SÄHKÖMAGNETISMI: kevät 2017
|
|
- Jutta Sala
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä ja aine 15 Viikko 3 MagneeNken>ä 18 Viikko 4 Kertausta Viikko 5 Sähköken>ä johimissa, 19 Viikko 5 sähköiset piirit, komponenit 20 Viikko 6 MagneeNnen voima 21 Viikko 7 Viikko 8 Kertausta tenn
2 TAVOITTEET RisItulon muisiinpalau>aminen ymmärää Biot n ja SavarIn laki Opitaan laskemaan lain avulla joidenkin symmetristen virtajakaumien magneenvuon Iheys
3 MAGNETISMI JA MAGNEETTIKENTTÄ Sähkövirroilla on magneensia vaikutuksia ja magneenken>ä vaiku>aa liikkuviin sähkövarauksiin MagneeNsia ilmiöitä esiintyy myös sähköstä erillään magneensissa materiaaleissa. MagneIsmia käsitellään tällä kurssilla lähinnä sähkömagneismina, sähkövirtojen synny>äminä kennnä, ei magneensuutena magneensissa materiaaleissa.
4 OERSTEDIN KOKEET Hand Oersted ( )
5 OERSTEDIN KOKEET magneenkentän voimakkuus riippuu virran voimakkuudesta johdossa Johto jossa ei mene virtaa ei tuota magneenken>ää Virran aiheu>ama magneenken>ä näy>ää olevan kohisuorassa virran suuntaa vastaan MagneeNkentän suunta johimen alla on vastakkaissuuntainen magneenken>ään johimen yllä
6 SÄHKÖVIRRAN MÄÄRITELMÄ Ilmiönä: sähköisesi vara>ujen hiukkasten liike>ä. Sähkövirta johimessa on yleinen esimerkki liikkuvista varauksista. Siellä sähkövirtaa kulje>aa elektronit. Sähkövirta I on elektronien määrä sekunnissa joka virtaa johimen poikkileikkauksen lävitse. Yksikkö on Amperi ([I]=A*). Eli I=dq/dt Sähkövirran suunta voidaan määritellä joko posiii- visten tai negaiivisten varausten liikkeen suunnaksi. KonvenIonaalinen määritelmä on posiiivisten varausten suunta *Yhden ampeerin virta vastaa noin 6, alkeisvarauksen kulkua poikkileikkauksen läpi sekunnissa. Muista 1 C = 1 A s
7 KENTTÄVIIVAKUVAUS MagneeNken>ää voidaan kuvata ken>äviivoilla kuten sähköken>ääkin Ei ole olemassa magneenvarauksia, jotka synny>äisivät magneenkentän kuten sähkövaraukset synny>ävät sähkökentän. à MagneeNkentän ken>äviivat ovat sulkeutuvia käyriä. Samannimiset navat hylkivät, erinimiset vetävät toisiaan puoleensa. ks. Tästä pohjois- ja etelänavan määritelmät à Halliday, Resnick, Walker: Fundamentals of Physics
8 MAGNEETTIVUON TIHEYS magneenkentän voimakkuu>a kuvaa magneenvuon Iheys (magneenken>ävektori, magneenken>ä ) B Yksikkö on Tesla. [B]=N/C(m/s) = T Usein käytetään myös yksikköä Gauss, G, 1 T = 10 4 G Ken>äviivojen Iheys
9 BIOT N JA SAVARTIN LAKI Yhdistää magneenkentän B sähkövirtaan I, joka on siis kentän lähde* Alunperin kokeellinen laki (1820) ΔB = µ 0 IΔl ˆr 4π r 2 myös r -2 riippuvuus missä Δl on pieni virta- alkio (esim. pätkä virtajohtoa), r virta- alkion etäisyys havaintopisteestä Jean-Baptiste Biot ( ) *vrt. Coulombin laki yhdistää sähkökentän sähkövarauksiin **µ 0 on tyhjiö permeabiliteen= 4π 10-7 Tm/A = Tm/A Felix Savart ( )
10 BIOT N JA SAVARTIN LAKI Pidempi johdin? SuperposiIo toimii à summaa virtajohimen kaikkien pienten virta- alkioiden dl magneenken>äalkiot db. Eli saadaan B = µ 0 I 4π dl ˆr r 2 Jean-Baptiste Biot ( ) Felix Savart ( )
11 BIOT N JA SAVARTIN LAKI: PISTEVARAUS Tarkastellaan virtajohdinta, jossa kulkee virta I. Oletetaan, e>ä johimen pituusalkio Δl sisältää varauksen ΔQ JohImessa kulkevien varausten nopeus on v = Δl/Δt. à Varauksen ja nopeuden tulolle voidaan kirjoi>aa ΔQv = ΔQ Δs Δt B = µ 0 qv ˆr 4π r 2 = ΔQ Δt Δl = IΔl Jos laitetaan ΔQ à pistevaraus q niin saadaan Biot n ja SavarIn lain edellisen kalvon muodosta ΔQ Δl I
12 LIIKKUVA PISTEVARAUS: B KENTÄN SUUNTA RisItulo à käytä oikean käden sääntöä B = µ 0 4π qv ˆr r 2
13 Harjoitus 3, Tehtävä 4 Olkoon vektorit A = (4, 0, 4) ja B = (- 3, 0, 3). Laske risitulo C = A B kahdella tavalla: a) Piirrä vektorit koordinaaistoon. Sovella oikeankäden sääntöä C:n suunnan selvi>ämiseen ja laske myös C:n pituus. b) Laske risitulo suoraan algebrallisesi vektoreiden komponen>eja käy>ämällä RisItulon ja oikean käden säännön harjoi>elua
14 KYSYMYS PosiIivinen varaus liikkuu suoraan ulos tästä sivusta. Mihin suuntaan ken>ä osoi>aa pisteessä P? A. Vasemmalle B. Oikealle C. Alas D. Ylös P + v ulos tasosta
15 LIIKKUVA PISTEVARAUS: B KENTÄN SUUNTA Kentän suunta oikean käden säännöstä B = µ 0 qv ˆr 4π r 2
16 PITKÄN SUORAN JOHTIMEN KENTTÄ y Δy r/r L/2 r P x z I
17 SUORA JOHDIN: B KENTÄN SUUNTA ΔB = µ 0 4π IΔl ˆr r 2
18 KYSYMYS MagneeNken>ä pisteessä P osoi>aa P I A. Sivusta sisään B. Ylös C. Alas D. Sivusta ulos
19 SUORA JOHDIN: B KENTÄN SUUNTA kentän voimakkuus on kääntäen verrannollinen etäisyyteen johimesta. Symmetria à ken>ä on samanlainen joka suuntaan johimen ympärillä. Halliday, Resnick, Walker: Fundamentals of Physics
20 Harjoitus 3, Tehtävä 5 Mikä on magneenvuon Iheysvektori B komponenn- muodossa Kuvan pisteissä a, b ja c kahden pitkän virtajohimen välissä? Laske ensin ääre>ömän pitkän* johimen aiheu>ama ken>ä (Biot n ja SavarIn laki!) *tässä kun ei pituu>a ole anne>u, mu>a sano>u e>ä pitkä johdin niin hyvä appro
21 MITEN MAGNEETTIKENTTÄ SYNTYY magneenset materiaalit (diamagneenset, paramagneenset ja ferromagneenset) Sähkövirta synny>ää magneenkentän Atomia kiertävä elektroni muodostaa pienen virtasilmukan Elektronilla on magneennen dipolimomenn
22 MITEN MAGNEETTIKENTTÄ SYNTYY DiamagneeNset aineet - ei pysyvää magneensta momenna - ulkoisessa magneenkentässä indusoituu atomeihin/ molekyyleihin magneennen momenn - ulkoinen ken>ä heikkenee ParamagneeNset aineet - pysyvä magneennen momenn - ulkoinen ken>ä vahvistuu FerromagneeN - pysyvä magneensuus (kestomagneeit)
23 VIRTASILMUKAN B AKSELILLA Voidaan taas laskea Biot n ja SavarIn lain avulla I ds R y small segment, length ds θ r/r ds x r π/2-θ db y P db B z = Bcosθ B z = µ 0 4π db z Ids cosθ r 2 z Kaikki alkiot à z >> R à B = µ 0 2 B = µ 0 2 IR 2 z 3 IR 2 (z 2 + R 2 ) 3/2 db sama r- riippuvuus kuin sähködipolille
24 Harjoitus 3, Tehtävä 6 Neliönmuotoinen virtasilmukka lepää xz- tasossa, keskipiste origossa. Neliön sivun pituus on L ja johimessa kulkee virta I. Osoita, e>ä magneenkentän vuoniheys y- akselilla hyvin kaukana origosta on SuperposiIota ja symmetrian mienmistä magneenken>älaskussa. Voisiko silmukan purkaa neljään osaan? Huomaa e>ä etäisyysriippuvuudeksi tulee kuten ympyräsilmukan tapauksessa r -2
25 Harjoitus 3, Tehtävä 6, Huomioita Kertausta ekalta luentoviikolta: OsoiteNin laskareissa sähködipolin sähkökentälle seuraavat riippuvuudet dipolin akselilla ja dipolin keskinormaalilla r à E = 2 E Ympyräsilmukalle laskuista tulee hyvin hankalia jos halutaan laskea ken>ä xz- tasolla. Neliösilmukan tapauksessa tämä on helpommin tehtävissä ja saadaan juuri samanlainen tulos kuin sähködipolille. à Pienen virtasilmukan ken>ä on siis dipoliken>ä. - s + r
26 Harjoitus 3, Tehtävä 6, Huomioita
27 VIRTASILMUKAN KENTTÄ
28 samanlainen magneenken>ä kuin sauvamagneenlla à Virtasilmukkaa voidaan pitää sähkö- magneenna, jolla on N ja S navat kuten sauvamagnee- Illa. à Ulkoisessa kentässä se kokee samanlaisen vääntömomenin kuin sauva- magneen. VIRTASILMUKAN KENTTÄ
29 Virtasilmukalla on samanlaisia voima- vaikutuksia kuin sauvamagneeilla VIRTASILMUKAN KENTTÄ
30 B = µ 0 2 MAGNEETTINEN DIPOLI Edellä saaiin tulokseksi yhdelle virtasilmukalle kaukana akselilta IR 2 z 3 Sähköiselle dipolille saaiin tulos ekalla viikolla à Määritetään magneennen dipolimomenn μ=ia E = 1 2πε 0 p z 3, Missä p määriteliin (sähköiseksi) dipolimomeniksi p=qs Missä ympyräsilmukalle ala siis A=πR 2 MagneeNken>ä voidaan kirjoi>aa siis B = µ 0 2µ 4π z 3
31 MAGNEETTINEN DIPOLI Sähködipoli pyrki sähkökentässä kiertymään kentän suuntaan. Samalla tavoin sanotaan sekä sauvamagneein e>ä virtasilmukan muodostavan magneensen dipolin.! τ =! µ! B
32 TASAINEN MAGNEETTIKENTTÄ Miten saataisiin aikaan hyvin tasainen magnee4ken5ä? Laitetaan kaksi ympyräsilmukkaa vastakkain Tietyllä etäisyydellä, ken>ä on suurella alueella hyvin tasaisnen silmukoiden välissä
33 TASAINEN MAGNEETTIKENTTÄ
34 TASAINEN MAGNEETTIKENTTÄ N kierrosta Kierretään johdinta Iukkaan ympäri useita kertoja à solenoidi à Ken>ä solenoidin sisällä kun ollaan kaukana päistä on vakio (useiden ympyräsilmukoiden kennen summa*) Jos solenoidin säde R on paljon pienempi kuin sen pituus L (R << L) saadaan kentäksi solenoidin keskellä: B = µ NI 0 l *Solenoidin kentän lasku on esitetty kirjan sivuilla
35 TASAINEN MAGNEETTIKENTTÄ Laitetaan kaksi solenoidia vastakkain. Tälläistä systeemiä kutsutaan nimellä Helmholtzin käämit
36 KYSYMYS Mihin suuntaan magneenken>ä osoi>aa pisteessä P? I on ulospäin I on sisäänpäin A. Vasemmalle B. Oikealle C. Ylös D. Alas P
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO
SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
SOVELLUS: SYKLOTRNI- KIIHDYTIN
SOVELLUS: SYKLOTRNI- KIIHDYTIN sähköken+ä levyjen välissä vaihtuu jaksollisesj taajudella f cyc, niin e+ä se kiihdy+ää vara+ua hiukkasta aina kun se kulkee välikön ohi. potenjaali ΔV oskilloi ns. syklotroni
KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan.
: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. Protoni Elektroni 17 protonia 19 electronia 1,000,000 protonia 1,000,000 elektronia lasipallo puu*uu 3 elektronia (A) (B) (C) (D) (E)
Fysiikka 7. Sähkömagnetismi
Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla
KURSSIN TÄRKEIMPIÄ AIHEITA
KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,
VIELÄ KÄYTÄNNÖN ASIAA
VIELÄ KÄYTÄNNÖN ASIAA Kurssin luentomuis8inpanot (ja tulevat laskarimallit) näkyvät vain kun olet kirjautunut sisään ja rekisteröitynyt kurssille WebOodin kauga Kurssi seuraa oppikirjaa kohtuullisen tarkkaan,
Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
Magneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
RC- PIIRIT: KONDENSAATTORIN PURKAMINEN
RC PIIRIT: KONDENSAATTORIN PURKAMINEN Puretaan kondensaa
Magnetismi Mitä tiedämme magnetismista?
Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan
Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.
Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus
Magneettikenttä ja sähkökenttä
Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon
Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0
Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä
Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
Magnetismi Mitä tiedämme magnetismista?
Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten
Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Magneettikentän lähteet (YF 28) Liikkuvan
Elektrodynamiikan tenttitehtäviä kl 2018
Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
FYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
1.1 Magneettinen vuorovaikutus
1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä
Sähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
RATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
Magneettikentät ja niiden määrittäminen
Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin
Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus
AT taattinen kenttäteoria kevät 6 / 5 Laskuharjoitus / Coulombin laki ja sähkökentänvoimakkuus Tehtävä Kaksi pistevarausta ja sijaitsevat x-tason pisteissä r x e x e ja r x e x e. Mikä ehto varauksien
SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä
Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman
SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
Potentiaali ja potentiaalienergia
Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,
766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN
766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.
ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 5 Tavoitteet Magneettikenttä ja magneettiset voimat Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori
1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................
Luku Ohmin laki
Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja
Sähkömagneettinen induktio
Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches
766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua
7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään
SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä
ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,
Coulombin laki ja sähkökenttä
Luku 1 Coulombin laki ja sähkökenttä 1.1 Sähkövaraus ja Coulombin voima Sähköisten ilmiöiden olemassaolo ilmenee niiden aiheuttamista mekaanisista vaikutuksista (osittain myös optisista vaikutuksista;
Sähkömagneettinen induktio
Luku 7 Sähkömagneettinen induktio Oppimateriaali RMC luku 11 ja CL 8.1; esitiedot KSII luku 5. Toistaiseksi olemme tarkastelleet vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen
Elektrodynamiikka, kevät 2008
Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä
Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
Sähkömagneettinen induktio
Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
kipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 5 Magneettikenttä ja magneettiset voimat (YF
4. Gaussin laki. (15.4)
Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien
Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite
TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................
Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/
8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian
Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)
Luku 8 Magneettinen energia Oppimateriaali RMC Luku 1 ja CL 7.3; esitiedot KSII luvut 4 ja 5. Luvussa 4 todettiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita,
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
a) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä
risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)
PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
&()'#*#+)##'% +'##$,),#%'
"$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""
Magneettikentät ja niiden määrittäminen
Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan
Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput