ELEC-A4130 Sähkö ja magnetismi (5 op)

Koko: px
Aloita esitys sivulta:

Download "ELEC-A4130 Sähkö ja magnetismi (5 op)"

Transkriptio

1 ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa

2 Luentoviikko 5 Magneettikenttä ja magneettiset voimat (YF 27) Magnetismi Magneettikenttä Magneettiset kenttäviivat ja magneettivuo Varausten liike magneettikentässä Liikkeen sovelluksia Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori Hallin ilmiö Yhteenveto B F R v q 2 (31)

3 Tavoitteena on oppia Magneettikenttä ja magneettiset voimat (YF 27) magneettien ominaisuuksia ja miten magneetit vaikuttavat toisiinsa magneettikentässä liikkuvaan varaukseen vaikuttavan voiman luonne miten magneettiset kenttäviivat eroavat sähköisistä kenttäviivoista miten analysoidaan magneettikentässä olevan varauksen liikettä miten tutkitaan virtajohtimiin vaikuttavaa magneettista voimaa miten virtasilmukat käyttäytyvät magneettikentässä muutamia magneettikentän käyttökohteita kemiassa ja fysiikassa 3 (31)

4 Magnetismi Johdanto Magneettisia voimia käytetään hyödyksi monessa arkipäivän laitteessa Magnetismin olemus on liikkuvien sähkövarausten vuorovaikutus Sähköiset voimat vaikuttavat kaikkiin varauksiin, magneettiset voimat vain liikkuviin varauksiin Magneettikentän synnyttää kestomagneetti, virta johteessa tai liikkuva varaus Magneettikenttä välittää voiman, jonka jokin toinen virta tai liikkuva varaus kokee Ensimmäiset havainnot magneettisista ilmiöistä tehtiin (oppikirjan mukaan) vähintään 2500 vuotta sitten Magnesia [ad Sipylumin] kaupungissa (nyk. Manisa) Länsi-Turkissa 4 (31)

5 Magnetismi Magnetismi (Kesto)magneetissa on kaksi napaa kompassin mukaan S south, N north N S Samanmerkkiset navat hylkivät toisiaan, erimerkkiset vetävät toisiaan puoleensa Magneetin navat vetävät puoleensa rautaa sisältäviä ei-magnetisoituja esineitä (Missä tahansa) magneetissa on aina kaksi napaa: N S N S N S Maapallolla on magneettikenttä kenttäviivat kulkevat etelästä pohjoiseen Pohjoisnavalla on S-napa (mitä?) 5 (31)

6 Magneettikenttä Liikkuva varaus ja magneettinen voima Sähkökenttä Levossa oleva sähkövarausjakautuma synnyttää sähkökentän E Sähkökenttä aiheuttaa voiman F = q E varaukseen q Magneettikenttä Liikkuva varaus (virta) synnyttää (sähkökentän lisäksi?) magneettikentän B Magneettikenttä aiheuttaa voiman F liikkuviin varauksiin ja virtoihin Kokeellisesti on havaittu, että magneettikenttä B aiheuttaa nopeudella v liikkuvaan varaukseen q voiman F = q v B [B] def = tesla = T = N A m = V s m 2 voiman suunta (hiukkasen nopeus ja magneettikenttä) B on oikealta nimeltään magneettivuon tiheys, mutta kurssissa ja kirjassa sitä kutsutaan vain magneettikentäksi 6 (31)

7 Magneettikenttä Elektronisuihku magneettikentässä Magneettikenttää voidaan tutkia katodisädeputken avulla Elektronisuihku osuu keskelle kuvaruutua, jos magneettikenttä on elektronisuihkun kanssa yhdensuuntainen Käännetään putkea (ja elektronisuihkua) 90 magneettikenttä kääntää suihkua Kääntymissuunnasta voidaan päätellä elektronin varaus Jos varauksen kohdalla on sähkö- ja magneettikenttä yhtä aikaa, voima F = q( E + v B) Lorentzin voimalaki 7 (31)

8 Magneettiset kenttäviivat ja magneettivuo Kenttäviivat Kokeellisesti kenttäviivojen suunta nähdään rautaviilajauholla Rautahippuset ovat pieniä kompassineuloja magneettikenttään asetettuina (vrt. ruohonsiemenet sähkökentässä) N S Mangeettikentän kenttäviivat eivät ole voimaviivoja siinä mielessä kuin sähkökentän kenttäviivat (magneettikenttä aiheuttaa voiman vain liikkuvaan varaukseen eikä voiman suunta ole kentän suunta)! Magneettikenttävektorit ovat kenttäviivojen tangentteja (kuten sähkökentällä) 8 (31)

9 Eri lähteiden magneettisia kenttäviivoja

10 Magneettiset kenttäviivat ja magneettivuo Magneettivuo Magneettivuo Φ B määritellään kuten sähkökentän vuo Otetaan kuvitteellinen pinta A ja integroidaan sen läpi kulkeva B Φ B = B d A = B da magneettivuo [Φ B ] def = weber = Wb = ["Ve:ber] = T m 2 = N m/a = V s 10 (31)

11 Magneettiset kenttäviivat ja magneettivuo Gaussin laki magnetismissa Magneettisia monopoleja ei ole olemassa (tai ainakaan niitä ei ole luonnossa havaittu) Magneettivuo minkä tahansa suljetun pinnan läpi on nolla: B d A = 0 magnetismin Gaussin laki Magneettiset kenttäviivat ovat suljettuja silmukoita Jos valitaan tarkastelupinta (da ) kohtisuoraan B:tä vastaan, B = dφ B da (tästä näkee, miksi B:n oikea nimi on magneettivuon tiheys) 11 (31)

12 Varausten liike magneettikentässä Varauksen liike magneettikentässä Magneettikentän varaukseen aiheuttama voima on aina kohtisuorassa nopeutta vastaan Magneettikenttä voi muuttaa varauksen nopeuden suuntaa, ei suuruutta magneettinen voima ei tee työtä varaukselle varaus liikkuu ympyrä- tai kierrerataa B F R v q 12 (31)

13 Varausten liike magneettikentässä Syklotronitaajuus Newton II magneettinen voima on yhtä suuri kuin keskihakuvoima: F = q vb = m v2 R R = mv q B ympyräradan säde Varauksen kiertoaika T = 2πR/v, joten kulmataajuus ω = 2π/T = v/r = v q B/(mv) = q B/m (m on varauksen massa) Kulmataajuutta vastaava taajuus f = ω/(2π) = q B/(2πm) on syklotronitaajuus Esimerkiksi mikroaaltouunin tehonlähteenä käytetty magnetroni lähettää mikroaaltosäteilyä taajuudella 2.45 GHz, jolla elektronit kiertävät ympyrärataa tyhjiökammiossa magneetin napojen välissä. Mikroaaltouunin taajuutta ei ole valittu maksimoimaan vesimolekylien tehoabsorptiota. 13 (31)

14 Epähomogeeninen magneettikenttä Magneettinen pullo Hiukkanen kulkee kierrerataa, jos v ei ole kohtisuorassa B:tä vastaan Kahden virtasilmukan välissä epähomogeeninen kenttä magneettinen pullo, johon varatut hiukkaset voivat jäädä loukkuun Sovellus: kuuman plasman (T 10 6 K) keskittäminen fuusioreaktorissa

15 Varausten liike magneettikentässä Epähomogeeninen magneettikenttä Van Allenin vyöt Maan magneettikenttäkin muodostaa loukkuja varatuille hiukkasille Auringosta tulevat varatut hiukkaset loukkuuntuvat ennen ilmakehään osumistaan Van Allenin vyöt (löydettiin vasta 1958) revontulet 15 (31)

16 Varausten liike magneettikentässä Kuplakammio Kuplakammiossa on nestemäistä vetyä johon törmäydetään hiukkasia Ulkoinen magneettikenttä on kohtisuorassa hiukkasten kulkusuuntaan nähden Esim. gammakvantti irrottaa nopean elektronin vetyatomista Samalla muodostuu elektroni ja positroni (parinmuodostus) Nämä hitaat hiukkaset kiertävät magneettikentän takia spiraalirataa Saadaan selville hiukkasten massoja ja varauksia 16 (31)

17 Liikkeen sovelluksia Nopeudenvalitsin q Varattujen hiukkasten suihkusta voidaan valita tietynnopeuksisia hiukkasia Sähkö- ja magneettikenttä kohtisuorassa toisiaan vastaan Suoraan kulkevat hiukkaset toteuttavat liikeyhtälön B Fy = 0 qvb qe = 0 v = E B Nopeus valitaan säätämällä kenttien voimakkuuksia Varauksen merkillä ei ole väliä E 17 (31)

18 Liikkeen sovelluksia J.J. Thomsonin e/m-koe (1897) Tyhjiöputkessa kiihdytetään kuumasta katodista irtoavia elektroneja Potentiaaliero V kahden anodin välillä, elektronin massa m ja nopeus v: 1 2eV 2 mv2 = ev v = m Seuraavaksi elektronisuihku ohjataan nopeudenvalitsimeen: E B = 2eV e m m = E2 2V B 2 = mitattavissa Thomson löysi elektronin ja sai määritetyksi elektronin varauksen ja massan suhteen: (R.A. Millikan 1913: elektronin varaus) e 1.76 C 1011 m kg 18 (31)

19 Liikkeen sovelluksia Massaspektrometri Bainbridgen massaspektrometri (kuva) Kapea suihku positiivisia ioneja ohjataan nopeudenvalitsimeen Nopeudenvalitsimen jälkeen on kohtisuora magneettikenttä B Ionien rata kaareutuu ja ionit osuvat valokuvauslevylle Levylle osuvien ionien kulkuradan säde B E R = mv qb = me qbb Thomson löysi 1913 kaksi neonin isotooppia B 19 (31)

20 Virtajohdin magneettikentässä Virtajohtimeen kohdistuva magneettinen voima Johtimessa positiivinen varaus ajautuu ylöspäin (nopeus v d ) ja A F = q v B Varaustiheys n johtimen l-pituisessa osassa on nal varausta Osassa liikkuviin varauksiin kohdistuu kokonaisvoima F = (nal)(qv d B) = (nqv d A)(lB) F v d q l Virrantiheys J = nqv d = I/A, joten F = (JA)(lB) = IlB J 20 (31)

21 Virtajohdin magneettikentässä Käyräviivaiset johtimet Jos johdin ja magneettikenttä eivät ole kohtisuorassa, voima F = I l B (virran kulkusuunta = l:n suunta) Pätee myös negatiivisille virrankuljettajille (q e, v d v d ) Käyräviivainen johde jaetaan suoriin osiin d l, joten d F = I d l B (virta-alkioon kohdistuva magneettinen voima) ja kokonaisvoima saadaan integroimalla johdinta pitkin 21 (31)

22 Virtasilmukka tasaisessa magneettikentässä Ylhäältä (+z-suunnasta) F Sivulta ( y-suunnasta) z y A, µ F F a B z I x F F B φ φ b b F b = b cos φ Voimaparien ± F ja ± F nettovoima on nolla Voimapari ± F aiheuttaa vääntömomentin y-akselin suhteen

23 Virtasilmukka magneettikentässä Magneettidipoli Edellä voima F = IaB ja F = Ib B = IbB cos φ (muista: tasainen B) Voiman F aiheuttama vääntömomentti τ = 2 (b/2) F sin φ = IabB sin φ ab=a = IAB sin φ Vääntömomentin amplitudilla on maksimi, kun φ = 90, ja minimi, kun φ = 0 tai 180 Tulo IA def = µ on silmukan magneettinen dipolimomentti tai magneettinen momentti: τ = µb sin φ tai τ = µ B Virtasilmukka tai muu vääntömomenttia lausekkeen mukaisesti kokeva kappale magneettikentässä on magneettidipoli Magneettisen momenttivektorin µ = I A suunta (= peukalo) saadaan oikean käden säännöllä virran kiertosuunnasta (= sormet); µ on kohtisuorassa virtasilmukan tasoa vastaan 24 (31)

24 Virtasilmukka magneettikentässä Magneettidipolin potentiaalienergia Magneettikenttä pyrkii kääntämään magneettidipolin niin, että µ on samansuuntainen B:n kanssa (vääntömomentti nollaksi) Jos kenttä kääntää dipolia, se tekee työtä Sähkökentän sähködipoliin aiheuttaman vääntömomentin lauseke ( τ = p E) on samannäköinen magneettikentän magneettidipoliin aiheuttaman vääntömomentin kanssa, joten vuorovaikutusten symmetrian perusteella U µ = µ B (magneettidipolin potentiaalienergia) (muista: sähködipolille sähkökentässä U = p E) 25 (31)

25 Virtasilmukka magneettikentässä Yleinen virtasilmukka Edelliset tulokset (vääntömomentti ja potentiaalienergia) johdettiin suorakaiteen muotoiselle virtasilmukalle Tulokset pätevät mielivaltaiselle tasomaiselle virtasilmukalle, päättely: Jaetaan epäsäännöllinen tasosilmukka vierekkäisiin (äärettömän) kapeisiin suorakaidesilmukoihin Vain suorakaiteiden ulkoreunojen virrat vaikuttavat, sisäreunojen vaikutukset kumoutuvat pareittain Jos N-kierroksinen solenoidi (kela) on tasaisessa magneettikentässä, µ = NIA τ = NIAB sin φ Dipolimomentti on solenoidin akselin suuntainen ja magneettikenttä pyrkii kääntämään solenoidin itsensä suuntaiseksi Magneettidipolin sovelluksia: d Arsonvalin galvanometri, MRI-kuvaus (engl. magnetic resonance imaging) 26 (31)

26 Virtasilmukka magneettikentässä Virtasilmukka epähomogeenisessa magneettikentässä Tasaisessa magneettikentässä virtasilmukkaan ei kohdistu nettovoimaa Kestomagneetin S-navan epähomogeenisessa magneettikentässä virtasilmukka, jonka dipolimomentti osoittaa kohti kestomagneettia, pyrkii kohti napaa (entä pohjoisnavalla?) N S µ Elektronilla on spininsä ansiosta magneettinen momentti Rauta-atomeissa (toisin kuin useimmissa muissa aineissa) monien elektronien momentit yhdensuuntaistuvat rauta-atomeilla on magneettinen nettomomentti raudan voi magnetoida kestomagneetiksi ja magneetin epähomogeeninen kenttä vetää (magnetoimatontakin) rautaa puoleensa 27 (31)

27 Tasavirtamoottori Tasavirtamoottorin osat Kiertyvä virtasilmukka on roottori Silmukan päät ovat kiinni kommutaattorissa Kommutaattorin johdelohkot koskettavat johtavia harjoja Harjat on kytketty virtalähteeseen 28 (31)

28 Tasavirtamoottori Toimintaperiaate 1. Vääntömomentti τ = µ B kääntää roottorin µ:n magneettikentän suuntaiseksi 2. Harjat osuvat molempiin kommutaattorin lohkoihin (virta silmukassa katkeaa) 3. Roottori jatkaa pyörimistä (kulmaliikemäärä!), kunnes virta taas kulkee silmukassa 29 (31)

29 Hallin ilmiö Hallin ilmiö Asetetaan johdelevy kohtisuorasti magneettikenttää vastaan z Levyn läpi ohjataan virta x-akselin suuntaan Varaukseen q (> 0) kohdistuu voima F z = qv d B y Varaukset erottuvat levyn vastakkaisiin reunoihin sähkökenttä E z [alaspäin] J x B y x Tasapainossa F z = 0 qe z + qv d B y = 0 E z = v d B y Virrantiheys J x = nqv d nq = J xb y E z Hallin ilmiö Sovelluksia: n:n, v d :n tai B y :n mittaaminen 30 (31)

30 Yhteenveto luvusta 27 Keskeisiä käsitteitä Magneettikenttä B Magneettinen voima F Magneettivuo Φ B Magneettidipoli ja magneettinen momentti µ Hallin ilmiö Tärkeitä kaavoja Magneettinen voima F = q v B Gaussin laki magnetismille B d A = 0 d F = I d l B Magneettidipoli µ = I A τ = µ B, U µ = µ B

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 4 Tavoitteet Virta, resistanssi ja smv Virta Resistiivisyys Resistanssi Sähkömotorinen voima Energia ja teho Sähkönjohtavuuden

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 5 Tavoitteet Magneettikenttä ja magneettiset voimat Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Magneettikentän lähteet (YF 28) Liikkuvan

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

Elektrodynamiikan tenttitehtäviä kl 2018

Elektrodynamiikan tenttitehtäviä kl 2018 Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

SOVELLUS: SYKLOTRNI- KIIHDYTIN

SOVELLUS: SYKLOTRNI- KIIHDYTIN SOVELLUS: SYKLOTRNI- KIIHDYTIN sähköken+ä levyjen välissä vaihtuu jaksollisesj taajudella f cyc, niin e+ä se kiihdy+ää vara+ua hiukkasta aina kun se kulkee välikön ohi. potenjaali ΔV oskilloi ns. syklotroni

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan.

KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. : Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. Protoni Elektroni 17 protonia 19 electronia 1,000,000 protonia 1,000,000 elektronia lasipallo puu*uu 3 elektronia (A) (B) (C) (D) (E)

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 17 Varatun hiukkasen liike SM-kentässä Tarkastellaan tässä luvussa varatun hiukkasen liikettä sähkömagneettisessa kentässä. Asiaa on käsitelty RMC:n luvussa 14 ja CL käsittelee Hamiltonin formalismia

Lisätiedot

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia.

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia. Ch2 Magnetism Ydinmagnetismin perusominaisuuksia. Sähkömagneettinen kenttä NMR-spectroskopia perustuu ulkoisten SM-kenttien ja ytimen magneettisen momentin väliseen vuorovaikutukseen. Sähkökenttä E ja

Lisätiedot

VIELÄ KÄYTÄNNÖN ASIAA

VIELÄ KÄYTÄNNÖN ASIAA VIELÄ KÄYTÄNNÖN ASIAA Kurssin luentomuis8inpanot (ja tulevat laskarimallit) näkyvät vain kun olet kirjautunut sisään ja rekisteröitynyt kurssille WebOodin kauga Kurssi seuraa oppikirjaa kohtuullisen tarkkaan,

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Oppimateriaali RMC luku 11 ja CL 8.1; esitiedot KSII luku 5. Toistaiseksi olemme tarkastelleet vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

KURSSIN TÄRKEIMPIÄ AIHEITA

KURSSIN TÄRKEIMPIÄ AIHEITA KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi

Lisätiedot

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta Magneettikenttä Magneettikenttä on magneettisen uooaikutuksen aikutusalue Magneetti on aina dipoli. Yksinapaista magneettia ei ole haaittu (nomaaleissa aineissa). Kenttäiiat: Suunta pohjoisnaasta (N) etelänapaan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 2 Tavoitteet Sähkövaraus ja sähkökenttä Sähködipoli Gaussin laki Varaus ja sähkövuo Sähkövuon laskeminen Gaussin laki Gaussin

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Kertausta. Haarto & Karhunen.

Kertausta. Haarto & Karhunen. Kertausta Haarto & Karhunen Newtonin 1. laki Massan hitauden laki Jatkavuuden laki Kappaleen nopeus on vakio tai kappale pysyy paikallaan, jos siihen ei vaikuta voimia. Newtonin 1. laki on voimassa myös,

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet Faradayn laki Lenzin laki Liikkeen tuottama smv Indusoituneet sähkökentät

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Fysiikka 7 muistiinpanot

Fysiikka 7 muistiinpanot Fysiikka 7 muistiinpanot 1 Magneettikenttä - Magneetilla navat eli kohtiot S ja N S N - Sovelluksia: kompassi (Maa kuin kestomagneetti) - Kuvataaan kenttäviivoilla kestomagneetit S N N S - tai vektorimerkeillä

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

4 Tasavirrat ja magneettikentät

4 Tasavirrat ja magneettikentät 4 Tasavirrat ja magneettikentät Edellisissä luvuissa käsiteltiin paikallaan olevien sähkövarausten välisiä voimia. Jos varaus on liikkeessä, se voi kokea myös magneettisen voiman. Magneettinen voima johtuu

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

Sähkö ja magnetismi 2

Sähkö ja magnetismi 2 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Sähkö ja magnetismi 2 Sähkövirran magneettinen vaikutus, sähkövirran suunta Tanskalainen H.C. Ørsted teki v. 1820 fysiikan luennolla seuraavanlaisen

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

FYSP1082 / K4 HELMHOLTZIN KELAT

FYSP1082 / K4 HELMHOLTZIN KELAT FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä

Lisätiedot

Hiukkaskiihdyttimet. Tapio Hansson

Hiukkaskiihdyttimet. Tapio Hansson Hiukkaskiihdyttimet Tapio Hansson Miksi kiihdyttää hiukkasia? Hiukkaskiihdyttimien kehittäminen on ollut ehkä tärkein yksittäinen kehityssuunta alkeishiukkasfysiikassa. Hyöty, joka saadaan hiukkasten kiihdyttämisestä

Lisätiedot