ELEC-A4130 Sähkö ja magnetismi (5 op)
|
|
- Karoliina Pakarinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa
2 Luentoviikko 5 Magneettikenttä ja magneettiset voimat (YF 27) Magnetismi Magneettikenttä Magneettiset kenttäviivat ja magneettivuo Varausten liike magneettikentässä Liikkeen sovelluksia Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori Hallin ilmiö Yhteenveto B F R v q 2 (31)
3 Tavoitteena on oppia Magneettikenttä ja magneettiset voimat (YF 27) magneettien ominaisuuksia ja miten magneetit vaikuttavat toisiinsa magneettikentässä liikkuvaan varaukseen vaikuttavan voiman luonne miten magneettiset kenttäviivat eroavat sähköisistä kenttäviivoista miten analysoidaan magneettikentässä olevan varauksen liikettä miten tutkitaan virtajohtimiin vaikuttavaa magneettista voimaa miten virtasilmukat käyttäytyvät magneettikentässä muutamia magneettikentän käyttökohteita kemiassa ja fysiikassa 3 (31)
4 Magnetismi Johdanto Magneettisia voimia käytetään hyödyksi monessa arkipäivän laitteessa Magnetismin olemus on liikkuvien sähkövarausten vuorovaikutus Sähköiset voimat vaikuttavat kaikkiin varauksiin, magneettiset voimat vain liikkuviin varauksiin Magneettikentän synnyttää kestomagneetti, virta johteessa tai liikkuva varaus Magneettikenttä välittää voiman, jonka jokin toinen virta tai liikkuva varaus kokee Ensimmäiset havainnot magneettisista ilmiöistä tehtiin (oppikirjan mukaan) vähintään 2500 vuotta sitten Magnesia [ad Sipylumin] kaupungissa (nyk. Manisa) Länsi-Turkissa 4 (31)
5 Magnetismi Magnetismi (Kesto)magneetissa on kaksi napaa kompassin mukaan S south, N north N S Samanmerkkiset navat hylkivät toisiaan, erimerkkiset vetävät toisiaan puoleensa Magneetin navat vetävät puoleensa rautaa sisältäviä ei-magnetisoituja esineitä (Missä tahansa) magneetissa on aina kaksi napaa: N S N S N S Maapallolla on magneettikenttä kenttäviivat kulkevat etelästä pohjoiseen Pohjoisnavalla on S-napa (mitä?) 5 (31)
6 Magneettikenttä Liikkuva varaus ja magneettinen voima Sähkökenttä Levossa oleva sähkövarausjakautuma synnyttää sähkökentän E Sähkökenttä aiheuttaa voiman F = q E varaukseen q Magneettikenttä Liikkuva varaus (virta) synnyttää (sähkökentän lisäksi?) magneettikentän B Magneettikenttä aiheuttaa voiman F liikkuviin varauksiin ja virtoihin Kokeellisesti on havaittu, että magneettikenttä B aiheuttaa nopeudella v liikkuvaan varaukseen q voiman F = q v B [B] def = tesla = T = N A m = V s m 2 voiman suunta (hiukkasen nopeus ja magneettikenttä) B on oikealta nimeltään magneettivuon tiheys, mutta kurssissa ja kirjassa sitä kutsutaan vain magneettikentäksi 6 (31)
7 Magneettikenttä Elektronisuihku magneettikentässä Magneettikenttää voidaan tutkia katodisädeputken avulla Elektronisuihku osuu keskelle kuvaruutua, jos magneettikenttä on elektronisuihkun kanssa yhdensuuntainen Käännetään putkea (ja elektronisuihkua) 90 magneettikenttä kääntää suihkua Kääntymissuunnasta voidaan päätellä elektronin varaus Jos varauksen kohdalla on sähkö- ja magneettikenttä yhtä aikaa, voima F = q( E + v B) Lorentzin voimalaki 7 (31)
8 Magneettiset kenttäviivat ja magneettivuo Kenttäviivat Kokeellisesti kenttäviivojen suunta nähdään rautaviilajauholla Rautahippuset ovat pieniä kompassineuloja magneettikenttään asetettuina (vrt. ruohonsiemenet sähkökentässä) N S Mangeettikentän kenttäviivat eivät ole voimaviivoja siinä mielessä kuin sähkökentän kenttäviivat (magneettikenttä aiheuttaa voiman vain liikkuvaan varaukseen eikä voiman suunta ole kentän suunta)! Magneettikenttävektorit ovat kenttäviivojen tangentteja (kuten sähkökentällä) 8 (31)
9 Eri lähteiden magneettisia kenttäviivoja
10 Magneettiset kenttäviivat ja magneettivuo Magneettivuo Magneettivuo Φ B määritellään kuten sähkökentän vuo Otetaan kuvitteellinen pinta A ja integroidaan sen läpi kulkeva B Φ B = B d A = B da magneettivuo [Φ B ] def = weber = Wb = ["Ve:ber] = T m 2 = N m/a = V s 10 (31)
11 Magneettiset kenttäviivat ja magneettivuo Gaussin laki magnetismissa Magneettisia monopoleja ei ole olemassa (tai ainakaan niitä ei ole luonnossa havaittu) Magneettivuo minkä tahansa suljetun pinnan läpi on nolla: B d A = 0 magnetismin Gaussin laki Magneettiset kenttäviivat ovat suljettuja silmukoita Jos valitaan tarkastelupinta (da ) kohtisuoraan B:tä vastaan, B = dφ B da (tästä näkee, miksi B:n oikea nimi on magneettivuon tiheys) 11 (31)
12 Varausten liike magneettikentässä Varauksen liike magneettikentässä Magneettikentän varaukseen aiheuttama voima on aina kohtisuorassa nopeutta vastaan Magneettikenttä voi muuttaa varauksen nopeuden suuntaa, ei suuruutta magneettinen voima ei tee työtä varaukselle varaus liikkuu ympyrä- tai kierrerataa B F R v q 12 (31)
13 Varausten liike magneettikentässä Syklotronitaajuus Newton II magneettinen voima on yhtä suuri kuin keskihakuvoima: F = q vb = m v2 R R = mv q B ympyräradan säde Varauksen kiertoaika T = 2πR/v, joten kulmataajuus ω = 2π/T = v/r = v q B/(mv) = q B/m (m on varauksen massa) Kulmataajuutta vastaava taajuus f = ω/(2π) = q B/(2πm) on syklotronitaajuus Esimerkiksi mikroaaltouunin tehonlähteenä käytetty magnetroni lähettää mikroaaltosäteilyä taajuudella 2.45 GHz, jolla elektronit kiertävät ympyrärataa tyhjiökammiossa magneetin napojen välissä. Mikroaaltouunin taajuutta ei ole valittu maksimoimaan vesimolekylien tehoabsorptiota. 13 (31)
14 Epähomogeeninen magneettikenttä Magneettinen pullo Hiukkanen kulkee kierrerataa, jos v ei ole kohtisuorassa B:tä vastaan Kahden virtasilmukan välissä epähomogeeninen kenttä magneettinen pullo, johon varatut hiukkaset voivat jäädä loukkuun Sovellus: kuuman plasman (T 10 6 K) keskittäminen fuusioreaktorissa
15 Varausten liike magneettikentässä Epähomogeeninen magneettikenttä Van Allenin vyöt Maan magneettikenttäkin muodostaa loukkuja varatuille hiukkasille Auringosta tulevat varatut hiukkaset loukkuuntuvat ennen ilmakehään osumistaan Van Allenin vyöt (löydettiin vasta 1958) revontulet 15 (31)
16 Varausten liike magneettikentässä Kuplakammio Kuplakammiossa on nestemäistä vetyä johon törmäydetään hiukkasia Ulkoinen magneettikenttä on kohtisuorassa hiukkasten kulkusuuntaan nähden Esim. gammakvantti irrottaa nopean elektronin vetyatomista Samalla muodostuu elektroni ja positroni (parinmuodostus) Nämä hitaat hiukkaset kiertävät magneettikentän takia spiraalirataa Saadaan selville hiukkasten massoja ja varauksia 16 (31)
17 Liikkeen sovelluksia Nopeudenvalitsin q Varattujen hiukkasten suihkusta voidaan valita tietynnopeuksisia hiukkasia Sähkö- ja magneettikenttä kohtisuorassa toisiaan vastaan Suoraan kulkevat hiukkaset toteuttavat liikeyhtälön B Fy = 0 qvb qe = 0 v = E B Nopeus valitaan säätämällä kenttien voimakkuuksia Varauksen merkillä ei ole väliä E 17 (31)
18 Liikkeen sovelluksia J.J. Thomsonin e/m-koe (1897) Tyhjiöputkessa kiihdytetään kuumasta katodista irtoavia elektroneja Potentiaaliero V kahden anodin välillä, elektronin massa m ja nopeus v: 1 2eV 2 mv2 = ev v = m Seuraavaksi elektronisuihku ohjataan nopeudenvalitsimeen: E B = 2eV e m m = E2 2V B 2 = mitattavissa Thomson löysi elektronin ja sai määritetyksi elektronin varauksen ja massan suhteen: (R.A. Millikan 1913: elektronin varaus) e 1.76 C 1011 m kg 18 (31)
19 Liikkeen sovelluksia Massaspektrometri Bainbridgen massaspektrometri (kuva) Kapea suihku positiivisia ioneja ohjataan nopeudenvalitsimeen Nopeudenvalitsimen jälkeen on kohtisuora magneettikenttä B Ionien rata kaareutuu ja ionit osuvat valokuvauslevylle Levylle osuvien ionien kulkuradan säde B E R = mv qb = me qbb Thomson löysi 1913 kaksi neonin isotooppia B 19 (31)
20 Virtajohdin magneettikentässä Virtajohtimeen kohdistuva magneettinen voima Johtimessa positiivinen varaus ajautuu ylöspäin (nopeus v d ) ja A F = q v B Varaustiheys n johtimen l-pituisessa osassa on nal varausta Osassa liikkuviin varauksiin kohdistuu kokonaisvoima F = (nal)(qv d B) = (nqv d A)(lB) F v d q l Virrantiheys J = nqv d = I/A, joten F = (JA)(lB) = IlB J 20 (31)
21 Virtajohdin magneettikentässä Käyräviivaiset johtimet Jos johdin ja magneettikenttä eivät ole kohtisuorassa, voima F = I l B (virran kulkusuunta = l:n suunta) Pätee myös negatiivisille virrankuljettajille (q e, v d v d ) Käyräviivainen johde jaetaan suoriin osiin d l, joten d F = I d l B (virta-alkioon kohdistuva magneettinen voima) ja kokonaisvoima saadaan integroimalla johdinta pitkin 21 (31)
22 Virtasilmukka tasaisessa magneettikentässä Ylhäältä (+z-suunnasta) F Sivulta ( y-suunnasta) z y A, µ F F a B z I x F F B φ φ b b F b = b cos φ Voimaparien ± F ja ± F nettovoima on nolla Voimapari ± F aiheuttaa vääntömomentin y-akselin suhteen
23 Virtasilmukka magneettikentässä Magneettidipoli Edellä voima F = IaB ja F = Ib B = IbB cos φ (muista: tasainen B) Voiman F aiheuttama vääntömomentti τ = 2 (b/2) F sin φ = IabB sin φ ab=a = IAB sin φ Vääntömomentin amplitudilla on maksimi, kun φ = 90, ja minimi, kun φ = 0 tai 180 Tulo IA def = µ on silmukan magneettinen dipolimomentti tai magneettinen momentti: τ = µb sin φ tai τ = µ B Virtasilmukka tai muu vääntömomenttia lausekkeen mukaisesti kokeva kappale magneettikentässä on magneettidipoli Magneettisen momenttivektorin µ = I A suunta (= peukalo) saadaan oikean käden säännöllä virran kiertosuunnasta (= sormet); µ on kohtisuorassa virtasilmukan tasoa vastaan 24 (31)
24 Virtasilmukka magneettikentässä Magneettidipolin potentiaalienergia Magneettikenttä pyrkii kääntämään magneettidipolin niin, että µ on samansuuntainen B:n kanssa (vääntömomentti nollaksi) Jos kenttä kääntää dipolia, se tekee työtä Sähkökentän sähködipoliin aiheuttaman vääntömomentin lauseke ( τ = p E) on samannäköinen magneettikentän magneettidipoliin aiheuttaman vääntömomentin kanssa, joten vuorovaikutusten symmetrian perusteella U µ = µ B (magneettidipolin potentiaalienergia) (muista: sähködipolille sähkökentässä U = p E) 25 (31)
25 Virtasilmukka magneettikentässä Yleinen virtasilmukka Edelliset tulokset (vääntömomentti ja potentiaalienergia) johdettiin suorakaiteen muotoiselle virtasilmukalle Tulokset pätevät mielivaltaiselle tasomaiselle virtasilmukalle, päättely: Jaetaan epäsäännöllinen tasosilmukka vierekkäisiin (äärettömän) kapeisiin suorakaidesilmukoihin Vain suorakaiteiden ulkoreunojen virrat vaikuttavat, sisäreunojen vaikutukset kumoutuvat pareittain Jos N-kierroksinen solenoidi (kela) on tasaisessa magneettikentässä, µ = NIA τ = NIAB sin φ Dipolimomentti on solenoidin akselin suuntainen ja magneettikenttä pyrkii kääntämään solenoidin itsensä suuntaiseksi Magneettidipolin sovelluksia: d Arsonvalin galvanometri, MRI-kuvaus (engl. magnetic resonance imaging) 26 (31)
26 Virtasilmukka magneettikentässä Virtasilmukka epähomogeenisessa magneettikentässä Tasaisessa magneettikentässä virtasilmukkaan ei kohdistu nettovoimaa Kestomagneetin S-navan epähomogeenisessa magneettikentässä virtasilmukka, jonka dipolimomentti osoittaa kohti kestomagneettia, pyrkii kohti napaa (entä pohjoisnavalla?) N S µ Elektronilla on spininsä ansiosta magneettinen momentti Rauta-atomeissa (toisin kuin useimmissa muissa aineissa) monien elektronien momentit yhdensuuntaistuvat rauta-atomeilla on magneettinen nettomomentti raudan voi magnetoida kestomagneetiksi ja magneetin epähomogeeninen kenttä vetää (magnetoimatontakin) rautaa puoleensa 27 (31)
27 Tasavirtamoottori Tasavirtamoottorin osat Kiertyvä virtasilmukka on roottori Silmukan päät ovat kiinni kommutaattorissa Kommutaattorin johdelohkot koskettavat johtavia harjoja Harjat on kytketty virtalähteeseen 28 (31)
28 Tasavirtamoottori Toimintaperiaate 1. Vääntömomentti τ = µ B kääntää roottorin µ:n magneettikentän suuntaiseksi 2. Harjat osuvat molempiin kommutaattorin lohkoihin (virta silmukassa katkeaa) 3. Roottori jatkaa pyörimistä (kulmaliikemäärä!), kunnes virta taas kulkee silmukassa 29 (31)
29 Hallin ilmiö Hallin ilmiö Asetetaan johdelevy kohtisuorasti magneettikenttää vastaan z Levyn läpi ohjataan virta x-akselin suuntaan Varaukseen q (> 0) kohdistuu voima F z = qv d B y Varaukset erottuvat levyn vastakkaisiin reunoihin sähkökenttä E z [alaspäin] J x B y x Tasapainossa F z = 0 qe z + qv d B y = 0 E z = v d B y Virrantiheys J x = nqv d nq = J xb y E z Hallin ilmiö Sovelluksia: n:n, v d :n tai B y :n mittaaminen 30 (31)
30 Yhteenveto luvusta 27 Keskeisiä käsitteitä Magneettikenttä B Magneettinen voima F Magneettivuo Φ B Magneettidipoli ja magneettinen momentti µ Hallin ilmiö Tärkeitä kaavoja Magneettinen voima F = q v B Gaussin laki magnetismille B d A = 0 d F = I d l B Magneettidipoli µ = I A τ = µ B, U µ = µ B
Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 4 Tavoitteet Virta, resistanssi ja smv Virta Resistiivisyys Resistanssi Sähkömotorinen voima Energia ja teho Sähkönjohtavuuden
LisätiedotLuku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan
Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää
LisätiedotSähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
LisätiedotMagneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 5 Tavoitteet Magneettikenttä ja magneettiset voimat Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori
LisätiedotFysiikka 7. Sähkömagnetismi
Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
LisätiedotMagnetismi Mitä tiedämme magnetismista?
Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten
LisätiedotMagnetismi Mitä tiedämme magnetismista?
Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten
LisätiedotPotentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0
Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotRATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
LisätiedotMagneettikenttä ja sähkökenttä
Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon
Lisätiedot1.1 Magneettinen vuorovaikutus
1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä
LisätiedotJakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Magneettikentän lähteet (YF 28) Liikkuvan
LisätiedotSähkömagneettinen induktio
Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches
LisätiedotSähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä
LisätiedotNäytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
LisätiedotAiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
LisätiedotFysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus
Lisätiedot766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN
766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.
LisätiedotSMG KENTTÄ JA LIIKKUVA KOORDINAATISTO
SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen
LisätiedotElektrodynamiikan tenttitehtäviä kl 2018
Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen
LisätiedotVirrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite
TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan
LisätiedotYleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.
Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
LisätiedotSATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedot&()'#*#+)##'% +'##$,),#%'
"$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""
LisätiedotVaratun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotSOVELLUS: SYKLOTRNI- KIIHDYTIN
SOVELLUS: SYKLOTRNI- KIIHDYTIN sähköken+ä levyjen välissä vaihtuu jaksollisesj taajudella f cyc, niin e+ä se kiihdy+ää vara+ua hiukkasta aina kun se kulkee välikön ohi. potenjaali ΔV oskilloi ns. syklotroni
LisätiedotVaratun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet
LisätiedotSÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
LisätiedotMagneettikentät ja niiden määrittäminen
Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin
Lisätiedota P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotYdin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,
LisätiedotVedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen
4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka
LisätiedotKYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan.
: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. Protoni Elektroni 17 protonia 19 electronia 1,000,000 protonia 1,000,000 elektronia lasipallo puu*uu 3 elektronia (A) (B) (C) (D) (E)
LisätiedotCoulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotLuku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä
Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
LisätiedotRATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
LisätiedotFYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
LisätiedotCh4 NMR Spectrometer
Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali
LisätiedotVaratun hiukkasen liike
Luku 17 Varatun hiukkasen liike SM-kentässä Tarkastellaan tässä luvussa varatun hiukkasen liikettä sähkömagneettisessa kentässä. Asiaa on käsitelty RMC:n luvussa 14 ja CL käsittelee Hamiltonin formalismia
LisätiedotCh2 Magnetism. Ydinmagnetismin perusominaisuuksia.
Ch2 Magnetism Ydinmagnetismin perusominaisuuksia. Sähkömagneettinen kenttä NMR-spectroskopia perustuu ulkoisten SM-kenttien ja ytimen magneettisen momentin väliseen vuorovaikutukseen. Sähkökenttä E ja
LisätiedotVIELÄ KÄYTÄNNÖN ASIAA
VIELÄ KÄYTÄNNÖN ASIAA Kurssin luentomuis8inpanot (ja tulevat laskarimallit) näkyvät vain kun olet kirjautunut sisään ja rekisteröitynyt kurssille WebOodin kauga Kurssi seuraa oppikirjaa kohtuullisen tarkkaan,
LisätiedotTheory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)
Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan
LisätiedotHarjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
LisätiedotSähkömagneettinen induktio
Luku 7 Sähkömagneettinen induktio Oppimateriaali RMC luku 11 ja CL 8.1; esitiedot KSII luku 5. Toistaiseksi olemme tarkastelleet vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka
LisätiedotKURSSIN TÄRKEIMPIÄ AIHEITA
KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,
LisätiedotSÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
LisätiedotFy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle
Lisätiedot8a. Kestomagneetti, magneettikenttä
Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi
LisätiedotSähkömagneettinen induktio
Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi
LisätiedotMagneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta
Magneettikenttä Magneettikenttä on magneettisen uooaikutuksen aikutusalue Magneetti on aina dipoli. Yksinapaista magneettia ei ole haaittu (nomaaleissa aineissa). Kenttäiiat: Suunta pohjoisnaasta (N) etelänapaan
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 2 Tavoitteet Sähkövaraus ja sähkökenttä Sähködipoli Gaussin laki Varaus ja sähkövuo Sähkövuon laskeminen Gaussin laki Gaussin
LisätiedotFysiikan perusteet ja pedagogiikka (kertaus)
Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-
LisätiedotMagneettikentät ja niiden määrittäminen
Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotKertausta. Haarto & Karhunen.
Kertausta Haarto & Karhunen Newtonin 1. laki Massan hitauden laki Jatkavuuden laki Kappaleen nopeus on vakio tai kappale pysyy paikallaan, jos siihen ei vaikuta voimia. Newtonin 1. laki on voimassa myös,
LisätiedotSähköstatiikka ja magnetismi Sähkömagneetinen induktio
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet Faradayn laki Lenzin laki Liikkeen tuottama smv Indusoituneet sähkökentät
Lisätiedota) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
LisätiedotElektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
LisätiedotELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ
FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää
Lisätiedotkipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
LisätiedotFysiikka 7 muistiinpanot
Fysiikka 7 muistiinpanot 1 Magneettikenttä - Magneetilla navat eli kohtiot S ja N S N - Sovelluksia: kompassi (Maa kuin kestomagneetti) - Kuvataaan kenttäviivoilla kestomagneetit S N N S - tai vektorimerkeillä
LisätiedotELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA
LisätiedotKuvan 4 katkoviivalla merkityn alueen sisällä
TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle
Lisätiedot4. Gaussin laki. (15.4)
Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotSähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
Lisätiedot4 Tasavirrat ja magneettikentät
4 Tasavirrat ja magneettikentät Edellisissä luvuissa käsiteltiin paikallaan olevien sähkövarausten välisiä voimia. Jos varaus on liikkeessä, se voi kokea myös magneettisen voiman. Magneettinen voima johtuu
Lisätiedot34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen
34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla
LisätiedotSähkö ja magnetismi 2
Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Sähkö ja magnetismi 2 Sähkövirran magneettinen vaikutus, sähkövirran suunta Tanskalainen H.C. Ørsted teki v. 1820 fysiikan luennolla seuraavanlaisen
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
LisätiedotSähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.
Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen
Lisätiedot- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.
7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona
LisätiedotKuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/
8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotFYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
LisätiedotSÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
LisätiedotJohdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
LisätiedotHiukkaskiihdyttimet. Tapio Hansson
Hiukkaskiihdyttimet Tapio Hansson Miksi kiihdyttää hiukkasia? Hiukkaskiihdyttimien kehittäminen on ollut ehkä tärkein yksittäinen kehityssuunta alkeishiukkasfysiikassa. Hyöty, joka saadaan hiukkasten kiihdyttämisestä
Lisätiedot