligaatioon ja osakkeeseen. Symbolisesti, alkupääoma V 0 = v sijoitetaan seuraavasti: v = β 1 + γ 1 S 0. Paria Γ = (β, γ) sanotaan sijoitusstrategiaksi ja paria (Γ, v) salkuksi. Jos β 1 > 0, niin rahaa talletetaan pankkiin, jos β 1 < 0, niin rahaa otetaan velaksi. Jos γ 1 > 0, niin ostetaan osakkeita kertoimen γ 1 verran, jos γ 1 < 0, niin osaketta myydään lyhyeksi kertoimen γ 1 verran. Hetkellä t = T = 1 salkun (Γ, v) arvo V1 Γ on V Γ 1 = β 1 (1 + r) + γ 1 S 1. Koska S 1 on satunnaismuuttuja, niin myös V Γ 1 on sitä. Esimerkki 2.1 (Lyhyeksimyynti). Herra K. on saanut tädiltään euroa. Herra K. myy lyhyeksi Nokian osaketta 400 kappaletta. Osakkeen hinta S 0 on 100 euroa. Saamansa rahat herra K. panee pankkin. Salkku Γ on siis β 1 = = ja γ 1 = 400. Laskujen helpottamiseksi oletetaan, että r = 0. Nokian osakkeen hinta on satunnaismuuttuja S 1. Jos S 1 = 80, niin salkun arvo on = euroa. Herra K. voittaa siis tässä tapauksessa euroa. Jos osakkeen hinta nousee, esimerkiksi arvoon S 1 = 120, niin saman salkun arvo hetkellä t = 1 = 2.000, joten tappio on euroa. V Γ 1 4 Mikäli ehditään, niin tarkoitus on lyhyesti esitellä mitä tapahtuu, kun tästä oletuksesta luovutaan.
5 6 E. VALKEILA Määritelmä 2.1. Yhden askeleen hinnoittelumalli mahdollistaa arbitraasin, jos alkupääomalla v = 0 on olemassa salkku (Γ, 0) siten, että V1 Γ 0 ja IP(V1 Γ > 0) > 0. Sanotaan, että salkku (Γ, v) on arbitraasisalkku. Määritelmä 2.2. Yhden askeleen hinnoittelumalli (B, S) on arbitraasivapaa, jos siinä ei ole arbitraasisalkkuja. Hinnoittelumallin arbitraasivapaus on rahoitusteoriassa lähes aksiomaattinen käsite. Taustalla on se ajatus, että mikäli jossain tilanteessa markkinoilla olisi mahdollista tehdä arbitraasia, niin kaikki ryhtyisivät sitä tekemään, josta puolestaan seuraisi hintojen muutos siten, että arbitraasin tekeminen ei enää olisi mahdollista Omavaraisuus ja arbitraasivapaus. Tarkastellaan seuraavaksi diskreettiaikaista mallia. Oletetaan, että B t = (1 + r) t, kun t = 0, 1,..., N. Merkitään S t := S t S t 1, kun t = 1,..., N (vastaavasti B t ja Vt Γ ). Tarkastellaan seuraavaksi sijoittamisen sääntöjä diskreettiaikaisessa mallissa. Hetkellä t = 0 on käytössä alkupääoma v, joka voidaan sijoittaa joko obligaatioon tai osakkeeseen. Kertoimet β 1 ja γ 1 valitaan, ainoana rajoituksena ehto v = β 1 + γ 1 S 0 ; hetkellä t = 1 tiedetään osakkeen hinta S 1. Salkun V Γ arvo on nyt V Γ 1 = β 1(1 + r) + γ 1 S 1. Nyt on sallittua vaihtaa strategiaa ja valita β 2 ja γ 2 siten, että V Γ 1 = β 2 (1 + r) + γ 2 S 2. Jatketaan samalla tavalla: Oletetaan, että hetkellä t 1 on valittu strategia (β t, γ t ) ja kun osakkeen hinta S t on havaittu, niin strategia voidaan vaihtaa toiseksi seuraavan omavaraisuusehdon puitteissa: (2.1) Vt Γ = β t (1 + r) t + γ t S t = β t+1 (1 + r) t + γ t+1 S t. Harjoitustehtäväksi jää osoittaa, että omavaraisuusehto (2.1) on yhtäpitävä ehdon (2.2) V Γ t = v + t β k B k + k=1 t γ k S k kanssa. Muutama huomautus on nyt paikallaan. Strategia Γ on nyt stokastinen prosessi, Γ = (β t, γ t ) 1 t N. Omavaraisuusehdosta (2.1) seuraa, että kertoimet β t, γ t valitaan ennen kuin tiedetään osakkeen arvo hetkellä t! Toisaalta kertoimet β t ja γ t voidaan valita käyttäen kaikkia havaittuja osakkeen hintoja S 0, S 1,..., S t 1. Merkitään nyt osakkeen historiaa merkinnällä F t : F t = σ(s 1,..., S t ). Se, että kertoimet β t ja γ t voidaan valita käyttäen hintoja S 1,..., S t 1 tarkoitaa täsmällisemmin sitä, että β t ja γ t ovat mitallisia historian F t 1 suhteen. Tällaista mitallisuutta sanotaan yleisesti ennustettavuudeksi historian IF = (F t ) 0 t N suhteen. Määritelmä 2.3. Tarkastellaan diskreettiaikaista hinnoittelumallia (B, S) = (B t, S t ) 0 t N. Omavarainen strategia Γ alkupääomalla v = 0 on arbitraasistrategia, jos VN Γ 0 ja IP(V N Γ > 0) > 0. k=1
6 RAHOITUSTEORIA 7 Määritelmä 2.4. Diskreettiaikainen hinnoitelumalli on arbitraasivapaa, jos siinä ei ole arbitraasisalkkuja (Γ, 0). Luvussa 4 palataan arbitraasivapaiden hinnoitttelumallien karakterisointiin. 3. Binomipuu ja eurooppalaiset vaateet 3.1. Hinnoittelu ja suojaus yhden askeleen mallissa. Hinnoittelumalli. Tarkastellaan yhden askeleen mallia. Hetkellä N = 1 osakkeen hinta S 1 voi olla joko laskenut, S 1 = (1 + a)s 0, tai noussut S 1 = (1 + y)s 0. Tuntematonta on siis huominen arvo, tunnettua puolestaan on se, että osakkeen arvo on joko (1 + a)s 0 tai (1 + y)s 0. Talletuksen arvo taas kasvaa kiinteätä korkoa ja sen arvo huomenna on B 1 = (1 + r)b 0 = 1 + r. Kun korko r tunnetaan, tiedetään myös talletuksen arvo huomenna. Hinnoittelumallissa tehdään sopimuksia osakkeeseen liittyen. Esimerkkinä tarkastellaan eurooppalaista osto-optiota, missä sopimuksen ostajalla on oikeus ostaa osake huomenna tiettyyn kiinteään hintaan K. Sopimuksen myyjä/kirjoittaja puolestaan on velvollinen myymään osakkeen hintaan K. Myyjän kannalta tilanne on seuraava: a: Jos S 1 < K, niin sopimus on sen haltijalle arvoton, koska osakkeen hinta on sovittua hintaa K pienempi. Myyjän tappio hetkellä T = N = 1 on siis = 0. y: Jos S 1 > K, niin sopimuksen arvo on S 1 K, ja haltijan kannattaa ostaa osake hinnalla K ja myydä se välittömästi hinnalla S 1. Taskuun jää rahaa S 1 K markkaa, joka on myös myyjän tappio. Kaavana myyjän tappio tai vaade on f(s 1 ) =. max(s 1 K, 0). Mikä on option arvo? Tunnettuja ovat osakken hinta S 0, (lyhyt) korko r ja osakkeen mahdolliset arvot huomenna. Osakkeen arvon kasvusta, lyhyestä korosta r ja toimeenpanohinnasta K oletetaan (3.1) a < r < y ja (1 + a)s 0 < K < (1 + y)s 0. Vakio a on yleensä negatiivinen: a < 0. Ehdot (3.1) liittyvät siihen, että hinnoittelumalli (B, S) on arbitraasivapaa (tästä lisää harjoituksissa). Suojaushinta. Eurooppalaisen osto-option arvo määrätään hakemalla ns. suojaus. Haetaan strategia (β 1, γ 1 ) siten, että varallisuus hetkellä t = 1 on yhtä suuri kuin mahdollinen tappio: V 1 = β 1 B 1 + γ 1 S 1 = max(s 1 K, 0). Kun muistetaan, että B 0 = 1, saadaan yhtälöryhmä (3.2) β 1 (1 + r) + γ 1 S 0 (1 + a) = 0 β 1 (1 + r) + γ 1 S 0 (1 + y) = (1 + y)s 0 K. Yhtälöryhmässä (3.2) on kaksi tuntematonta β 1 ja γ 1 ja kaksi yhtälöä. Oletuksesta (3.1) seuraa, että ratkaisuksi saadaan β 1 = (1 + a) ((1 + y) S 0 K) (y a) (1 + r) ja γ 1 = (1 + y) S 0 K (y a) S 0.
7 8 E. VALKEILA Se alkupääoma v, millä suojaus on mahdollista, saadaan kaavasta v = β 1 B 0 + γ 1 S 0 : (3.3) v = ((1 + y) S 0 K) (r a). (y a) (1 + r) Jos option myyjä asettaa hinnaksi alkupääoman v yhtälöstä (3.3), niin hän ei kärsi tappiota hetkellä t = N = 1. Toisaalta ostaja tietää, että myyjä ei myöskään saa ylimääräistä voittoa tällä hinnalla! Näin määriteltyä hintaa sanotaankin tasapuoliseksi hinnaksi tai suojaushinnaksi.. Oletus siitä, että osakkeen hinta voi hetkellä t = 1 saada kaksi eri arvoa on puolestaan aivan oleellinen yllä esitetylle suojauksen konstruoinnille. Siitä seuraa, että kaikki sopimukset ovat suojattavissa tällöin sanotaan että markkinamalli on täydellinen. Mikäli hinta voisi muuttua kolmeen (tai useampaan ) eri arvoon, niin yhtälöryhmällä (3.2) ei enää ole yksikäsitteistä ratkaisua ja suojausta ei enää voi konstruoida. Saadaan esimerkki epätäydellisestä markkinamallista, missä tasapuolista hintaa ei yleensä ole. Esimerkki 3.1 (Valuuttasuojaus). Telakka solmii sopimuksen, jonka mukaan laivasta maksetaan vuoden 2007 alussa miljoona dollaria. Oletetaan, että dollarin kurssi vuoden 2005 alussa on yksi euro. Oletetaan, että dollarin kurssi voi vuoden 2007 alussa voi olla joko 0.80 euroa tai 1.20 euroa ja että korko kahden vuoden aikana on kaksi prosenttia. Telakka haluaa tehdä sopimuksen, jonka perusteella se saa ostaa miljoonalla dollarilla euroja hintaan yksi dollari eurosta. Tavoitteena on suojautua dollarin hinnan putoamista vastaan. Lasketaan kaavan (3.3) perusteella suojaussopimuksen hinta yhdelle dollarille. Ratkaistaan ensin vakiot y ja a: (1+y)1 = 1.20 mistä vakion y arvoksi saadaan 0.20 ja vakion a arvoksi vastaavsti Korko r on = Tarkastelujakso on siis kaksi vuotta. Kaavasta (3.3) saadaan nyt sopimuksen hinnaksi (1.2 1)( ) = Miljoonan dollarin suojaaminen maksaa siis noin euroa. Verrataan tilannetta siihen, että suojausta ei tehdä: jos dollarin hinta nousee, saadaan voittoa euroa, jos putoaa, niin tappiota tulee saman verran. Jos suojaus tehdään, niin voittoa tulee noin euroa ja tappiota tulee sopmuksen hinnan verran eli noin euroa. Etuna on tietenkin se, että kahden vuoden kuluttua ei enää ole mitään riskiä ja telakka voi suunnitella toimintaansa varmana siitä, että dollarin kurssin heilahtelu ei aiheuta uusia lisäkuluja. Todennäköisyystulkinta. Olkoon ρ satunnaismuuttuja, joka saa arvon y todennäköisyydellä p, ja arvon a todennäköisyydellä 1 p ja X satunnaismuuttuja, joka saa arvon 1, jos ρ = y ja arvon 0, jos ρ = a. Tällöin (3.4) S 1 = (1 + ρ)s 0 = (1 + y) X (1 + a) 1 X S 0 ; satunnaismuuttuja ρ on siis satunnainen korko. Vaihdetaan nyt todennäköisyys p todennäköisyydeksi q siten, että (3.5) E Q S 1 = S 0 (1 + r),
8 RAHOITUSTEORIA 9 missä Q on todennäköisyysmitta, jolle Q(ρ = y) = Q(X = 1) = q. Yhtälön (3.5) avulla saadaan yhtälö S 0 (1 + y)q + S 0 (1 + a)(1 q) = S 0 (1 + r) jonka ratkaisu on q = r a y a. Saatua todennäköisyyttä q sanotaan riskineutraaliksi todennäköisyydeksi. Todennäköisyyden q suhteen laskettu osakkeen keskimääräinen tuotto on sama kuin talletuksen. Osoitetaan lopuksi, että option myyjän diskontattu tappio on sama kuin käsiteltävän option tasapuolinen hinta: (1 + r) 1 E Q (max(s 1 K, 0)) = ((1 + y) S 0 K) (r a). (y a) (1 + r) Tämä seuraa siitä, että E Q (max(s 1 K, 0)) = q((1 + y)s 0 K) = r a y a ((1 + y)s 0 K) Binomipuu Diskreetti stokastinen analyysi. Merkintöjä, osittaisintegrointi. Olkoon a = (a k ) n k=0 lukujono ja olkoon a k = a k a k 1, missä 1 k n. Seuraava lause on diskreetin ajan vastine stokastisen analyysin osittaisintegroitikaavalle. Tulos perustuu Abelin summakaavaan. Lause 3.1. Olkoot a ja b lukujonoja, a = (a k ) n k=0 ja b = (b k) n k=0. Jos k n, niin (3.6) a k b k = a 0 b 0 + l k a l 1 b l + l k b l 1 a l + l k a l b l. Todistus Koska jokainen lukujonon termi voidaan kirjoittaa teleskooppisummana aikaisemmista termeistä: a k = a 0 + l k a k, niin riittää osoittaa, että missä. ( (ab)) k = ak b k a k 1 b k 1 = u k, u k = a 0 b 0 + a l 1 b l + b l 1 a l + a l b l. l k l k l k Nyt u k = a k 1 b k + b k 1 a k + a k b k = a k b k a k 1 b k 1, mistä väite seuraa. Merkintä: [a, b] k = l k a l b l. Seuraus 3.1. Osittaisintegrointikaava (3.6) voidaan kirjoittaa myös muodossa (3.7) a n b n = a 0 b 0 + l n a l b l + l n b l 1 a l.
9 10 E. VALKEILA Stokastinen eksponentti. Olkoon a lukujono, jolle a 0 = 0. tarkastellaan lineaarista differenssiyhtälöä (3.8) x k = x k 1 a k, x 0 = 1. Lause 3.2. Yhtälön (3.8) yksikäsitteinen ratkaisu on (3.9) E(a) k = l k(1 + a l ). Todistus Induktiolla: kun k = 0 niin väite on selvä. Oletetaan, että lauseke (3.9) on yhtälön (3.8) yksikäsitteinen ratkaisu, kun l k. Riittää näyttää, että E(a) k+1 = E(a) k a k+1. Nyt E(a) k+1 = l k+1(1 + a l ) (1 + a l ) l k = l k(1 + a l ) a k+1. Siis lauseke E(a) on yhtälön (3.8) yksikäsitteinen ratkaisu kun l = 0,..., k+1 ja väite on todistettu. Seuraava on nyt ilmeinen: Huomautus 3.1. Olkoon a 0 = 0 ja tarkastellaan jonon a ajamaa differenssiyhtälöä: y k = y k 1 a k alkuarvona y 0 = y. Tämän yhtälön yksikäsitteinen ratkaisu on y k = ye(a) k. Lause 3.3 (Yor). Kahdelle lukujonolle a, b, a 0 = b 0 = 0 pätee (3.10) E(a)E(b) = E(a + b + [a, b]). Todistus Olkoon u =. E(a) ja w =. E(b). Osittaisintegrointikaavalla (3.6) saadaan (uw) k = u k 1 w k + w k 1 u k + u k w k. Mutta u k = u k 1 a k ja w k = w k 1 b k ; käyttämällä näitä havaintoja saadaan (uw) k = u k 1 w k 1 ( a k + b k + a k b k ). Lauseen 3.2 nojalla kaava (3.10) pätee. Esimerkki 3.2 (Vaihtuvakorkoinen pankkitalletus). Oletetaan, että korko r i on vakio aikavälillä [i 1, i), missä i = 1,..., n. Talletetaan 1 EUR pankkiin. Pankissa on rahaa hetkellä n lausekkeen i n (1 + r i) verran. Lauseen 3.2 avulla voidaan nyt päätellä seuraavaa. Olkoon R k = l k r i ja tarkastellaan yhtälöä B k = B k 1 R k, B 0 = 1. Tiedetään, että tämän yhtälön ratkaisu on nyt B k = E(R) k = l k (1 + R l ) = l k(1 + r l ). Erityisesti, B n = l n (1 + r l) on rahan määrä pankissa hetkellä t = n, jos sinne pantiin 1 EUR hetkellä t =
Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.
Luku 1 Johdatteleva esimerkki Herra K. tarjoaa osto-option Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.
LisätiedotBlack ja Scholes ilman Gaussia
Black ja Scholes ilman Gaussia Tommi Sottinen Vaasan yliopisto SMY:n vuosikokousesitelmä 19.3.2012 1 / 21 Johdanto Tarkastelemme johdannaisten, eli kansankielellä optioiden, hinnoittelua. Kuuluisin hinnoittelumalli
Lisätiedot= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja
44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan
LisätiedotWiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
LisätiedotOPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000
OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 MARKKINAKATSAUS AGENDA Lyhyt johdanto optioihin Näkemysesimerkki 1: kuinka tehdä voittoa kurssien laskiessa Näkemysesimerkki
LisätiedotBlack Scholes-hinnoittelumallin robustisuus ja tyylitellyt tosiseikat
Black Scholes-hinnoittelumallin robustisuus ja tyylitellyt tosiseikat Tommi Sottinen, Helsingin yliopisto Yhteistyössä C. Bender, TU Braunschweig E. Valkeila, Teknillinen korkeakoulu 10. lokakuuta 2006
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Lisätiedot3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotKonvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
LisätiedotMat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008
Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot
Lisätiedot, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
LisätiedotNyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F
Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan
LisätiedotV ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
Lisätiedot1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotJohdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot1 Sovelluksia. Sovelluksia 1
Sovelluksia 1 1 Sovelluksia 1.1 Tausta ja tärkeimpiä määritelmiä Kalvo 1 Aloitetaan tutustumaan luennolla tarkasteltaviin prosesseihin. Tarkempia selityksiä, esimerkiksi Brownin liikkestä, löytyy kertauksesta,
LisätiedotFinanssisitoumusten suojaamisesta
Finanssisitoumusten suojaamisesta Harri Nyrhinen Matematiikan ja tilastotieteen laitos Helsingin yliopisto Vakuutusmatematiikan seminaari 4.5.2017 Esitelmän sisältö Teoreettisluonteisia poimintoja kirjallisuudesta
LisätiedotRahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola
Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Oikeustieteiden laitos, kansantaloustiede Luennot 22 t, harjoitukset
LisätiedotRahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen
Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Lisätiedotr = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotRahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta
Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotPositiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Lisätiedot30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Lisätiedot(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotOletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
LisätiedotProjektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
LisätiedotMat-2.3114 Investointiteoria - Kotitehtävät
Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea
LisätiedotSallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
LisätiedotSalausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
LisätiedotRatkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2
Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotMatematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
LisätiedotVaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
Lisätiedoteli optioiden hinnoittelun ja toistamisen taito tai oppi optioiden oikeasta hinnasta Tommi Sottinen
Rahoitust=Coria eli optioiden hinnoittelun ja toistamisen taito tai oppi optioiden oikeasta hinnasta Tommi Sottinen tommi.sottinen@helsinki.fi mathstat.helsinki.fi/ tsottine 18. huhtikuuta 26 Sisältö I
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
LisätiedotMoniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotVastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen
Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotRekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
LisätiedotJohdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Lisätiedot25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.
SHV-tutkinto Vakavaraisuus 25.9.28 klo 9-15 1(5) 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. (1p) 2. Henkivakuutusyhtiö Huolekas harjoittaa vapaaehtoista henkivakuutustoimintaa
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Lisätiedot3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
LisätiedotSuojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari
Suojaa ja tuottoa laskevilla markkinoilla Commerzbank AG Saksan toiseksi suurin pankki Euroopan johtavia strukturoitujen tuotteiden liikkeellelaskijoita Yli 50 erilaista tuotetyyppiä listattuna Saksan
LisätiedotEpäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Lisätiedot8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotPyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
LisätiedotMalliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
LisätiedotOdotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotMat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
LisätiedotMoniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotValuuttariskit ja johdannaiset
Valuuttariskit ja johdannaiset Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Sosiaali- ja terveysjohtamisen laitos, kansantaloustiede Lähde: Hull, Options, Futures, & Other
LisätiedotArvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.
Lisätiedotln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2
Moniperiodisten investointitehtäviä tarkasteltaessa sijoituskohteiden hintojen kehitystä mallinnetaan diskeetteinä (binomihilat) tai jatkuvina (Itô-prosessit) prosesseina. Sijoituskohteen hinta hetkellä
LisätiedotFUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto
FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
LisätiedotPääsykoe 2001/Ratkaisut Hallinto
Pääsykoe 2001/Ratkaisut Hallinto 1. Osio 3/Tosi; Organisaatiokenttää ei mainita (s.35). 2. Osiot 1 ja 2/Epätosia; Puppua. Osio 3/Lähellä oikeata kuvion 2.1 mukaan (s.30). Osio 4/Tosi (sivun 30 tekstin
LisätiedotJohdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
Lisätiedot3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotCantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Lisätiedot