puheen laatu kärsii koodauksesta mahdollisimman vähän. puhe pakkautuu mahdollisimman pieneen määrään bittejä.
|
|
- Tuomas Ahonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luku 1 Puheen koodaus Puheen koodauksella tarkoitetaan puhesignaalin esittämiseen tarvittavan bittimäärän pienentämistä sillä tavalla, että puhesignaalin laatu ja ymmärrettävyys kärsivät mahdollisimman vähän. Puheen koodauksella on suuri merkitys mm. digitaalisissa matkapuhelinjärjestelmissä ja tämän vuoksi puheen koodausmenetelmät ovat kehittyneet voimakkaasti viimeisten 15 vuoden aikana. Kaupallisesti ajateltuna puheen koodaus on puheenkäsittelyn ylivoimaisesti tärkein sovellus. Koodausta tarvitaan kun välitetään digitaalinen puhesignaali jonkin kanavan yli, erityisesti matkapuhelinjärjestelmissä tai puheen tallennuksessa. Hyvältä puhekoodekilta (engl. codec = coder-decoder) vaaditaan seuraavia ominaisuuksia: puheen laatu kärsii koodauksesta mahdollisimman vähän. puhe pakkautuu mahdollisimman pieneen määrään bittejä. koodaaminen/dekoodaaminen aiheuttaa vain pienen viiveen. koodekki ei ole herkkä lähetyksessä tapahtuville virheille. koodaaminen/dekoodaaminen on laskennallisesti nopeaa. koodekki toimii hyvin myös kohinaiselle puheelle (ja mielellään vielä musiikille). useampi peräkkäinen koodaaminen ei heikennä laatua suhteettoman paljon. Tällaista täydellistä koodekkia ei ole olemassa, koska osa vaatimuksista on toisensa poissulkevia, esimerkiksi bittimäärän pienentäminen heikentää puheen laatua. Koodekkeja on kuitenkin kehitetty ja standardoitu suuri määrä erilaisia sovelluksia varten. Esimerkiksi matkapuhelimen puhekoodekissa kaikki edellä olleet vaatimukset ovat oleellisia, kun taas vaikkapa puheen tallennussovelluksessa 1
2 2 LUKU 1. PUHEEN KOODAUS laskennalliset vaatimukset, viive ja virhesietoisuus ovat epäoleellisia ja puheen laatu ja bittimäärä ovat tärkeitä. Koodausmenetelmiä on useita erilaisia, mutta ne voidaan jakaa karkeasti aaltomuotokoodaukseen ja lähdekoodaukseen. Aaltomuotokoodauksessa pyritään säilyttämään (puhe)signaalin alkuperäinen aaltomuoto ja koodaus perustuu kvantisointiin ja aaltomuodossa olevan redundanssin poistamiseen. Lähdekoodauksessa taas keskitytään aaltomuodon sijasta puheen parametrien koodaamiseen (herätteen tyyppi, ääniväylämalli, formanttitaajuudet,...), joiden avulla puhe voidaan rekonstruoida dekooderissa. Lähdekoodauksella koodatun puheen aaltomuoto voi siis erota hyvinkin paljon alkuperäisestä. Raja näiden koodausmenetelmien välillä ei ole täysin terävä, etenkin uudemmissa synteesi-analyysi koodekeissa, joissa puheen aaltomuoto pyritään syntetisoimaan sopivien parametrien avulla. Seuraavassa oletetaan yleisesti että puhesignaali on kapeakaistaista, eli puheen näytteenottotaajuus on 8 khz ja kaista on sama kuin lankapuhelinverkossa eli Hz. Sovelluksissa joissa puheen ei täydy kulkea kiinteän lankapuhelinverkon kautta voidaan käyttää korkeampaa puheenlaatua, esim. videokonferensseissa tai internetin yli välitettävässä puheessa. Näissä sovelluksissa käytetään usein Hz kaistanleveyttä ja 16 khz näytteenottotaajuutta, jota kutsutaan laajakaistaiseksi puheeksi. Aaltomuotokoodaus Aaltomuotokoodaus pohjautuu siihen että signaalissa olevaa redundanssia poistetaan siten että aaltomuoto koodauksen ja dekoodauksen jälkeen pysyy mahdollisimman lähellä alkuperäistä. Lähdemme liikkeelle yksinkertaisesta kvantisoinnista ja katsomme tämän jälkeen useita menetelmiä miten sitä voidaan tehostaa. Pulssikoodimodulaatio PCM Pulssikoodimodulaatio (engl. pulse-code modulation eli PCM) koodaa jatkuvaaikaisen puhesignaalin s a (t) ajan suhteen tasavälisiksi näytteiksi s(n), missä kvantisointi on myös tasavälinen, kuten kuva 1.1 osoittaa. Jos käytössä on R bittiä näytettä kohden, voidaan koodata 2 R eri amplituditasoa. Näiden amplituditasojen voidaan ajatella olevan koodikirjassa, ja jokainen kvantisoitu näyte esitetään binaarilukuindeksinä tähän koodikirjaan, jota vastaavaa arvoa alkuperäinen näyte vastaa parhaiten. PCM:n tapauksessa 2-bittinen koodikirja voisi olla vaikkapa indeksi arvo
3 3 Alkuperäinen kvantisoimaton signaali s a (n) voidaan aina esittää muodossa s a (n) = s(n) q(n), missä s(n) on kvantisoitu signaali ja q(n) on kvantisointivirhe. Oletetaan, että signaalin dynamiikka on rajoitettu välille [ 1, 1]. Tällöin PCM:n kvantisointivirheen jakaumaa voidaan menestyksekkäästi mallintaa tasajakaumalla f q (ξ) = 1, /2 ξ /2, missä = 2 1 R on kvantisointiaskel. Kohtuullisen hyvä indikaatio aaltomuotokoodauksen laadusta saadaan laskemalla signaali/kohina-suhde (engl. signal-to-noise ratio eli SNR), tai tarkemmin oikeastaan hyötysignaalin ja kohinan tehojen suhde. Vielä tarkemmin ottaen SNR määritellään kaavalla SNR = 10 log 10 S E (db), missä S on hyötysignaalin keskimääräinen teho, E on kohinan keskimääräinen teho ja yksikkö on desibeli (db). Huomaa että SNR on logaritminen, eli jos hyötysignaalin teho kasvaa kymmenkertaiseksi niin SNR kasvaa kymmenellä (eikä siis kymmenkertaistu). Lasketaan seuraavaksi R-bittisen PCM-kvantisoijan signaali/kohinasuhde. Tasavälisen kvantisoijan kvantisointivirheen keskimääräinen teho on /2 E{q(n) 2 1 } = /2 x2 dx = 1 1 ( ( /2) 3 ( /2) 3) 3 = 2 12 = 2 2R 3, missä E{} on odotusarvo-operaattori (joka on lukijalle toivottavasti tuttu todennäköisyyslaskennasta). Entä mikä on hyötysignaalin teho? Riippuu signaalista, mutta parhaassakin (ja täysin epärealistisessa) tapauksessa signaalin kaikki näytteet ovat amplitudiltaan ±1, jolloin keskimääräinen teho on 1. Siis PCM-kvantisoijan signaali/kohina-suhde on SNR = 10 log R 3
4 4 LUKU 1. PUHEEN KOODAUS Kvantisointitasot, 4 bittinen PCM Kvantisoitu arvo Kvantisoimaton arvo Kuvio 1.1: Tasavälinen PCM-kvantisointi saturoinnilla, eli dynamiisen alueen ulkopuoliset arvot asetetaan mahdollisimman lähelle kvantisoimatonta arvoa. Tasoja on 16 eli kvantisointi on 4-bittinen. = 10 log 10 ( 3 4 R ) = 10R log 10 (4) 10 log 10 (3) = 6.02R Toisin sanoen, yhden bitin lisääminen kvantisointitarkkuuteen nostaa signaali/kohinasuhdetta n. 6 db. Puhesignaalien kvantisoinnissa kannattaa käyttää epätasavälistä kvantisointia, osittain siksi, että puheessa on pääosin matalia amplitudeja, osittain siksi, että ihmisen kuulo on vähemmän herkkä virheille kun signaali on voimakas (lisää infoa kuulon ominaisuuksista löytyy kurssilla SGN-4200 Digitaalinen Audio). Kuvassa 1.2 on esimerkki puheen amplitudijakaumasta josta huomataan että matalia amplitudeja on huomattavasti enemmän kuin korkeita. Yleisesti jos tunnetaan signaalin amplitudien jakauma (joka voidaan aina estimoida testiaineistosta), voidaan määrittää tälle jakaumalle ja valitulle virhefunktiolle optimaalinen ns. Lloyd-Max kvantisoija. Epätasavälinen kvantisointi toteutetaan käytännössä epälineaarisella muun-
5 Puheen amplitudijakauma 10 4 Esiintymien lukumäärä Näytearvo Kuvio 1.2: Amplitudien jakauma 20 s näytteelle puhetta. noksella ennen tasavälistä kvantisointia ja vastaavalla käänteismuunnoksella kvantisoinnin jälkeen. Tätä sanotaan kompandoinniksi (engl. compression, expanding). Puheen tapauksessa Euroopassa käytetään lankapuhelinverkoissa A-law-kompandointia, joka muuntaa näytearvon x seuraavasti: (ei kannata opetella ulkoa) y = Ax 1log 10 A, 0 x 1 A sgn(x) 1log 10 (A x ), 1 x 1, 1log 10 (A) A missä A = ja sgn(x) on x:n merkki (siis -1 tai 1). Pohjois-Amerikan puhelinliikenteessä käytetään µ-law-kompandointia, joka perustuu samantyyliseen logaritmiseen kompressointiin: log(1 µ x ) y = sgn(x) log(1 µ), missä µ = 255 ja käytetään luonnollista logaritmia. Vastaavat ekspandoinnit saadaan ratkaisemalla y:n avulla x edellisistä yhtälöistä (jätetään lukijalle harjoitustehtäväksi). Epätasavälisellä kvantisoinnilla saavutetaan suuri etu puhesignaalien kvantisoinnissa; 12 bpn (bittiä/näyte) tasavälisellä kvantisoinnilla vastaa subjektiivisesti
6 6 LUKU 1. PUHEEN KOODAUS suunnilleen 8 bpn em. kvantisoinneilla. Karvalakki-PCM-kvantisointiin löytyy iso nippu ehostuksia, joita katsotaan seuraavaksi. Periaatteessa voidaan lisäksi käyttää mitä tahansa yleisiä häviöttömiä kompressiomenetelmiä (joita löytyy mm. kurssilta SGN-2306 Signal Compression), mutta jatkossa keskitytään menetelmiin jotka sopivat nimenomaan puheelle. PCM adaptiivisella kvantisointiaskeleella Kvantisointiaskelta voidaan säätää signaalin mukaan; tätä menetelmää sanotaan adaptiiviseksi kvantisoinniksi. Perusajatuksena on pienentää kvantisointiaskelta silloin kun signaalin taso on pieni, jolloin kvantisointivirhe pienenee myös. Vastaavasti suurien arvojen myötä kvantisointiaskelta suurennetaan. Adaptiivisesta kvantisoinnista on erityisesti hyötyä epästationaaristen signaalien matalan bittimäärän (<8) kvantisoinnissa. Yleinen menetelmä kvantisointiaskeleen (n) säätämiseksi on (n 1) = (n)m( x(n)), missä M() on kiinteä funktio, x on hetkellä n olevan puhenäytteen kvantisoitu arvo ja (n1) on kvantisointiaskel hetkellä n1. Funktio M() voidaan määrittää kokeellisesti testiaineiston avulla, ideana kuitenkin se että kvantisointiaskelta kasvatetaan (eli M() > 1) kun edellisen näytteen kvantisointitaso on pieni ja pienennetään (eli M() < 1) kun edellisen näytteen kvantisointitaso on suuri. Tällä menetelemällä on se hyvä puoli, että kvantisointitasot saadaan vastaanotettaessa rekonstruoitua ilman että täytyy lähettää lisätietoa kvantisointiaskeleen muutoksista. Miksi? Oletetaan, että hetkellä n kooderissa käytetään kvantisointiaskelta (n) ja saadaan kvantisoitu näyte x(n), joka lähetetään vastaanottimeen. Mutta koska seuraava kvantisointiaskel (n 1) riippuu ainoastaan edellisestä kvantisointiaskelesta (n) (joka tiedetään dekooderissa), näytteestä x(n) (joka lähetettiin dekooderiin joten sekin on tiedossa) ja kiinteästä funktiosta M() (joka on kiinteästi koodattu kooderiin ja dekooderiin), voidaan se laskea myös vastaanottimessa. Tämä on tärkeä synkronointipiirre kooderin ja dekooderin välillä paljon monimutkaisemmissakin koodekeissa: kooderin ja dekooderin tulisi olla samassa tilassa. Mielellään vielä niin, että jos ne joutuvat eri tilaan esim. lähetyksessä tapahtuvan virheen vuoksi, ne pystyisivät synkronoitumaan uudestaan suhteellisen nopeasti. Differentiaalinen PCM alias DPCM Perusidea: lähetetään kvantisoitujen näytteiden sijasta niiden väliset erotukset. Tämän pitäisi toimia jos erotukset ovat keskimäärin pienempiä kuin näytteet,
7 jolloin niiden vaatima dynaaminen alue on pienempi, eli samalla bittimäärällä voidaan käyttää pienempää kvantisointiaskelta, joka luonnollisesti pienentää kvantisointivirhettä. Itse asiassa erosignaalin s(n) s(n 1) teho on E { (s(n) s(n 1)) 2} = E{s(n) 2 } 2E{s(n)s(n 1)} E{s(n 1) 2 } = r(0) 2r(1) r(0) = 2 (r(0) r(1)), missä r(k) on puheen autokorrelaatio viiveellä k. Puheen teho taas on r(0), joten erosignaalin teho on pienempi kuin puheen jos r(1) > 0.5. Puheelle on yleisesti r(1) r(0) > Tarkastellaan kuvion 1.3 mukaista DPCM-kvantisointia, jossa lasketaan sisäänmenon peräkkäisten näytteiden erotus d(n) joka kvantisoidaan ja lähetetään. Kvantisointi on mallinnettu kvantisointikohinan q(n) lisäämisellä. Vastaanottimessa erotukset vastaavasti summataan. q(n) r(0) 7 x(n) - d(n) u(n) y(n) -1-1 z Kuvio 1.3: Avoin DPCM-kvantisoija, jossa ennustus on ŝ(n) = s(n 1). Kvantisointikohina on mallinnettu lisättynä kohinalähteenä q(n). Tällä menetelmällä on kuitenkin vakava puute: kvantisointikohina summautuu vastaanottimessa. Katsotaanpa miten. Kuviosta saadaan (ottamalla signaalien z- muunnokset) D(z) = X(z)( ), U(z) = D(z) Q(z), Y (z) = U(z) z 1 Y (z) z
8 8 LUKU 1. PUHEEN KOODAUS eli Edelleen sijoittamalla Y (z) = Y (z) = U(z). = U(z) D(z) Q(z) = X(z)(1 z 1 ) Q(z) = X(z) Q(z). Suodattimen 1 1 z 1 impulssivaste on yksikköaskel eli kvantisointikohina summautuu, joten periaatteessa kohinan vaikutus voi kasvaa vastaanottimessa mielivaltaisen suureksi (saturointi luonnollisesti estää tämän käytännössä). Edellisen tapaista järjestelmää, jossa kvantisointi tehdään alkuperäisen signaalin pohjalta, sanotaan avoimeksi (open-loop). Vaihtoehto on suljettu järjestelmä (closed-loop), jossa kvantisointi tehdään dekoodatun signaalin perusteella. Suljetuilla järjestelmillä on se tärkeä ominaisuus, että kvantisointikohina ei summaudu vastaanottimessa, koska kooderissa valitaan kvantisoitu näyte siten että dekoodattu signaali on mahdollisimman hyvä. Tämä on oleellinen piirre myöhemmin esitettävissä synteesi-analyysi koodekeissa. Esimerkki sovellettuna DPCMkvantisointiin on kuvassa 1.4. q(n) x(n) ^ x(n) - ~ e(n) y(n) ~ x(n) z -1 z -1 Kuvio 1.4: Suljettu DPCM-kvantisoija, jossa ennustaja on z 1. Kvantisointikohina ei summaudu vastaanottimessa. Lasketaan seuraavaksi suljetun DPCM-kvantisoijan siirtofunktio. Kuviosta Ẽ(z) = X(z) ˆX(z) Q(z),
9 9 X(z) = z 1 X(z) Ẽ(z) eli X(z) = Ẽ(z), ˆX(z) = z 1 X(z), Y (z) = Signaalien tulkinnat ovat seuraavat: Ẽ(z): kvantisoitu residuaalivirhe X(z): rekonstruoitu signaali Ẽ(z). ˆX(z): ennustus rekonstruktion perusteella Edellisistä kaavoista (tai suoraan kuviosta) havaitaan, että Y (z) = X(z), eli siis kooderiin sisältyy dekooderi. Lasketaan vielä X(z): josta seuraa X(z) = Ẽ(z) = X(z) ˆX(z) Q(z) = X(z) z 1 X(z) Q(z) X(z) = 1 X(z) Q(z) 1 z 1 1 z 1 = ( ) = X(z) Q(z), X(z) Q(z) kuten pitääkin. Seuraava parannus DPCM-koodekkiin on käyttää yksinkertaisen erotuksen sijasta monimutkaisempaa ennustusta. Suodatin z 1 voidaan ajatella ennustajaksi ˆx(n) = x(n 1),
10 10 LUKU 1. PUHEEN KOODAUS jossa siis ennustetaan seuraavaa näytettä edellisellä. Suljetun järjestelmän tapauksessa oikeastaan ˆx(n) = x(n 1), jossa ennustus tehdään siis dekoodatun arvon perusteella. Korvattaessa ennustaja z 1 suodattimella P(z) = p(1)z 1... p(n)z n koodekin vuokaavio löytyy kuviosta 1.5. Kuvio 1.5: Suljettu DPCM-kvantisoija ennustajalla P(z) = p(1)z 1... p(n)z n. Huomaa että ennustajalla ei ole vakiotermiä. Käyttämällä parempaa ennustavaa suodatinta saadaan ennustusvirheen tehoa pienennettyä, jolloin kvantisointi voidaan tehdä vähemmillä biteillä. Tarkoitukseen sopivan ennustaja voidaan määrittää lineaarisen ennustuksen avulla ja se riippuu ainoastaan puheen (keskimääräisestä) autokorrelaatiofunktiosta. Tämä taas voidaan estimoida kohtuullisesta määrästä puhedataa. Jo toisen asteen ennustaja pienentää kohinan tehoa n. 6 db, jolloin sama signaali/kohina-suhde saavutetaan lähettämällä 1 bpn (eli 8000 bps) vähemmän kuin ilman ennustajaa.
Puheenkoodaus. koodekki toimii hyvin myös kohinaiselle puheelle (ja mielellään vielä musiikille ja muille yleisille signaaleille)
Puheenkoodaus Puheenkoodauksella tarkoitetaan puhesignaalin esittämiseen tarvittavan bittimäärän pienentämistä sillä tavalla, että puhesignaalin laatu ja ymmärrettävyys kärsivät mahdollisimman vähän. Puheenkoodauksella
LisätiedotPuheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM
Puheenkoodaus Olivatpa kerran iloiset serkukset PCM, DPCM ja ADPCM PCM eli pulssikoodimodulaatio Koodaa jokaisen signaalinäytteen binääriseksi (eli vain ykkösiä ja nollia sisältäväksi) luvuksi kvantisointitasolle,
LisätiedotSGN-4051 Puheenkoodaus
SGN-4051 Puheenkoodaus Konsta Koppinen konsta.koppinen@tut.fi 23. helmikuuta 2009 Sisältö 1 Aaltomuotokoodaus 1 1.1 Pulssikoodimodulaatio eli PCM.................. 2 1.1.1 Epätasavälinen kvantisointi.................
LisätiedotAlla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina.
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki 1 Kirjan lukuun 3 liittyvää lisäselitystä ja esimerkkejä Kirjan luvussa 3 (Signals Carried over the Network) luodaan katsaus siihen, minkälaisia
LisätiedotJohdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio
Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:
Lisätiedot1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen
AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and
LisätiedotLARI KUMPU ADPCM:N KÄYTTÖ ÄÄNEN HÄVIÖTTÖMÄSSÄ PAKKAUKSESSA
LARI KUMPU ADPCM:N KÄYTTÖ ÄÄNEN HÄVIÖTTÖMÄSSÄ PAKKAUKSESSA Kandidaatintyö Tarkastaja: lehtori Konsta Koppinen Työ jätetty tarkastettavaksi 19. joulukuuta 2010 ii TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO
LisätiedotT-61.246 DSP: GSM codec
T-61.246 DSP: GSM codec Agenda Johdanto Puheenmuodostus Erilaiset codecit GSM codec Kristo Lehtonen GSM codec 1 Johdanto Analogisen puheen muuttaminen digitaaliseksi Tiedon tiivistäminen pienemmäksi Vähentää
LisätiedotLaskuharjoitus 4 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.
Lisätiedot1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
TL61, Näytejonosysteemit (K00) Harjoitus 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) ja ) (t) = cos(00πt)cos(000πt).
LisätiedotELEC-C5070 Elektroniikkapaja (5 op)
(5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea
LisätiedotELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus
L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin
LisätiedotSignaalien datamuunnokset. Digitaalitekniikan edut
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena
LisätiedotSignaalien datamuunnokset
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan
Lisätiedot11. kierros. 1. Lähipäivä
11. kierros 1. Lähipäivä Viikon aihe AD/DA-muuntimet Signaalin digitalisointi Kvantisointivirhe Kvantisointikohina Kytkinkapasitanssipiirit Mitoitus Kontaktiopetusta: 6 tuntia Kotitehtäviä: 4 tuntia Tavoitteet:
LisätiedotDigitaalinen audio & video, osa I
Digitaalinen audio & video, osa I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva +JPEG Petri Vuorimaa 1 Johdanto Multimediassa hyödynnetään todellista ääntä,
LisätiedotDigitaalinen audio & video I
Digitaalinen audio & video I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva + JPEG 1 Johdanto Multimediassa hyödynnetään todellista ääntä, kuvaa ja videota
LisätiedotDigitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan
Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Digitaalitekniikan matematiikka Luku 1 Sivu 2 (19) Johdanto Tässä luvussa esitellään tiedon lajeja ja tiedolle tehtävää käsittelyä käsitellään tiedon
LisätiedotDigitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio
Digitaalinen audio & video, osa I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva +JPEG Petri Vuorimaa 1 Johdanto Multimediassa hyödynnetään todellista ääntä,
LisätiedotSynteesi-analyysi koodaus
Luku 2 Synteesi-analyysi koodaus Tärkein koodausmenetelmä puheenkoodausstandardeissa 9-luvulta alkaen on ollut synteesi-analyysi koodaus (engl. analysis-by-synthesis). Tässä lähestymistavassa optimaaliset
LisätiedotOngelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?
Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse
LisätiedotDigitaalinen tiedonsiirto ja siirtotiet
A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät, Luento 1 Digitaalinen tiedonsiirto ja siirtotiet Olav Tirkkonen [Luku 1: Introduction, kokonaisuudessaan] A! OSI-kerrokset Tiedonsiirtojärjestelmiä
LisätiedotPuhetie, PCM järjestelmä, johtokoodi
Puhetie, PCM järjestelmä, johtokoodi PCM~PulseCodeModulation Näytteenotto Kvantisointi ÿ Lineaarinen ÿ Epälineaarinen Kvantisointisärö TDM-kanavointi PCM-kehysrakenne, CRC -ylikehys PCM, PCM, PCM 8, PCM
LisätiedotAD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (1997). Digital audio signal processing
AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (1997). Digital audio signal processing Sisältö: Näytteistys, laskostuminen Kvantisointi, kvantisointivirhe, kvantisointisärö,
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa
LisätiedotDynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.
Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!
LisätiedotVirheen kasautumislaki
Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain
LisätiedotIIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
Lisätiedot3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.
3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn
Lisätiedot1 Johdanto. Johdanto Vaatimuksia audiokoodekille. Johdanto 1.1 Vaatimuksia audiokoodekille
Kuulon malleihin perustuva audiokoodaus, osa I Lähteet: Kahrs, Brandenburg, (Editors). (1998). Applications of digital signal processing to audio and acoustics Kluwer Academic. Bernd Edler. (1997). Low
LisätiedotSuccessive approximation AD-muunnin
AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register
LisätiedotFlash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen
Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan
LisätiedotLUKU 6 TÄRKEIMPIEN ASIOIDEN KERTAUS
LUKU 6 TÄRKEIMPIEN ASIOIDEN KERTAUS 1 (8) Kantatajuisen järjestelmän lähdön (SNR) D = P T /N 0 W käytetään referenssinä verrattaessa eri kantoaaltomodulaatioita keskenään. Analyysissä oletettiin AWGN-kanava,
LisätiedotSuodatus ja näytteistys, kertaus
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;
LisätiedotSGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen
SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa
LisätiedotDigitaalinen Audio & Video I
Digitaalinen Audio & Video I Johdanto Digitaalinen audio Psykoakustiikka Äänen digitaalinen esitys Monikanavaääni ja äänen digitaalinen siirto Digitaalinen kuva Diskreetti kosiinimuunnos JPEG 1 Johdanto
LisätiedotKohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)
Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin
Lisätiedot1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
LisätiedotMuuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:
Lisätiedot1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.
1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat
LisätiedotLUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 2015
1 LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS 51357A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 015 Kantatajuisen järjestelmän lähdön (SNR) D = P T /(N 0 W) käytetään referenssinä verrattaessa eri kantoaaltomodulaatioita
LisätiedotKanavointi ja PCM järjestelmä
Kanavointi ja PCM järjestelmä Kanavointi PCM ~ Pulse Code Modulation ƒ Näytteenotto ƒ Kvantisointi y Lineaarinen y Epälineaarinen ƒ Kvantisointisärö TDM-kanavointi ƒ PCM 0, PCM 0, PCM 80, PCM 90 Rka/ML
Lisätiedot5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
LisätiedotJATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI
1 JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI Miten tiedonsiirrossa tarvittavat perusresurssit (teho & kaista) riippuvat toisistaan? SHANNONIN 2. TEOREEMA = KANAVAKOODAUS 2 Shannonin 2. teoreema
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
LisätiedotELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.
LisätiedotTuntematon järjestelmä. Adaptiivinen suodatin
1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.
Lisätiedot1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus
1. Perusteita 1. Äänen fysiikkaa 2. Psykoakustiikka 3. Äänen syntetisointi 4. Samplaus ja kvantisointi 5. Tiedostoformaatit 1.1. Äänen fysiikkaa ääni = väliaineessa etenevä mekaaninen värähtely (aaltoliike),
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus
Lisätiedot1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
LisätiedotKOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )
KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen
Lisätiedot5 Lineaarinen ennustus
5 Lineaarinen ennustus Lineaarinen ennustus (linear prediction, LP) on yksi tärkeimmistä puheenkäsittelyn työkaluista Sitä voidaan eri tilanteessa käyttää eri tavoilla, mutta puheenkäsittelyn kannalta
LisätiedotMediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin
Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä
LisätiedotAV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen
AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys
LisätiedotLaskuharjoitus 5. Mitkä ovat kuvan 1 kanavien kapasiteetit? Kuva 1: Kaksi kanavaa. p/(1 p) ) bittiä lähetystä kohti. Voidaan
Informaatioteoria ELEC-C7 5 Laskuharjoitus 5 Tehtävä 5.3 Mitkä ovat kuvan kanavien kapasiteetit?.3.7 a b Kuva : Kaksi kanavaa b Binäärisessä Z-kanavassa virhe tapahtuu todennäköisyydellä p ja virhe todennäköisyydellä.
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä
Lisätiedot1 Johdanto. Tiedonsiirron kaistanleveys kasvaa jatkuvasti, mutta kaistan tarve kasvaa vielä enemmän tarve kompressiotekniikoille
Kuulon malleihin perustuva audiokoodaus Lähteet: Kahrs, Brandenburg, (Editors). (1998). Applications of digital signal processing to audio and acoustics. Kluwer Academic. Bernd Edler. (1997). Low bit rate
LisätiedotVahvistimet ja lineaaripiirit. Operaatiovahvistin
Vahvistimet ja lineaaripiirit Kotitentti 3 (2007) Petri Kärhä 20/01/2008 Vahvistimet ja lineaaripiirit 1 Operaatiovahvistin (Operational Amplifier, OpAmp) Perusvahvistin, toiminta oletetaan suunnittelussa
LisätiedotDigitaalinen signaalinkäsittely Johdanto, näytteistys
Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn
LisätiedotS-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu
S-38.1105 Tietoliikennetekniikan perusteet Jukka Manner Teknillinen korkeakoulu Luento 3 Signaalin siirtäminen Tiedonsiirron perusteita Jukka Manner Teknillinen korkeakoulu Luennon ohjelma Termejä, konsepteja
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotA/D-muuntimia. Flash ADC
A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (
LisätiedotJuha Henriksson. Digitaalinen äänentallennus. 5.12.2005 Dr. Juha Henriksson Finnish Jazz & Pop Archive
Juha Henriksson Digitaalinen äänentallennus 1 Äänen korkeus Ääni on värähtelyä, joka etenee ilmassa ilmamolekyylien harventumina ja tiivistyminä Äänen korkeutta kutsutaan äänen taajuudeksi Taajuuden yksikkö
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotKurssin perustiedot. ELEC-C7110 Informaatioteknologian perusteet. Tämän viikon aiheet. Tiedonsiirron perusteita. Tiedonsiirron rakenneosat
Kurssin perustiedot ELEC-C7 Informaatioteknologian perusteet Kalevi Kilkki Tietoliikenne- ja tietoverkkotekniikan laitos siirto 5.. & 7..6» Kalevi Kilkki: Luennot ja kurssin sisältö kalevi.kilkki@aalto.fi,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
Lisätiedot8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
LisätiedotRyhmätyö. Kalle Palomäki Signaalinkäsi5elyn ja akus8ikan laitos
Ryhmätyö Kalle Palomäki Signaalinkäsi5elyn ja akus8ikan laitos Aikataulu Viikko Luento Ope-ajat Harjoitus 5: 5.10.- Ryhmätyöohjaus, suunnitelman iteroin8a Emilio, Jaakko, Jussi, Niklas, Kalle 6: 12.10-
Lisätiedot2. kierros. 2. Lähipäivä
2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit
LisätiedotKanavointi ja PCM järjestelmä. Kanavointi pakkaa yhteyksiä johdolle
Kanavointi ja PCM järjestelmä Kanavointi PCM ~ Pulse Code Modulation Näytteenotto Kvantisointi Lineaarinen Epälineaarinen Kvantisointisärö TDM-kanavointi PCM-kehysrakenne, CRC4 -ylikehys PCM 3, PCM, PCM
LisätiedotTekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio
Tekniikka ja liikenne 4.4.2011 1 (5) Tietoliikennetekniikan laboratorio Työ 1 PCM-työ Työn tarkoitus Työssä tutustutaan pulssikoodimodulaation tekniseen toteutustapaan. Samalla nähdään, miten A/Dmuunnin
LisätiedotPAVIRO Kuulutus- ja äänievakuointijärjestelmä ammattilaistason äänenlaadulla Joustavuutta alusta alkaen PAVIRO 1
PAVIRO Kuulutus- ja äänievakuointijärjestelmä ammattilaistason äänenlaadulla Joustavuutta alusta alkaen PAVIRO 1 2 PAVIRO PAVIRO 3 Pitää ihmiset turvassa, tietoisena, ja viihdyttää Boschilla on yli 100
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotSignaalinkäsittelyn sovellukset
Signaalinkäsittelyn laitos. Opetusmoniste 26: Institute of Signal Processing. Lecture Notes 26: Heikki Huttunen Signaalinkäsittelyn sovellukset Tampere 26 Tampereen teknillinen yliopisto. Signaalinkäsittelyn
LisätiedotPuhetie, PCM järjestelmä, johtokoodi
Puhetie, PCM järjestelmä, johtokoodi PCM ~ Pulse Code Modulation Näytteenotto Kvantisointi ÿ Lineaarinen ÿ Epälineaarinen Kvantisointisärö TDM-kanavointi PCM-kehysrakenne, CRC -ylikehys PCM, PCM, PCM 8,
LisätiedotSignaalien digitaalinen käsittely
Signaalien digitaalinen käsittely Antti Kosonen Syksy 25 LUT Energia Sähkötekniikka Alkulause Luentomoniste pohjautuu kirjaan Digital Signal Processing: Principles, Algorithms, and Applications, Proakis
LisätiedotReaalifunktioista 1 / 17. Reaalifunktioista
säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,
LisätiedotMICHAEL SITTIG ÄÄNEN HÄVIÖTÖN PAKKAAMINEN. Kandidaatintyö
MICHAEL SITTIG ÄÄNEN HÄVIÖTÖN PAKKAAMINEN Kandidaatintyö Tarkastaja: lehtori Konsta Koppinen Työ jätetty tarkastettavaksi 24. toukokuuta 2010 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan
Lisätiedot3. Pulssimodulaatiojärjestelmät
3.1. Yleistä 3. Pulssimodulaatiojärjestelmät kappaleessa käsitellään pääasiassa analogisesta digitaaliseen tietoliikenteeseen siirtymiseen liittyviä asioita: näytteenotto, joka on kaikkien pulssimodulaatiomenetelmien
LisätiedotSignaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotSISÄLLYS - DIGITAALITEKNIIKKA
SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotKuvan pakkaus JPEG (Joint Photographic Experts Group)
Kuvan pakkaus JPEG (Joint Photographic Experts Group) Arne Broman Mikko Toivonen Syksy 2003 Historia 1840 1895 1920-luku 1930-luku Fotografinen filmi Louis J. M. Daguerre, Ranska Ensimmäinen julkinen elokuva
LisätiedotRadioamatöörikurssi 2015
Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,
LisätiedotDigitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset
A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät, Luento 1 Digitaalinen tiedonsiirto ja siirtotiet Olav Tirkkonen [Luku 1: Introduction, kokonaisuudessaan] A! OSI-kerrokset Tiedonsiirtojärjestelmiä
LisätiedotSGN-4200 Digitaalinen audio
SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
LisätiedotMitä on signaalien digitaalinen käsittely
Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen
LisätiedotDigitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotTHE audio feature: MFCC. Mel Frequency Cepstral Coefficients
THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t
LisätiedotKuulon malleihin perustuva audiokoodaus, osa II
Kuulon malleihin perustuva audiokoodaus, osa II Lähteet: Kahrs, Brandenburg, (Editors). (1998). Applications of digital signal processing to audio and acoustics Kluwer Academic. Bernd Edler. (1997). Low
LisätiedotDigitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Virheen havaitseminen ja korjaus
Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Digitaalitekniikan matematiikka Luku 13 Sivu 2 (10) Johdanto Tässä luvussa esitetään virheen havaitsevien ja korjaavien koodaustapojen perusteet ja käyttösovelluksia
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotDIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015
1 DIGITAALISET PULSSIMODULAATIOT M JA PCM 521357A Tietoliikennetekniikka I Oa 21 Kari Kärkkäinen DELTAMODULAATIO M 2 M koodaa näytteen ± polariteetin omaavaki binääripuliki. Idea perutuu ignaalin m(t muutoken
Lisätiedota) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim. http://www.osioptoelectronics.com/)
a) C C p e n sn V out p d jn sh C j i n V out Käytetyt symbolit & vakiot: P = valoteho [W], λ = valodiodin ilmaisuvaste eli responsiviteetti [A/W] d = pimeävirta [A] B = kohinakaistanleveys [Hz] T = lämpötila
Lisätiedot