Parametriset mallit. parametreillä a priori tulkinta & merkitys. parametrit vain laskennan/sovituksen apuvälineitä
|
|
- Hilja Väänänen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Paramerise malli Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin lineaarisia diskreeiaikaisia blackbox-malleja 3. harjoiusyössä malli epälineaarinen jakuva-aikainen Tämän päivän eemoja malliluoka paramerien esimoini mallin hyvyys vs. parameriesimaaien harhaisuus ja varianssi syseemin / mallin idenifioiuvuus
2 Rakeneellise malli Fysikaalisin ai vasaavin perusein rakenneuja malleja osa paramereisa unneu: esim. massa, poikkipina-ala jne... osa esimoiava: kikakeroime,... Merkinä d dx jossa y^( ) on mallin ennuseu ulosulo hekellä ja paramerivekorilla Edellä oleeaan valkoinen miauskohina y()=h(x(),u(),)+e() kohinaa ei voida ennusaa => aseeaan = 0 jos kohinalla on rakennea, se kannaaa huomioida, esim. ARMA-malli Ennusevirhe ε()=y()-y^(,) x( ) = f ( x( ), u( ), ); yˆ( ) = h( x( ), u( ), ) Esimoiniongelma: esi s.e. min V = 2 ( ) ε (, ) =
3 Black box -malli Yleinen lineaarinen diskreeiaikainen malli on muooa y()=η()+w() w() = häiriöermi η() = häiriöön ulosulo Termi muooa η()=g(q,)u(), w()=h(q,)e() G() ja H() lineaarisia suoimia käyännössä raionaalisia (muooa polynomi/polynomi) ja (asympooisesi) sabiileja G(q,)=B(q,)/F(q,), H(q,)=C(q,)/D(q,) paramerivekori koosuu polynomien B,F,C ja D keroimisa b i,f i,h i,d i ja kohinan e() varianssisa rakenneparameri n b, n c, n d, n f ja n k (kuollu aika)
4 Erilaisia mallirakeneia Box-Jenkins (BJ): G(q)=B(q)/F(q), H(q)=C(q)/D(q) äydellinen malli syseemin ja kohinan malli riippumaomia oisisaan Oupu error (OE): H(q)= eli n c =n d =0 kohina valkoisa w()=e(), eli ei eriyisä rakennea käyännössä w() on poikkeama odellisen ja miaun ulosulon välillä ARMAX: A(q)y()=B(q)u()+C(q)e() kohina kokee saman dynamiikan kuin u järkevää kun kohina ulee prosessiin sen alkupäässä ARX: A(q)y()=B(q)u()+e() (myös yhälövirhemalli) ennusevirhe lineaarinen paramerien suheen => paramerien esimoini helppoa kohina kokee saman dynamiikan kuin u; ei haiaa, jos signaali-kohinasuhde on hyvä Käyö: määrää aseluvu, esimoi parameri käyännössä useia eri mallirakeneia ja aselukuja verraaan
5 Ennusaminen Usein mallin käyöarkoius ennusaminen Millainen on em. mallien ennuse? OE: y^(,)=g(q,)u() ARX: y^(,)=(-a(q))y()+b(q)u() Enä kun C poikkeaa :sa (H=C/D)? jaeaan puoliain H:lla ja korvaaan e() odousarvollaan => y^(,)=[-h - (q,)]y()+h - (q,)g(q,)u()
6 Mallien sovius Ennusevirhemeneelmä: valise s.e. ennuse on hyvä oimiva hyvyyskrieeri ennusevirheen (oos)varianssi ennusevirhe ε()=y()-y^(,) ja hyvyyskrieeri 2 V ( ) = ε (, ) ^= arg min V () voidaan osoiaa, eä V () ei ole uulesa emmau PS on ennusevirhemeneelmien erikoisapaus MIMO-malli: ε 2 () mariisiarvoinen, arviaan sopiva reaaliarvoinen kuvaus: de, race,... V (^) on kohinan e() varianssin esimaai =
7 Lineaarinen regressio Regressio: malli muooa y()= T φ()+e(), φ() vekori, jossa viiväseyjä u():n ja y():n arvoja sisälää viiveoperaaoripolynomien keroime miausa => mariisi X=[φ(),φ(2),...,φ()] sekä ulosulo Y()=[y(),...,y()] => ^=(X T X) - X T Y Soveluu ARX-mallien paramerien esimoiniin muu malliluoka epälineaarisia paramerien suheen PS-oleuksien syyä olla voimassa (ks esim. TAP lueno nro 9): viiväsey y:n ja u:n arvo keskenään kollineaarisia (koesuunnieluongelma) parameri ehoomia (suuri varianssi) ja harhaisia, mua arkenuvia e:n homoskedasisuus (vakio varianssi) parameri ehoomia => painoeu PS-esimoini e:n korreloimaomuus parameri ehoomia, harhaisia eiväkä arkenuvia! => kohinalle jonkinlainen rakenne
8 Ieraiivinen minimoini Malli epälineaarisia paramerien suheen PS ei onnisu Tarviaan ieraiivinen meneelmä kyseessä epälineaarinen rajoiamaon opimoiniehävä Gradienimeneelmä: k+ = k -α k V ( k ) α k viivahaun avulla haeava askelpiuus Toisen keraluvun meneelmä: sovelleaan ewonieroinia opimirakaisun välämäömiin ehoihin välämäön eho V ()=0 ieroini k+ = k -α k [V ( k )] - V ( k )
9 Derivaaojen laskena (kirja, Appendix 9.6) Kohdefunkio Gradieni Hessen mariisi koko Hessen mariisi => ewon-raphson ieroini hyläään viimeinen ermi => Gauss-ewon Derivaaa lausekkeissa riippuva mallirakeneesa = = i i y y V 2 )), ˆ( ) ( ( 2 ) ( = = i i i y y y d d V )), ˆ( ) ( )(, ˆ( ) ( ' = = + = i i i T i i y y y d d y d d y d d V 2 2 )), ˆ( ) ( ))(, ˆ( ( )), ˆ( ))(, ˆ( ( ) ''(
10 Mikä on hyvä malli? Mallin laau on yheydessä mallin käyöarkoiukseen hyvä sääösuunnielumalli voi olla huono simuloinimalli Mallin laau liiyy sen kykyyn kuvaa syseemin oimina syseemin ja mallin ulosulo riiävän samanlaise Hyvä malli yleisää, i.e., mallin ominaisuude eivä riipu esimoinidaasa Mallin ilasollise ominaisuude keino miaa ää paramerien varianssi: kohinainen syseemi => samalla sisäänmenolla saadaan eri ulosulo => esimoiaessa saadaan eri malli varianssia voidaan pienenää kasvaamalla havainojen lukumäärää kirjassa puhuaan mallin variance error :sa paramerien harhaisuus: esimaaien konvergenssi vääriin arvoihin väärä mallirakenne / puueellinen koesuunnielu eroeava mallirakeneen vaikuus ja idenifioinikokeen vaikuus kirjassa puhuaan mallin bias error :sa
11 Parameriesimaaien harhasa Miä apahuu, kun ->oo? Olkoon ennusevirheen varianssi Eε 2 (,)=V() Jos ennusevirhe ε(,) on valkoisa kohinaa, niin 2 2 V ( ) = ε (, ) Eε (, ) = = V ( ) w.p. ja lisäksi * arg minv ( ) = Jos ennusevirhe ei ole korreloimaon (esim. väärä malli), yo. päee under very general condiions edelleen, mua esimaai voi olla harhainen ja konvergoiua väärään arvoon vs. oikean mallin esimaain arvo Esimaai minimoi edelleen ennusevirheen varianssin paras malli vääräsä malliluokasa haiaako harha?
12 Esimerkki: väärä mallirakenne ( Sysem Idenificaion, Theory for he User, Ljung 999) Olkoon daa peräisin prosessisa y()+a 0 y(-)=b 0 u(-)+e 0 ()+c 0 e 0 (-) Sovieaan ARX-malli y^( )+ay(-)=bu(-) Ennusevirheen varianssi on E(y()+ay(-)-bu(-)) 2 =...= r 0 (+a 2-2aa 0 )+b 2-2bb 0 +2ac 0 (r 0 =Ey 2 (), ei riipu a:sa eikä b:sä) Ennusevirheen varianssin minimoiva a^, b^: a^=a 0 -c 0 /r 0 ;b^=b 0 ; Ea^ a 0 eli esimaai on harhainen Ennusevirheen varianssi näillä a^, b^ on +c 02 -c 02 /r 0 odellisilla parameriarvoilla a 0 ja b 0 varianssi on +c 02 eli suurempi Siis: vaikka parameriesimaai on harhainen, se uoaa pienemmän ennusevirheen varianssin
13 Parameriesimaain konvergenssi aajuusasossa * = lim ˆ = arg min G π π 0 ( e iω ) Ge ( iω, ) 2 Φu ( ω) iω H ( e ) * 2 dω V ():n minimoiva esimaai lähesyy arvoa, joka saa mallin aajuusvaseen mahdollisimman lähelle syseemin aajuusvasea painoeuna ohjauksen spekrillä kohinamallin aajuusvaseen kääneisluvulla Koesuunnielu: valiaan u:n aajuusominaisuude sopivasi => hyvä sovius mielenkiinoisilla aajuuksilla
14 Parameriesimaaien varianssi Oleeaan, eä ennusevirhe ε(,) on valkoisa kohinaa Tällöin parameriesimaain ^ kovarianssimariisi P on ˆ ˆ T P = E( 0)( 0) λr jossa R=ψ(, 0 )ψ T (, 0 ) ja ψ(,)=d/dy^(,) P riippuu kohinan varianssisa daapiseiden lukumääräsä ennuseen gradienisa (herkkyys!) Parameriesimaai asympooisesi normaalijakauuneia ilasollisen merkisevyyden esaus -esillä Taajuusvaseen varianssi anneulla parameriesimaailla riippuu (kirja 9.6) paramaerien lukumääräsä ja kohinan spekrisä daapiseiden lukumääräsä ja ohjauksen spekrisä
15 Idenifioiuvuus Idenifioiuvuus: Voidaanko syseemin/mallin parameri määrää yksikäsieisesi inpu-oupu daasa? Olkoon 0 hyvyyskrieerin minimoiva parameriesimaai Malli on idenifioiuva: y^( 0 )=y^( ) => = 0 (I) Milloin (I) ei päde? ) kaksi erilaisa paramerivekoria uoaa samanlaisen mallin inpuoupu käyäyymiseen rakeneellinen idenifoiuvuus, ymmärreään syseemin ominaisuuena 2) kaksi erilaisa paramerivekoria uoaa erilaisen inpu-oupukäyäymiseen, mua puueellinen inpu aiheuaa samanlaise ennusee deerminisinen idenifioiuvuus
16 Esimerkki (kirja 9.): asaviramooori Valiaan iloiksi kulma-aseno y() ja nopeus ω() ja ohjaukseksi jännie u(): Tässä d d 0 0 x( ) = x( ) u( ), 0 / + / τ β τ τ JR =, β 2 fr + k k fr + k Syseemissä on 5 parameriä, mua mallissa vain 2 vaikka mallin parameri saaaisiin esimoiua, niisä saadaan vain 2 yheyä syseemin paramerien välille ällä parameroinnilla idenifioini ei onnisu syseemi ei rakeeneellisesi idenifioiuva = 2
17 Vaaimukse heräeelle Millainen sisäänmeno arviaan, joa parameriesimaai ylipääään konvergoisiva? Inuiiivisia uloksia: idenifioinikokeen piäisi heräää syseemin mielenkiinoise moodi sisäänmenon aajuussisälö oleellisessa asemassa Jakuvasi heräävyyden käsie (seur. lueno) kvaniaiivisia uloksia heräeen laadun ja parameriesimoinnin onnisumisen välille
18 Esimerkki (kirja 9.6) Ennusemalli y^( )=au(-)+bu(-2), =(a b) valiaan u vakio-ohjaus u 0 :ksi Todellinen ennuse on ällöin y^( )=(a+b)u 0 (-) kaikki parameri a ja b, joiden summa on sama, anava saman ennuseen a ja b eivä ole idenifioiuvia (ällä heräeellä) syseemi on kuienkin rakeneellisesi idenifioiuva
19 Esimoinnin ongelmalähee Syseemi Id.koe Daa Mallirakenne Sovius väärä mallirakennne esimaaori harhainen, suuri varianssi rak.idenifioiuvuusongelma mallin ai syseemin paramereja ei löydeä huono idenifioinikoe suuri varianssi, paramereja ei löydeä harhaisuus ei haiaa huono homma huono homma kunhan mallin käyöarkoius ei ole paramerien esimoini!
20 Yheenveo Perusidea: haeaan paramerivekori joka minimoi ennusevirheen (oos)varianssin: siä kuvaa neliöllinen hyvyyskrieeri V () sovius: minimoi ennusevirheen varianssi esimaain varianssi riippuu kohinan varianssisa, daan määräsä ja ennuseen herkkyydesä paramerin suheen Lähesymisavan euja: yleinen käyeävyys, monipuolisuus uloksena simuloiniin soveluva malli Haioja, muei välämää ylisepääsemäömiä: periaaeessa arviaan näkemys syseemin rakeneesa laaja laskenauki arpeen
9. Parametriset mallit, estimointi
9. Paramerise malli, esimoini Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin diskreeiaikaisia malleja 3. harjoiusyössä
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
Dynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
2. Systeemi- ja signaalimallit
2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia
Lineaaristen järjestelmien teoriaa II
Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä
Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus
Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi
Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,
Lineaaristen järjestelmien teoriaa
Lineaarisen järjeselmien eoriaa Saavueavuus, ohjaavuus Tarkkailavuus, havaiavuus Klassisen mekaniikan sabiilisuus vs. syseemiekninen sabiilisuusuus Tilaesimoini Kalman-suodin Mielenkiinoisia kysymyksiä
Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos
Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
Robusti tilastollinen päättely ensimmäisen ja toisen ehdollisen momentin mallintamisessa
Robusi ilasollinen pääely ensimmäisen ja oisen ehdollisen momenin mallinamisessa ilasoieeen pro gradu ukielma Jarmo Mika Rafael Mikkola Marraskuu SISÄLLYS JOHDANO EORIAA. Robusi kvasiuskoavuusesimoinimeneelmä.
5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista
Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa
järjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia
6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
Diskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
1 Excel-sovelluksen ohje
1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen
Luento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto
Ma-1.361 Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria 7.1. Suurimma uskoavuude esimoiimeeelmä: Johdao Aikasarja,
Tasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd
PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa
b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
Vuoden 2004 alkoholiverotuksen muutoksen kulutusvaikutuksen ennustaminen. Linden, Mikael. ISBN 952-458-441-7 ISSN 1458-686X no 13
Vuoden 004 alkoholiverouksen muuoksen kuluusvaikuuksen ennusaminen Linden, Mikael ISBN 95-458-441-7 ISSN 1458-686X no 13 VUODEN 004 ALKOHOLIVEROTUKSEN MUUTOKSEN KULUTUSVAIKUTUKSEN ENNUSTAMINEN Mika Linden
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (
TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin
Systeemidynamiikka ja liikkeenjohto
Syseemidynamiikka ja liikkeenjoho Opimoiniopin seminaari 21.2.2007 Ilkka Leppänen S yseemianalyysin Laboraorio Esielmä 11 Ilkka Leppänen Opimoiniopin seminaari - Kevä 2007 Sisälö Johdano dynaamisen pääökseneon
Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi
Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri
Luento 7 Järjestelmien ylläpito
Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan
Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M
Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä
KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Ilmavirransäädin. Mitat
Ilmairransäädin Mia (MF, MP, ON, MOD, KNX) Ød nom (MF-D, MP-D, ON-D, MOD-D, KNX-D) Tuoekuaus on ilmairasäädin pyöreälle kanaalle. Se koosuu sääöpellisä ja miaaasa oimilaieesa ja siä oidaan ohjaa huonesääimen
MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014
MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:
Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010
DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu
Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
a) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
Mittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
Yhden selittäjän lineaarinen regressiomalli
Moimuuujameeelmä Yhde seliäjä lieaarie regressiomalli Moimuuujameeelmä: Yhde seliäjä lieaarie regressiomalli Ilkka Melli. Yhde seliäjä lieaarie regressiomalli, se esimoii ja esaus.. Yhde seliäjä lieaarie
Tietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde
Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden
Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,
Tehtävä I. Vaihtoehtotehtävät.
Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus
ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET
TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2. Sähkönkulutuksen ennustaminen aikasarjamallin avulla & Sähkön hankinnan optimointi
MS-C2132 Syeemianalyyilaboraorio I Laboraorioyö 2 Sähkönkuluuken ennuaminen aikaarjamallin avulla & Sähkön hankinnan opimoini Laboraorioyö 2 Aikaarjamalli erään yriyken ähkönkuluukelle SARIMAX-malli: kauivaihelu,
DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee
Tuotannon suhdannekuvaajan menetelmäkuvaus
1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA
TAMPEREEN YLIOPISTO Talousieeiden laios SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA Kansanalousiede Pro gradu -ukielma Tammikuu 2009 Ohjaaja: Hannu Laurila Tero Särkijärvi TIIVISTELMÄ Tampereen yliopiso
ELEC-C1230 Säätötekniikka (5 op)
ELEC-C1230 Sääöekniikka (5 op) Kevä 2016 hps://mycourses.aalo.fi/course/view.php?id=5073 Luku 1: Esiely, johdano, dynaamise malli ja rakenee, lohkokaavio, säädön periaaee ELEC-C1230 Sääöekniikka (5 op)
Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan
87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen
Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio
Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
ELEC-C1230 Säätötekniikka (5 op)
ELEC-C1230 Sääöekniikka (5 op) Kevä 2017 hps://mycourses.aalo.fi/course/view.php?id=13390 Luku 1: Esiely, johdano, dynaamise malli ja rakenee, lohkokaavio, säädön periaaee ELEC-C1230 Sääöekniikka (5 op)
Pienimmän neliösumman menetelmä
Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen
Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
6.5.2 Tapering-menetelmä
6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio
2. kierros. 2. Lähipäivä
2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a
Luento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
Signaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA
JYVÄSKYLÄN YLIOPISTO Talousieeiden iedekuna TARJONTA SUOMEN ASUNTOMARKKINOILLA Kansanalousiede Pro gradu -ukielma Helmikuu 2006 Laaia: Janne Lilavuori Ohaaa: Professori Kari Heimonen JYVÄSKYLÄN YLIOPISTO
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Älä tee mitään merkintöjä kaavakokoelmaan!
AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()
KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA
KVANTIOINTIKOHINA JA KANAVAN AWGN- KOHINA PULIKOODIMODULAATIOA Teolkenneeknkka I 5359A Kar Kärkkänen Osa 6 5 Kvansonkohna PCM-järjeselmässä PCM:ssa on kaks vrhelähdeä:. kvansonkohna,. kanavan kohnan aheuama