Kondensaattori ja vastus piirissä (RC-piiri)
|
|
- Sinikka Kouki
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2. Epähomogeeniyhtälön erityisratkaisu:
2 Kondensaattori ja vastus piirissä kuvina (RC) I
3 Kondensaattori ja vastus piirissä (RC) Kondensaattori varattu: Q0 = CV0 Suljetaan katkaisija S Epäilemättä kondensaattori purkautuu, mutta miten? Kirchhoffin 2. sääntö (jännitetasapaino): VC(t) + VR(t) = 0 Kirchhoffin 1. sääntö (virtatasapaino): I(t) = dq/dt
4 Kondensaattori ja vastus piirissä (RC) 1. Ratkaisuyrite: 2. Sijoitus yhälöön: Tässä on aikavakio: τ = RC 3. Alkuarvo:
5 Käämi menee piiriin: induktanssi Ne, joiden mielestä muuntaja toimii näin ovat oikeassa Keskinäisinduktanssi M riippuu geometriasta suunnittelu Jos di1/dt 0, niin epäilemättä käämin 2 läpi kulkeva magneettivuo ΦB muuttuu eli dφb/dt 0 Indusoituu jännite. Ei ole suuri ihme, että tähän tulee yksi vakio: keskinäisinduktanssi I1 ja kun käämien roolit vaihdetaan: ja lopulta:
6 Käämi menee piiriin: induktanssi Kaksi käämiä siis vaikuttaa toisiinsa seuraavasti: virta muuttuu magneettivuo muuttuu indusoituu jännite Mutta tarvitaanko tähän kaksi käämiä vai riittäisikö yksikin: virta muuttuu magneettivuo muuttuu indusoituu jännite Kyllä riittää. Otetaan käämi ja johdetaan sen läpi muuttuva virta käämin päiden väille Faradayn lain mukaan indusoituu jännite, joka Lenzin lain mukaan vastustaa virran muutosta. L on (itseis)induktanssi
7 Induktanssi: solenoidi Ampèren lain avulla saimme magneettikentän voimakkuuden B:
8 Käämi menee piiriin: magneettinen energia Itseinduktion sähköteho on: eli: Käämi säilöö magnetostaattista energiaa. Kondesaattori säilöö sähköstaattista energiaa Tämä energia on säilötty käämin magneettikenttään. Tulosta kannattaa verrata kondensaattoriin:
9 Magneettinen energia: solenoidi Taas kerran on rehellistä kysyä: Mihin se energia meni? Magneettikentän energiatiheys (energia / tilavuus): Kokeneesti vertaamme sähkökenttään:
10 Kolmen sortin komponenttia Nimi Tyyppi Symboli Jännitehäviö Vastus Resistiivinen R VR = RI Kondensaattori Kapasitiivinen C VC = Q/C Käämi Induktiivinen L VL = -L di/dt Piirrosmerkki Piirrosmerkit:
11 Käämi piirissä Kirchhoffin lait pätevät yhä: L Pelkkä käämi johtaa siis rajatta kasvavaan virtaan! V0 R C V0 V0 Vertaa tuttuihin tuotteisiin:
12 LR-piirit Pelkkä käämi tasajännitelähteen kanssa ei ollut niin kovin hyvä idea. Lisätään siis vastus. Kirchhoffin lait ovat edelleen ihan hyvä idea. Differentiaaliyhtälö! HY: EHY: HY + EHY: Alkuehto I(0)=0:
13 LR-piirit Piirin yhtälö on nyt vain HY: ja alkuehto: Energia: Käämiin varastoitunut magneettinen energia kuluu vastuksessa.
14 Vauhtiin päästyä: LC-piirit Kirchhoffin lait ovat edelleen ihan hyvä idea. Jännitelaki: Varauksen säilyminen: Näyttää kumman tutulta, vrt: Joten, taas:
15 Tämän hetken piirit Piiri Yhtälö R RC 1. kertaluvun differentiaaliyhtälö LR 2. kertaluvun differentiaaliyhtälö LC
16 Vaihtovirtapiirit Vaihtovirtapiirissä on Jännitelähde (generaattori tai verkkojännite) Komponentteja, joita mallinnetaan vastuksella, kondensaattorilla ja käämillä
17 Vaihtovirtapiirit Vaihtovirtapiirin käytös riippuu jännitelähteen kulmataajuudesta
18 Vaihtojännite ja -virta: Miten tarkastella? Käytännössä generaattorimme tuottavat sinimuotoista (tai kosinimuotoista) jännitettä. Ei ole käytännöllistä puhua vaihtojännitteestä sinimuotoisena funktiona. Mutta miten sitten? Jaksonaika T = 2π/ω, tämän sisällä kaikki toistuu. 2. Entä huippuarvo V0? 1. Olisko keskiarvo hyvä mittari? Ei surkein mahdollinen vaihtoehto. Tosin kuvaa vain ääriarvoa. 3. Entä tehollinen keskiarvo Vrms? Aina nolla. Ei kovin nerokasta. Käytännössä aina käytössä, merkitään jopa Vrms = V
19 Vaihtojännite ja -virta: Teholliset arvot Kun piirissä vain vastuksia: Kuinka käy sähkötehon P(t) = V(t) I(t) =?
20 Vaihtovirtapiirit (L + vaihtojännitelähde) Kirchhoffin laki: virta ja jännite eri vaiheessa I0 = V0/(L ω)
21 Vaihtovirtapiirit (C + vaihtojännitelähde) Kirchhoffin laki: virta ja jännite eri vaiheessa I0 = ωcv0
22 Esimerkki: L-vaihtovirtapiiri: virta kulkee, tehoa ei kulu? P>0 V V I P<0 I P = VI
23 Vaihtovirtapiirit (se viimeinen: RLC + vaihtojännite) Kirchhoffin laki: Yrite: Induktiivinen reaktanssi XL = ωl Kapasitiivinen reaktanssi XC = 1/ωC
24 Vaihtovirtapiirit (se viimeinen: RLC + vaihtojännite) Z2, Z = impedanssi
25 Vaihtovirtapiirit (se viimeinen: RLC + vaihtojännite) Tehollinen virta = Tehollinen jännite / Impedanssi
26 Teho siinä viimeisessä vaihtovirtapiirissä (RLC) Tehokerroin
27 Viimeinen vaihtovirtapiiri (RLC)
28 Kootaan tulokset: RLC-vaihtovirtapiiri Nimi Tehollinen vaikutus Vastus Resistiivinen Tehollinen suuruus Piirrosmerkki R Kondensaattori Käämi Kapasitiivinen reaktanssi Induktiivinen reaktanssi XC = 1/ωC XL = ωl Teho: Impedanssi: Virta:
29 Kootaan tulokset: RLC-vaihtovirtapiirin teho Muodollista tehoa kutsutaan näennäistehoksi: Yksikköboxi: Todellinen piirissä kuluva teho on pätöteho: [P] = W (watti) [S] = VA (volttiampeeri) [Q] = var (vari) Piirin palauttama teho on loisteho.
30 Esimerkki: kuristin vaihtovirtapiirissä MitenTasavirtapiirin kävi: 1. Virta virtaa pieneni, Laitteenvain ottama teho pieneni voi2.rajoittaa vastuksella. 3. Myös jännitelähteen antama pätöteho pieneni Vaihtovirran tapauksessa tilanne on toisin.
31 Jännitteet komponenttien yli RLC-piirissä? + eli tehollisina arvoina: + erityisesti:
32 RLC-piirin resonanssi Koska RLC-piirin yhtälö virralle: on samanlainen kuin mekaanisen pakkovärähtelijän: niin piirinkin saa resonanssiin. Virta I on suurimmillaan, kun ωl = 1/ωC ω = ω0 = 1/ LC
33 Sähkömagnetismi: kertaus Kurssin keskeisimmät asiat? 1. Sähkö- ja magneettikenttä 2. Lait sähkö- ja magneettikentille eli Maxwellin yhtälöt 3. Lorentzin voima 4. Sähkömagneettinen aalto 5. Kapasitanssi- ja induktanssi-ilmiöt 6. Kondensaattori ja käämi komponentteina 7. RC-, RL- ja RLC-vaihtojännitepiirit
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
LisätiedotKondensaattori ja vastus piirissä (RC)
Kondensaattori ja vastus piirissä (RC) = QC/C 1. Ratkaisuyrite: 2. Sijoitus yhälöön: Tässä on aikavakio: τ = RC 3. Alkuarvo: Kondensaattori ja vastus piirissä (RC) Kirchhoffin lait ovat hyvä idea I 1.
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotMaxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden
LisätiedotKuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
LisätiedotSähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1
FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu
LisätiedotIMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
LisätiedotSähkömagneettinen induktio
Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
LisätiedotMagneettikenttä ja sähkökenttä
Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotSähkömagnetismi (ENG2)
Sähkömagnetismi (ENG2) Jami Kinnunen 6. helmikuuta 2019 Sisältö 1 Sähkökentät 2 1.1 Sähköinen voima, sähkökenttä ja sähköpotentiaali......................... 2 1.2 Coulombin voima............................................
LisätiedotSähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014
Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
Lisätiedot14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotTehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
LisätiedotKuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite
TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori.
Lisätiedot1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Lisätiedot4. SÄHKÖMAGNEETTINEN INDUKTIO
4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotSähkömagnetismi (ENG2)
Sähkömagnetismi (ENG2) Jami Kinnunen 15. tammikuuta 2018 Sisältö 1 Sähkökentät 2 1.1 Sähköinen voima, sähkökenttä ja sähköpotentiaali......................... 2 1.2 Coulombin voima............................................
LisätiedotAiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
LisätiedotRCL-vihtovirtapiiri: resonanssi
CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
LisätiedotSinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla
LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään
LisätiedotMagneettinen energia
Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee
LisätiedotAktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)
LisätiedotCoulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
LisätiedotVan der Polin yhtälö
Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan puolijohdediodeja
LisätiedotFYSP1082/3 Vaihtovirtakomponentit
Sami Antero Yrjänheikki sami.a.yrjanheikki@student.jyu.fi 14.5.1999 FYSP1082/3 Vaihtovirtakomponentit Työ mitattu: 17.5.2019 Ohjaava assistentti: Artturi Pensasmaa Työ jätetty tarkastettavaksi: Abstract:
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan
LisätiedotFysiikka 7 muistiinpanot
Fysiikka 7 muistiinpanot 1 Magneettikenttä - Magneetilla navat eli kohtiot S ja N S N - Sovelluksia: kompassi (Maa kuin kestomagneetti) - Kuvataaan kenttäviivoilla kestomagneetit S N N S - tai vektorimerkeillä
LisätiedotSÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Passiiviset peruskomponentit Luento Kondensaattori kapasitanssi C, i =f(u), varauksen häviämättömyyden laki eli sähkövirran määritelmä Kela induktanssi
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Passiiviset peruskomponentit Luento Kondensaattori kapasitanssi C; yhtälö i =f(u) perustuu varauksen häviämättömyyden lakiin (virran määritelmä) Kela
LisätiedotSähköstatiikka ja magnetismi Sähkömagneetinen induktio
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on
LisätiedotMonisilmukkainen vaihtovirtapiiri
virtap5.nb Monisilmukkainen vaihtovirtapiiri Otetaan tarkastelun kohteeksi RLC-vaihtovirtapiiri jossa on käämejä, vastuksia ja kondensaattoreita. Kytkentä Tarkastellaan virtapiiriä, jossa yksinkertaiseen
LisätiedotLuku 7 Lenzin laki kertoo induktioilmiön suunnan
Physica 7 Opettajan OPAS 0(9) Luku 7 Lenzin laki kertoo induktioilmiön suunnan 0. Sähkövirran kytkemisen jälkeen virtapiirin sähkövirta kasvaa pienen hetken maksimiarvoonsa. Sähkövirta synnyttää kasvavan
LisätiedotFaradayn laki ja sähkömagneettinen induktio
Faradayn laki ja sähkömagneettinen induktio Haarto & Karhunen Magneettivuo Magneettivuo Φ määritellään magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetuloksi Φ B A BAcos Acosθ θ θ
LisätiedotPassiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite
LisätiedotMaxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
LisätiedotFYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
LisätiedotLuento 2. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit
LisätiedotJännite, virran voimakkuus ja teho
Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin
Lisätiedota P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotKuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/
8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian
LisätiedotKapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotYleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.
Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus
LisätiedotSATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän
LisätiedotLuku 13. Vaihtovirrat Sinimuotoinen vaihtojännite
Luku 13 Vaihtovirrat 13.1 Sinimuotoinen vaihtojännite Vaihtojännitegeneraattorin toimintaperiaate on esitetty kappaleessa 10.7. Sen perusteella homogeenisessa magneettikentässä pyörivään johdinsilmukkaan
LisätiedotS Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
Lisätiedotkipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Laboratoriotyöt Ti 8 10, Ti 10 12, To 10 12, Pe 8 10 (vain A) 4 labraa joka toinen viikko, 2 h 15 min, ei koeviikolla. Labrat alkavat ryhmästä riippuen
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori
LisätiedotVan der Polin yhtälö. virtap6.nb 1
virtap6.nb Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,
LisätiedotSähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet Faradayn laki Lenzin laki Liikkeen tuottama smv Indusoituneet sähkökentät
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet
LisätiedotElektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia
Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin
LisätiedotHarjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotTTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.
TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Vaihtosähköpiiri..................................
LisätiedotSÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-4 2017, Kimmo Silvonen Osa IV, 9.10.2017 1 Vaihtovirran teho ja kompleksinen teho Tasavirran tehon kaava pätee myös vaihtovirran ja vaihtojännitteen hetkellisarvoille,
Lisätiedot1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................
LisätiedotLuento 2. SMG-2100 Sähkötekniikka Risto Mikkonen
SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Lisätiedot6. Kertaustehtävien ratkaisut
Fotoni 7 6-6. Kertaustehtävien ratkaisut Luku. Oheisessa kuvassa on kompassineulan punainen pohjoisnapa osoittaa alaspäin. a) Mikä johtimen ympärille muodostuvan magneettikentän suunta? b) Mikä on johtimessa
Lisätiedot3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.
Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen
Lisätiedot( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset
SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,
LisätiedotSÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
LisätiedotLuento 2. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,
Lisätiedot2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................
LisätiedotVASTUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja
LisätiedotMitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.
Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin
LisätiedotLuku Ohmin laki
Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja
LisätiedotTaitaja2007/Elektroniikka
1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.
Lisätiedot- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.
7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona
LisätiedotElektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
Lisätiedot33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
LisätiedotFysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi
http://www.foxitsoftware.com For evaluation only. 7.. Fysiikka 7 Sähkö-opin pikakertaus Sähkömagnetismi Juhani Kaukoranta aahen lukio Sähkövaraukset Elektronin ja protonin varauksen itseisarvoa kutsutaan
LisätiedotSATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015
1 SAT1050 PANAYYS / MAAT VSAPUSTO: APA, MATAB JA SMUNK -HAJOTUSTYÖ / SYKSY 2015 Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-, Matab ja Simulink simulointiohjelmistojen ominaisuuksiin ja
LisätiedotVIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;
VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen
Lisätiedot