Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Koko: px
Aloita esitys sivulta:

Download "Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!"

Transkriptio

1 Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat asiat. n Lasket kynällä ja paperilla, mutta Mafynetti opettaa ja neuvoo videoiden ja ratkaisujen avulla. n Mafynetti huolehtii kertauksesta, joten et unohda oppimiasi asioita. n Mafynetti on nyt kokonaan ilmainen! Lataa ilmaiseksi mafyvalmennus.fi/mafynetti

2 Pitkä matematiikka, syksy 010 Mallivastaukset, Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja diplomi-insinööri Antti Suominen. Teemu Kekkonen on opettanut lukiossa viiden vuoden ajan pitkää ja lyhyttä matematiikkaa sekä fysiikkaa. Hän on tarkastanut matematiikan ja fysiikan yo-kokeita koko tämän ajan. Teemu Kekkonen ja Antti Suominen toimivat opettajina MA-FY Valmennus Oy:ssä. Nämä mallivastaukset ovat MA-FY Valmennus Oy:n omaisuutta. MA-FY Valmennus Oy on Helsingissä toimiva, matematiikan ja fysiikan valmennuskursseihin erikoistunut yritys. Palveluitamme ovat TKK-pääsykoekurssit yo-kokeisiin valmentavat kurssit yksityisopetus Vuoden 010 keväästä alkaen olemme julkaisseet internet-sivuillamme kaiken palautteen, jonka asiakkaat antavat kursseistamme. Näin varmistamme, että palveluistamme kiinnostuneilla ihmisillä on mahdollisuus saada tarkka ja rehellinen kuva siitä, mitä meiltä voi odottaa. Tämä asiakirja on tarkoitettu yksityishenkilöille opiskelukäyttöön ja omien yo-vastausten tarkistamista varten. Kopion tästä asiakirjasta voi ladata MA-FY Valmennuksen internet-sivuilta Käyttö kaikissa kaupallisissa tarkoituksissa on kielletty. Lukion matematiikan opettajana voit käyttää näitä mallivastauksia oppimateriaalina lukiokursseilla. MA-FY Valmennus Oy:n yhteystiedot: internet: s-posti: puhelin: TKK-pääsykoekurssit abikurssit yksityisopetus

3 1. a) Sievennä lauseke (a + b) (a b). b) Ratkaise yhtälö tan x = 3. c) Määritä f ( 3), kun f(x) = x x+1. Ratkaisu. a) b) (a + b) (a b) = a + ab + b (a ab + b ) = a + ab + b a + ab b = 4ab tan x = 3 x = π 3 + nπ, n Z c) f(x) = x x + 1 f (x) = x (x + 1) x 1 (x + 1) = x + x x (x + 1) = x + x (x + 1) f ( 3) = ( 3) + ( 3) [ ( 3) + 1 ] f ( 3) = 3 4 TKK-pääsykoekurssit abikurssit yksityisopetus 1

4 . a) Ratkaise epäyhtälö x 7 3 4x. b) Laske integraali x + 1 dx. c) Ratkaise yhtälö x 4 3x 4 = 0. Ratkaisu. a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < 0 x b) Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö x + 1 dx = / 1 0 ln x + 1 = ln ln = ln 0 u 3u 4 = 0 (u 4)(u + 1) = 0 u 4 = 0 tai u + 1 = 0 u = 4 Sijoitetaan u = x, saadaan Vastaus: x = ± x = 4 tai x = 1 x = ± u = 1 ei ratkaisua TKK-pääsykoekurssit abikurssit yksityisopetus

5 3. a) Suoran vektorimuotoinen yhtälö on OP = ī + j + k + t(ī + j + s k), missä t R on suoran parametri. Määritä sellainen luku s, että suora on tasossa 3x + 4y + 5z = 1. b) Olkoon F se funktion f(x) = ( x) 3 integraalifunktio, jolle F (0) = 0. Määritä F (1). Ratkaisu. a) OP = ī + j + k + t(ī + j + s k) Suora on tasossa 3x + 4y + 5z = 1, kun sen kaksi pistettä ovat tasossa. Kun t = 0, niin OP = ī + j + k. Sijoitetaan piste P = (1,, ) tason yhtälöön = 1 1 = 1 tosi Piste (1,, ) on tasossa. Valitaan t = 1. OP = ī + j + k + 1 (ī + j + s k) = ī + j + k + ī + j + s k = 3ī + 3 j + ( + s) k Sijoitetaan piste (3, 3, + s) tason yhtälöön ( + s) = s = 1 5s = 10 : 5 s = Suora kulkee kahden tason pisteen kautta, kun s =. Vastaus: Suora on tasossa, kun s =. b) f(x) = ( x) 3 Määritetään funktio F (x). F (x) = ( x) 3 dx = ( 1) ( 1) ( x) 3 dx = 1 4 ( x)4 + C TKK-pääsykoekurssit abikurssit yksityisopetus 3

6 Määritetään vakio C siten, että F (0) = ( 0)4 + C = C = 0 C = 4 Funktio saa muodon F (x) = 1 4 ( x) Lasketaan funktion arvo, kun x = 1 F (1) = 1 4 ( 1)4 + 4 F (1) = F (1) = TKK-pääsykoekurssit abikurssit yksityisopetus 4

7 4. Funktion f(x) = ax + bx + c kuvaaja kulkee pisteiden ( 1, 1), (0, 5) ja (, 3) kautta. Määritä lausekkeen a + b + c arvo. Ratkaisu. Jokaisen pisteen täytyy toteuttaa paraabelin y = ax + bx + c yhtälö. a ( 1) + b ( 1) + c = 1 a 0 + b 0 + c = 5 a + b + c = 3 a b + c = 1 (1) c = 5 () 4a + b + c = 3 (3) Sijoitetaan () yhtälöihin (1) ja (3). { a b + 5 = 1 4a + b + 5 = 3 { a b = 7 4a + b = 8 { a b = 14 (4) 4a + b = 8 6a = 6 : 6 a = 1 Sijoitetaan a = 1 yhtälöön (4). 1 b = 7 b = 6 ( 1) b = 6 Kysytty summa a + b + c = = 0 Vastaus: Lausekkeen a + b + c arvo on 0. TKK-pääsykoekurssit abikurssit yksityisopetus 5

8 5. Vene A ylittää joen 45 asteen kulmassa nopeudella 16 km/h, ja vene B ylittää joen 30 asteen kulmassa nopeudella 14 km/h. Molemmat kulmat on mitattu joen poikkisuunnasta. Veneet lähtevät yhtä aikaa. Kumpi veneistä pääsee vastarannalle aikaisemmin? Ratkaisu. Joen leveys on x, x > 0. Veneen A nopeus v A = 16 km/h. Veneen B nopeus v B = 14 km/h. Veneen A kulkema matka s A = x cos α = x cos 45 Veneen B kulkema matka s B = x cos β = x cos 30 Veneiden joen ylitykseen käyttämät ajat: t = s v t A = s A v A x/ cos 45 = 16 x = 16 cos 45 = 0, x 0,088x TKK-pääsykoekurssit abikurssit yksityisopetus 6

9 t B = s B v B x/ cos 30 = 14 x = 14 cos 30 = 0, x 0,08x Koska t B < t A, pääsee vene B aikaisemmin vastarannalle. Vastaus: Vene B pääsee vastarannalle aikaisemmin. TKK-pääsykoekurssit abikurssit yksityisopetus 7

10 6. Monivalintatestissä on 5 väitettä ja kussakin kaksi vastausvaihtoehtoa. Opiskelija tietää oikean vastauksen 10 väitteeseen, mutta joutuu arvaamaan loput. Millä todennäköisyydellä hän läpäisee testin, kun läpipääsyyn vaaditaan 15 oikeaa vastausta? Ratkaisu. Opiskelijan täytyy siis arvata oikein vähintään viiteen tehtävään viidestätoista. Merkitään n = 15 on tehtävien määrä k on oikein arvattujen vastausten määrä p = 1 on todennäköisyys vastata oikein yhteen tehtävään q = 1 on todennäköisyys vastata väärin yhteen tehtävään Kysytty todennäköisyys on P (k 5) = 1 P (k 5) = 1 P (k < 5) vastatapahtuman tn. = 1 P (k = 0 tai k = 1 tai k = tai k = 3 tai k = 4) = 1 [ P (k = 0) + P (k = 1) + P (k = ) + P (k = 3) + P (k = 4) ] Sovelletaan binomitodennäköisyyden kaavaan ( n k) p k q n k, saadaan [ (15 ) ( P (k 5) = ( ) 1 15 ( ) + 15 ) ( ( ) 1 14 ( ) + 15 ) ( 1 ( ) 1 + ( ) ( ( ) 1 1 ( ) + 15 ) ( ( ) 1 ) ] 11 = 1 ( [ 1 15 (15 ) ( ) ) ( ) ( + 15 ) ( ) ] 4 = 0, Vastaus: Opiskelija läpäisee testin todennäköisyydellä 0,94. ) 13 TKK-pääsykoekurssit abikurssit yksityisopetus 8

11 7. Määritä funktion f(x) = cos x 1 cos x suurin ja pienin arvo. Missä pisteissä suurin arvo saavutetaan? Ratkaisu. f(x) = cos x 1 cos x f(x) = cos x 1 ( cos x 1) f(x) = cos x cos x + 1 Funktio f(x) on jatkuva ja derivoituva, kun x R. f (x) = sin x ( sin x) cos x = sin x cos x sin x = sin x( cos x 1) Derivaatan nollakohdat: f (x) = 0 sin x( cos x 1) = 0 sin x = 0 tai cos x 1 = 0 x = nπ, n Z cos x = 1 : cos x = 1 x = ± π 3 + πn, n Z Osoitetaan, että funktio f(x) on jaksollinen jaksolla π. Kosinifunktio on jaksollinen: joten cos x = cos(x + π) () cos x = cos (x + π), f(x) = cos x cos x + 1 = cos(x + π) cos (x + π) + 1 = f(x + π). Funktion suurimman ja pienimmän arvon määrittämisessä voidaan siis tutkia suljettua väliä [0, π]. TKK-pääsykoekurssit abikurssit yksityisopetus 9

12 Suljetulla välillä jatkuvan ja derivoituvan funktion suurin ja pienin arvo löytyvät derivaatan nollakohdista tai välin päätepisteistä. f(0) = cos 0 cos = 1 f ( ) π 3 3 = suurin arvo 4 f(π) = 3 pienin arvo f ( π + π) = f ( 5π ) 3 3 = suurin arvo 3 4 f(π) = 1 Suurin arvo löytyy pisteistä x = ± π 3 + πn, n Z. Vastaus: Pienin arvo on 3 ja suurin arvo on 3 ( 4. Suurin arvo saavutetaan pisteissä ± π 3 + πn, 3 ), 4 n Z. TKK-pääsykoekurssit abikurssit yksityisopetus 10

13 8. Jono (a n ) on aritmeettinen jono. Osoita, että jono (b n ), missä b n = 3 an, on geometrinen. Millä jonoa (a n ) koskevalla ehdolla jono (b n ) on aidosti vähenevä? Ratkaisu. Jono (a n ) on aritmeettinen, joten a n+1 a n = d, d R Tutkitaan kahden peräkkäisen jäsenen suhdetta jonossa (b n ). b n+1 b n = 3an+1 3 an = 3 a n+1 a n = 3 d Peräkkäisten jäsenten suhde on n:stä riippumaton vakio 3 d, joten jono (b n ) on geometrinen. Kaikki jonon (b n ) jäsenet ovat positiivisia, koska b n = 3 an > 0. Lukujono (b n ) on aidosti vähenevä, jos b n+1 < b n. Tutkitaan milloin epäyhtälö on voimassa. b n+1 < b n b n+1 : b n < 1 Sij. b n+1 = 3 d b n b n 3 d < 1 ln() ln 3 d < ln 1 d ln 3 < 0 : ln 3, ln 3 1,1 > 0 d < 0 Vastaus: Jono (b n ) on aidosti vähenevä, kun (a n ) on aidosti vähenevä, eli kun jonon (a n ) peräkkäisten jäsenten erotus d < 0. TKK-pääsykoekurssit abikurssit yksityisopetus 11

14 9. Arkhimedeen lain mukaan vedessä kelluvan esineen syrjäyttämän veden paino ja esineen paino ovat samat. Pyöreästä ja tasapaksusta puutukista jää veden yläpuolelle sen halkaisijasta viidesosa. Määritä tukin tiheys. Veden tiheytenä käytetään arvoa 1,00 kg/dm 3. Ratkaisu. Merkitään halkaisijaa d:llä. x = d 5 x = r 5 Lasketaan keskuskolmion A k ala Sij. d = r Pythagoraan lauseen mukaan y + ( ) 3r = r 5 y = r 9 5 r y = 16 5 r y = ( + ) y = 4 5 r 16 5 r TKK-pääsykoekurssit abikurssit yksityisopetus 1

15 Kolmion pinta-alaksi saadaan Lasketaan kulmat α ja β. A k = y 3 5 r = y 3 5 r = 1 5 r cos α = 3 r 5 r cos α = 3 5 α = 53, β = α = 106,60... Lasketaan sektorin A s ala γ = 360 β Pinnan alle jäävän osuuden pinta-ala: = 53, A s = γ 360 πr A 1 = A k + A s = 1 5 r + γ 360 πr ( 1 = 5 + γ ) 360 π TKK-pääsykoekurssit abikurssit yksityisopetus 13 r

16 Koko poikkipinta-ala: Tukin tilavuus on nyt A = πr V = A h ja tukin syrjäyttämän veden tilavuus on missä h on tukin pituus. Merkitään V 1 = A 1 h, ρ 1 = 1,00 (kg/dm 3 ) on veden tiheys ρ on tukin tiheys. Kappaleen massa on suoraan verrannollinen kappaleen painoon, joten Arkhimedeen lain mukaan on tällöin ρ 1 V 1 = ρ V ρ 1 A 1 h = ρ A h : h ρ 1 A 1 = ρ A : A ρ = A 1 ρ 1 A ( 1 5 = + γ π) r 360 ρ πr 1 ( 1 5 = + 53, π ) r 360 1,00 πr = 0, ,86 (kg/dm 3 ) Vastaus: Puun tiheys on 0,86 kg/dm 3. TKK-pääsykoekurssit abikurssit yksityisopetus 14

17 10. Suora kulkee kiinteän pisteen (a, b), a > 0, b > 0, kautta ja muodostaa positiivisten koordinaattiakselien kanssa kolmion. Mikä on tällaisen kolmion pienin mahdollinen pinta-ala? Ratkaisu. Suoran täytyy olla laskeva, jotta kolmio muodostuisi, eli k < 0. y-akselin leikkauspiste on (0, B). Määritetään x-akselin leikkauspiste. 0 = kx 0 + B kx 0 = B x 0 = B k : ( k) Kolmion sivujen pituudet ovat x 0 ja B, joten kolmion ala on A = 1 x 0B = 1 ( B ) B = B k k (1) Suora kulkee pisteen (a, b) kautta, joten y b = k(x a) y = kx ak + b Suoran yhtälön vakio B on siis B = ak + b. Sijoitetaan tämä yhtälöön (1), saadaan ( ak + b) A(k) = k = a k abk + b k = 1 a k + ab 1 b k 1 TKK-pääsykoekurssit abikurssit yksityisopetus 15

18 Tehtävänä on etsiä funktion A(k) pienin arvo välillä k ], 0[. Derivaatan nollakohdat A (k) = 1 a b ( 1) k = 1 a + 1 b k 1 a + 1 b k = 0 k a k + b = 0 a k = b : ( a ) k = b a k = ± b a Vain negatiivinen nollakohta on tarkasteluvälillä. Tutkitaan derivaatan merkkiä nollakohdan eri puolilla kohdissa b ja 1 b a a A ( ) b 1 a = a + 1 ( b b ) a Kulkukaavio = 1 a + 1 b a 4 b = 1 a a = 3 8 a < 0 A ( ) b 1 a = a + 1 b = 1 a + 1 b 4a b = 1 a + a = 3 a > 0 ( b ) a TKK-pääsykoekurssit abikurssit yksityisopetus 16

19 Pienin arvo löytyy kohdasta b. Pinta-ala on tällöin a A ( ( ) b 1 a = a b ) + ab 1 ( a b b ) 1 a = 1 ab + ab + 1 b a b = 1 ab + ab + 1 ab = ab Vastaus: Kolmion pienin mahdollinen pinta-ala on ab. TKK-pääsykoekurssit abikurssit yksityisopetus 17

20 11. Olkoot A, B ja C lauseita. Tutki ovatko lauseet a) A B, b) (A B) (C B) tautologioita. Ratkaisu. a) Vastaus: Ei ole tautologia. b) Vastaus: On tautologia. TKK-pääsykoekurssit abikurssit yksityisopetus 18

21 1. Määritä a siten, että polynomi P (x) = x 4 3x 3 7x + a on jaollinen binomilla x 1. Määritä tätä a:n arvoa vastaavat yhtälön P (x) = 0 juuret. Ratkaisu. Tutkitaan jakojäännöstä Jakojäännöksen täytyy olla nolla, jotta P (x) on jaollinen binomilla x 1. a = 0 a = Kun a =, voidaan P (x) jakaa tekijöihin P (x) = (x 1)(x 3 x 4x ). Ratkaistaan yhtälö Tulon nollasäännön mukaan P (x) = 0 (x 1)(x 3 x 4x ) = 0 x 1 = 0 x = 1 : x = 1 TKK-pääsykoekurssit abikurssit yksityisopetus 19

22 tai x 3 x 4x = 0 Merkitään q(x) = x 3 x 4x. Jaetaan q(x) tekijöihin, jotta yhtälö voidaan ratkaista. Huomataan, että q( 1) = ( 1) 3 ( 1) 4 ( 1) = 0, joten q(x):llä on nollakohta x = 1 ja siten polynomilla q(x) on tekijälauseen mukaan tekijä x + 1. (Huomautus lukijalle: nollakohta keksittiin kokeilemalla laskimella lukuja 1, 1, ja. Näitä lukuja lähdettiin kokeilemaan, koska q:n vakiotermi on ja vakiotermi on aina juurien tulo.) Edelleen Jakolaskun perusteella saadaan q(x) = (x + 1)(x x ) Yhtälö q(x) = 0 tulee muotoon (x + 1)(x x ) = 0 Tulon nollasäännön mukaan x + 1 = 0 x = 1 TKK-pääsykoekurssit abikurssit yksityisopetus 0

23 tai x x = 0 x = ( ) ± ( ) 4 1 ( ) 1 x = ± 1 x = ± 3 x = 1 ± 3 Vastaus: Oltava a =, jotta P (x) on jaollinen binomilla x 1. Tällä a:n arvolla yhtälön P (x) = 0 juuret ovat x = 1, x = 1 3, x = 1 ja x = TKK-pääsykoekurssit abikurssit yksityisopetus 1

24 13. Määritä sellainen kerroin a, että funktio { ae 3x, kun x 0, f(x) = 0, kun x < 0, on erään satunnaismuuttujan X tiheysfunktio. Mikä on tällöin kertymäfunktion lauseke? Laske P (X t), kun t 0. Ratkaisu. f(x) = { ae 3x, kun x 0, 0, kun x < 0. f(x) on satunnaismuuttujan X tiheysfunktio, jos ja Lasketaan integraali f(x) dx = = 0 f(x) 0 ae 3x 0 a 0 0 = 0 + a f(x) dx = 1. (1) f(x) dx + 0 dx + ( 1 3 = a 3 lim = a 3 lim b / b e 3x b 0 = a (0 1) 3 = a 3 Jotta ehto (1) täyttyisi, pitää olla a 3 = 1 3 a = 3. f(x) dx ae 3x dx ) 3e 3x dx ( e 3b e 0) TKK-pääsykoekurssit abikurssit yksityisopetus

25 Kertymäfunktio on Kun x 0, on Φ(x) = x f(t) dt. Φ(x) = x 0 = ( 1) = 0 x/ 3e 3t dt x 0 e 3t = (e 3x e 0 ) = 1 e 3x. 3e 3t dt Kun x < 0, on Saadaan Kertymä: Φ(x) = Φ(x) = x f(t) dt = x 0 dt = 0. { 1 e 3x, kun x 0, 0, kun x < 0. P (X t) = 1 P (x t) = 1 (1 e 3t ) = e 3t Vastaus: a = 3, kertymäfunktio on Φ(x) = ja P (X t) = e 3t. { 1 e 3x, kun x 0, 0, kun x < 0 TKK-pääsykoekurssit abikurssit yksityisopetus 3

26 14. a) Osoita, että funktiolla f(x) = ln x + x + 1, x > 0, on käänteisfunktio g = f 1. ( p.) b) Määritä käänteisfunktion derivaatta g (). ( p.) c) Missä pisteissä funktion f kuvaaja leikkaa käänteisfunktion kuvaajan? (3 p.) d) Kuinka suuressa kulmassa kuvaajat leikkaavat toisensa? ( p.) Ratkaisu. a) Tutkitaan funktion f(x) kulkua. f(x) = ln x + x + 1 f (x) = 1 x + 1 Derivaatan nollakohdat 1 x + 1 = 0 1 x = 1 x = 1 () 1 Derivaatalla ei ole nollakohtia, kun x > 0, joten se on kaikkialla saman merkkinen. f (1) = ln = 0 + = > 0 Derivaatta on kaikilla x > 0 positiivinen, joten f(x) on aidosti kasvava. Tällöin f(x):llä on käänteisfunktio. b) Käänteisfunktion derivaatalle pätee Tässä tilanteessa y 0 =, joten ( f 1 ) (y0 ) = 1 f (x 0 ), kun y 0 = f(x 0 ). f(x 0 ) = ln x 0 + x = ln x 0 + x 0 = 1 Huomataan, että ln = = 1, TKK-pääsykoekurssit abikurssit yksityisopetus 4

27 joten x 0 = 1 on yhtälön ratkaisu. Siten ( ) f 1 1 () = f (1) = = 1 Vastaus: g () = 1 c) Funktion ja sen käänteisfunktion kuvaajat ovat toistensa peilikuvia suoran y = x suhteen, joten kuvaajat leikkaavat niissä kohdissa, joissa ne leikkaavat peilaussuoran y = x. Riittää siis etsiä käyrän y = f(x) ja suoran y = x leikkauspisteet. f(x) = x ln x + x + 1 = x Tällöin y-koordinaatti on y = x = e 1. ln x = 1 e () x = e 1 Vastaus: Funktion f kuvaaja leikkaa käänteisfunktion kuvaajan pisteessä (e 1, e 1 ). d) Tarvitaan kuvaajien tangenttien kulmakertoimet. Ne saadaan derivaattojen arvoista leikkauspisteessä (e 1, e 1 ). f (e 1 ) = 1 e = e + 1 Lasketaan f 1 :n derivaatta kuten b-kohdassa. Nyt f(e 1 ) = e 1, joten ( ) f 1 (e 1 1 ) = f (e 1 ) = 1 e + 1 TKK-pääsykoekurssit abikurssit yksityisopetus 5

28 Tangenttien välinen kulma tan ϕ = k 1 k 1 + k 1k e+1) e e+1 tan ϕ = 1 + (e + 1) 1 e+1 (e + 1) e+1 tan ϕ = e+1 (e + 1) + (e + 1) 1 e+1 (e + 1) tan ϕ = e + e e e + 1 tan ϕ = e + e e + tan ϕ = 1, ϕ = 59,89... Vastaus: Kuvaajat leikkaavat toisensa 59,9 kulmassa. TKK-pääsykoekurssit abikurssit yksityisopetus 6

29 15. a) Miten määritellään tylppäkulmainen kolmio? ( p.) b) Johda kolmion pinta-alan kaava käyttäen hyväksi seuraavia tietoja: Suorakulmion pinta-ala on ab, kun a ja b ovat suorakulmion sivujen pituudet. Suorakulmion lävistäjä jakaa suorakulmion kahteen pinta-alaltaan yhtä suureen osaan. (4 p.) c) Johda puolisuunnikkaan pinta-alan kaava. (3 p.) Ratkaisu. a) Tylppäkulmaisessa kolmiossa yksi kulma on suurempi kuin 90. b) Kolmion CDE suurin kulma on E ja se voi olla joko terävä, suora tai tylppä kulma. Piirretään kolmion ympärille suorakulmio ABCD. Määritetään kolmion CDE pinta-alan lauseke pituuksien h ja a avulla. Suorakulmion AEF D pinta-ala on A 1 = a 1 h. Suorakulmion EBCF pinta-ala on A = a h. Kolmion DEF pinta-ala on Kolmion CEF pinta-ala on A 3 = A 1 = a 1h. A 4 = A = a h. TKK-pääsykoekurssit abikurssit yksityisopetus 7

30 Kolmion CDE pinta-ala on A = A 3 + A 4 A = a 1h + a h A = a 1h + a h A = (a 1 + a )h A = ah Johdetaan seuraavaksi pinta-alan kaava tapauksessa, jossa korkeusjana on suorakulmaisen kolmion kateetti. Jos kolmio ABD on suorakulmainen ja A = 90, niin kateetit ovat sivut AB ja AD. Suorakulmion ABCD pinta-ala on tällöin A 1 = ah ja kolmion ABD pinta-ala A = A 1 A = ah Johdetaan edellisiä tuloksia hyväksi käyttäen pinta-ala vielä siinä tapauksessa, jossa korkeusjana tulee kohtisuorasti kannan jatkeelle. TKK-pääsykoekurssit abikurssit yksityisopetus 8

31 Kolmion kanta a = a a 1. Kolmion ADE pinta-ala on A 1 = a 1h Kolmion BCD pinta-ala on A = a h Suorakulmion ABCD pinta-ala on A s = a h Kolmion BDE pinta-ala A saadaan vähentämällä suorakulmion ABCD pintaalasta kolmioiden ADE ja BCD alat, eli A = A s (A 1 + A ) ( a1 h A = a h + a ) h A = a h a 1h A = (a a 1 ) h Sij. a a 1 = a A = ah TKK-pääsykoekurssit abikurssit yksityisopetus 9

32 c) Täytyy tutkia kaksi tapausta Tapaus 1 Tapaus Kolmion ABD pinta-ala on molemmissa tapauksissa A 1 = ah. Kolmion BCD pinta-ala on molemmissa tapauksissa A = bh. Puolisuunnikkaan ABCD pinta-ala on molemmissa tapauksissa A = A 1 + A A = ah + bh ah + bh A = A = 1 (a + b)h TKK-pääsykoekurssit abikurssit yksityisopetus 30

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Pitkä matematiikka, syksy 05 Mallivastaukset, 3.9.05 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja diplomi-insinööri

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Ratkaisuja, Tehtävät

Ratkaisuja, Tehtävät ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lyhyt matematiikka, syksy 015 Mallivastaukset, 3.9.015 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0. Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (

Lisätiedot

Kenguru 2016 Student lukiosarjan ratkaisut

Kenguru 2016 Student lukiosarjan ratkaisut sivu 1 / 22 Ratkaisut TEHTÄVÄ 1 2 3 4 5 6 7 8 9 10 VASTAUS A C E C A A B A D A TEHTÄVÄ 11 12 13 14 15 16 17 18 19 20 VASTAUS A C B C B C D B E B TEHTÄVÄ 21 22 23 24 25 26 27 28 29 30 VASTAUS D C C E E

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Pitkä matematiikka, kevät 016 Mallivastaukset, 3.3.016 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8906 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a) K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +

Lisätiedot

4 8 täysimittaista harjoituspääsykoetta oikeassa koesalissa.

4 8 täysimittaista harjoituspääsykoetta oikeassa koesalissa. Tiesitkö tätä? MAFY:n lääkiskurssi 2,2-kertaistaa mahdollisuutesi päästä sisään yhdellä yrityksellä. Poikkeuksellisen kovista tuloksista johtuen lääkikset alkavatkin täyttyä MAFY:n kurssilaisista. MAFY:n

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Tiesitkö tätä? Lääkiskurssi. DI-pääsykoekurssi.

Tiesitkö tätä? Lääkiskurssi. DI-pääsykoekurssi. Tiesitkö tätä? MAFY:n lääkiskurssi,6-kertaistaa mahdollisuutesi päästä sisään yhdellä yrityksellä. Poikkeuksellisen kovista tuloksista johtuen lääkikset alkavatkin täyttyä MAFY:n kurssilaisista. Lääkiskurssi

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268. KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =

Lisätiedot

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,. Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

11 MATEMAATTINEN ANALYYSI

11 MATEMAATTINEN ANALYYSI Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan

Lisätiedot

3 Määrätty integraali

3 Määrätty integraali Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Tiesitkö tämän? MAFY-valmennuksen asiakkaat veivät. 40% pk-seudun lukioista käyttää Mafynettiä

Tiesitkö tämän? MAFY-valmennuksen asiakkaat veivät. 40% pk-seudun lukioista käyttää Mafynettiä Tiesitkö tämän? MAFY-valmennuksen asiakkaat veivät 37 % 31 % Helsingin suomenkielisen yleislääketieteellisen opiskelupaikoista vuonna 017. Aalto-yliopiston tuotantotalouden opiskelupaikoista vuonna 017.

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

5-8 täysmittaista harjoituspääsykoetta oikeassa koesalissa.

5-8 täysmittaista harjoituspääsykoetta oikeassa koesalissa. Tiesitkö tätä? MAFY:n lääkiskurssi,5-kertaistaa mahdollisuutesi päästä sisään yhdellä yrityksellä. Poikkeuksellisen kovista tuloksista johtuen lääkikset alkavatkin täyttyä MAFY:n kurssilaisista. Lääkiskurssi

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot