Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila. ) Suure, joa ilmaisee pituuen muutosen pituusysiöä ja lämpötilaysiöä ohti. e) Suure, joa uvaa voiman jaautumista pinnalle. f) Veen (tai muun nesteen) omasta painosta johtuva paine. g. Silmän halaisija on = 8,5 mm, syvyys h = 4 m, veen tiheys ρ = m 3 normaali-ilmanpaine p = 3 Pa. F Paineen määritelmän p = perusteella voima on, F = pa, jossa paine on A ilmanpaineen ja hyrostaattisen paineen summa p = p + ρ gh ja silmän pinta-ala on A = π r. Silmään ohistuva voima on siten ( ρ ) π F = p + gh r g m,85 m 3 Pa 9,8 4 m π 3 = + m s = 3,547 N 4 N. Vastaus: Silmään ohistuu 4 N:n voima.. ja.3 Elementin pituus on l = 5, m, lämpötila talvella T = 35, lämpötila esällä α =. Lämpötilan muuttumisesta johtuva pituuen muutos on T = 5 ja betonin pituuen lämpötilaerroin ( ( )) Vastaus: Elementti on esällä 3,7 mm piempi uin talvella. Δ l = lαδ T = 5, m 5 35 =,3744 m 3,7 mm..4 Veen paine maalämpöpumpun liittymän tasolla on p =,8 bar, tarastelutason oreus Δ h = 3, m ja venttiilin halaisija 3 = 7, m. F Paineen määritelmän p = perusteella voima on, F = pa. A Yläerrassa veen paine p on hyrostaattisten paineien eron Δ p = ρ gδhverran h Teijät ja WSOY Oppimateriaalit Oy, 7
Physica 9. painos (6). Lämpötila ja paine pienempi, joten paine yläerrassa on 5 g m p = p Δ ph = p ρ gδ h=,8 Pa 9,8 3, m = 4868 Pa 3 m s Siten venttiiliin ohistuu voima 3 7, m F = pa= pπr = pπ = 4868 Pa π = 9,5676 N 9,6 N. Vastaus: Säätöventtiiliin ohistuu 9,6 N:n voima..5 Rautasylinterin sisähalaisija on Fe, = 8, mm, αfe =,7, pituuen lämpötilaerroin raualle α Fe =,7, alumiinisylinterin halaisija Al, = 79,8 mm, pituuen lämpötilaerroin alumiinille α ja alulämpötila t =. Al = 3, Kosa alumiini laajenee lämmetessään enemmän uin rauta, alumiinisylinteri juuttuu iinni rautasylinteriin siinä lämpötilassa, jossa mainitut halaisijat ovat yhtä suuret. Rautasylinterin halaisija on silloin = +Δ = + α Δ t Fe Fe, Fe Fe, Fe, Fe ja alumiinisylinterin halaisija = +Δ = + α Δ t Al Al, Al Al, Al, Al Yhtäsuuruuesta seuraa yhtälö + α Δ t = + α Δ t, Al, Al, Al Fe, Fe, Fe josta rataistaan lämpötilan muutos Al,αAlΔt Fe,αFeΔ t = Fe, Al, ( Al,αAl Fe,αFe ) Δ t = Fe, Al, Fe, Al, Δ t = α α Al, Al Fe, Fe Sijoittamalla tähän tunnetut arvot saaaan lämpötilan muutosesi Δ t = Fe, α Al, α Al, Al Fe, Fe 8, mm 79,8 mm =, 79,8 mm 3, 8, mm,7 = 8,49. Joten sylinterit juuttuvat iinni lämpötilassa t = t +Δ t = + 8,49 = 38, 49 4. Vastaus: Alumiinisylinteri juuttuu iinni rautasylinteriin 4 ºC:een lämpötilassa. Teijät ja WSOY Oppimateriaalit Oy, 7
Physica 9. painos 3(6). Lämpötila ja paine.6 Metalliputen pituus alussa on l = 98 mm ja alulämpötila t = 8,. Pituuen muutos lämpötilan muuttuessa on Δ l = αlδ t. Lämpölaajenemisen yhtälöstä nähään, että yhtälöä vastaavan suoran fysiaalinen ulmaerroin ilmaisee tulon α l arvon. Lasetaan mitatuista lämpötiloista lämpötilan muutoset ja esitetään graafisesti pituuen muutosen riippuvuus lämpötilan muutosesta: lämpötilan muutos Δt (), 9,8 3,8 4,3 49, pituuen muutos Δl (mm),,3,36,47,57 Kun ulmaertoimen määrittämiseen tarvittavisi pisteisi valitaan origo ( ºC, mm)ja suoralta piste (5ºC,,6 mm), ulmaertoimen arvosi tulee ( l) ( t) Δ Δ,6 mm mm mm = = =, 54, Δ Δ 5 joten pituuen lämpötilaerroin on α l 5 5 = = =,75,. mm, 54 98 mm Vastaus: Tutittavan aineen pituuen lämpötilaerroin on,. 5.7 Ilmanpaine oli p = 98 hpa ja suellussyvyys h = 3, m. a) Koonaispaine veessä on p = p + p = p + ρ gh. Siten aluperäisellä syvyyellä paine on p p ρ gh = +. Paine sueltajan elimistössä on p = g m 98 Pa + 9,8 3 m 49 Pa, 4 MPa 3 m s =. b) Sueltaja nousee syvyyteen h, jossa paine on p p + ρ gh p = = = p + ρ gh, josta voiaan rataista ysytty syvyys h. h Teijät ja WSOY Oppimateriaalit Oy, 7
Physica 9. painos 4(6). Lämpötila ja paine p ρ gh p + ρ gh = + p ρ gh ρ gh = p + p h h = + ρ g 98 Pa 3 m = + g m 9,8 3 m s =,5 m m. Vastaus: a) Paine sueltajan elimistössä on 3 m:n syvyyessä,4 Mpa. b) Sueltaja nousi oottamaan typen poistumista m:n syvyyteen..8 Ilmanpaine on p = 3 hpa yli, ylipaine hyrauliianesteessä on p = 3, 5 MPa, nostimen sisähalaisija on = 5,5 cm ja aselin etäisyys nostimesta on a = 4, m. Nostimella saaaan aiaan momentti M Nostimen lavaan ohistama voima on F oonaispaine p = p + pyli. Momentti on siten ( ) ( yli) = = = π = + M Fa paa p r a p p r a 6,55 m,3 3, 5 Pa π 4, m = + = 5 65 593 Nm, 66 Nm. Vastaus: Nostimella aiaan saatava momentti on π = Fa, jossa a on nostimen etäisyys lavan aselista. = pa, jossa paine p on hyrauliianesteessä vallitseva 5,66 Nm.9 a) Tilavuuen lämpölaajenemisen yhtälö on V = V + γvδ t, joten nesteen alutilavuus V, on määritettävä alusi. Tilavuus voiaan määrittää äyttämällä mittalasia, mutta sillä ei saaa tilavuuelle ovin taraa arvoa. Jos mittausessa äytettävä pullo on mittapullo, voiaan tarasti meriviivaan asti täytetyssä pullossa olevan nesteen määrä luea pullosta. Miäli nesteen tiheys ρ tunnetaan, tilavuus voiaan määrittää mittaamalla pullon massa tyhjänä ja täytettynä, jolloin mtäysi mtyhjä pullossa olevan nesteen tilavuus on V =. Pulloa lämmitetään ρ hitaasti vesihauteessa, ja lämpötila mitataan vesihauteen veestä. Tilavuuen muutos voiaan lasea pullon aulassa nousevan nestepinnan oreuen muutosen avulla: Teijät ja WSOY Oppimateriaalit Oy, 7
Physica 9. painos 5(6). Lämpötila ja paine V A h πr h π h h Δ = Δ = Δ = Δ = Δ. Pullon aulan sisähalaisija voiaan mitata 4 työntömitalla. Myös nestepinnan oreus eri lämpötiloissa voiaan mitata työntömitan avulla. b) Pullon tilavuus on V = 5,6 ml ja pullon aulan sisähalaisija on = 5,5 mm. Tilavuuen muutos lämpölaajenemisessa on Δ V = γvδ t. Kun tähän sijoitetaan a)- ohassa mainittu tilavuuen muutosen lausee, saaaan yhtälö Δ h = γvδ t. 4 Rataistaan yhtälö nestepatsaan oreuen muutosen suhteen, jolloin se tulee muotoon 4γV 4γV Δ h = Δ t. Tämä on suoran yhtälö muotoa y = x, jossa ulmaerroin on =. Lasetaan lämpötilan muutoset mittaustulosista ja esitetään oreuen muutos graafisesti lämpötilan muutosen funtiona: Δt (ºC),9 5,9 9,,9 5,3 Δh (mm) 8,3 58,5 83,8 4,8 49, 4γV Kuvaajan fysiaalinen ulmaerroin on =. Sen arvo voiaan määrittää suoralla olevista pisteistä ( ºC, mm) ja (5 ºC, 45 mm): ( h) ( t) Δ Δ 45 mm mm mm 3 m = = = 9,6667 = 9,6667. Δ Δ 5 C C Tilavuuen lämpötilaerroin on siten m 9,6667 π ( 5,5 m ) γ = = = 3-3 π C 4 4 8,353 8,. 3 4V 4 5,6 m C C Vastaus: Paasnesteen tilavuuen lämpötilaerroin on 8,. C 4. Tunnetussa ilmanpaineessa p = 987 mbar elohopeapatsaan oreus on h = 78 mm ja ilmatilan oreus on = 46 mm. Kysytään ilmanpainetta p, un elohopeapatsaan oreus on h = 75 mm ja ilmatilan oreus on = 35 mm. 3 g Elohopean tiheys on ρ = 3,54. m 3 Teijät ja WSOY Oppimateriaalit Oy, 7
Physica 9. painos 6(6). Lämpötila ja paine Kosa puten yläpäässä on ilmaa, paine on puten suljetussa haarassa vapaan pinnan tasalla elohopeapatsaan hyrostaattisen paineen ja puteen jääneen ilman paineen summa. Ensimmäisessä tilanteessa on p = p + ρ gh ja jälimmäisessä p = p + ρ gh. i i i i i Lämpötila on vaio ja puten päässä olevan ilman määrä ei muutu, joten sen paine nouattaa Boylen laia pv = pv p A = p A. Jälimmäisessä tilanteessa puteen jääneen ilman paine on p = p. i i Kosa ensimmäisessä tilanteessa p = p ρ gh, vallitseva ilmanpaine jälimmäisessä tapausessa on siten p = p + ρgh = p + ρgh i i ( ρ ) ρ = p gh + gh i 46 mm g m g m = 98 7 Pa 354 9,8, 78 m 354 9,8, 75 m 3 + 3 35 mm m s m s = 5 Pa hpa. Vastaus: Vallitseva ilmanpaine on hpa. i Teijät ja WSOY Oppimateriaalit Oy, 7