Tehtävän 1 moottorin kuormana an työkone, jonka momentti on vakio T=30 Nm. Laske

Koko: px
Aloita esitys sivulta:

Download "Tehtävän 1 moottorin kuormana an työkone, jonka momentti on vakio T=30 Nm. Laske"

Transkriptio

1 SÄHKÖENERGAEKNKKA Hrjoius - lueno 9 ehävä 1 Oheisess kuvss on ssähkökoneen sijiskykenämlli. Joh pyörimisnopeuden kv momenin funkion, kun mgneoinivuo φ j nkkurijännie V ov vkioin. Piirrä johmsi kv -ω soss, kun nkkurijännie on 00 V j nkkuriresinssi on 1Ω. Ekvivleninen vuokerroin K φ on 3 Vs. ehävä ehävän 1 mooorin kuormn n yökone, jonk momeni on vkio =30 Nm. Lske. mooorin pyörimisnopeus b. nkkurivirrn rvo ehävä 3 ehävän 1 mooori käynnieään levo ilmn kuorm kykemällä sen nkkuripiiri 00 V DC jännieläheeseen. Lske mooorin käynniysvir, kun ekvivleninen vuokerroin Kφ on edelleen 3 Vs. Lske, millä jännieen rvoll mooori piäisi käynniä, kun siihen kykeyn kuormn momeni on 30 Nm niin, eä käynniysvir on rjoieu kolmeen kern nimellisvir (=10 A, lskeu ehävässä.b) Jos mooori käynnieään lisäämällä srjresinssi nkkuripiiriin, lske resinssin rvo, kun nkkurijännie on 00 V j nkkurivir hlun edelleen rjoi kolmenkeriseksi nimellisvir. ehävä 4 ehävän 1 mooorin nopeus hlun sääää. Lske. nkkurijännieen rvo, joll pyörimisnopeus on 400 rpm kun kuormmomeni on 30 Nm. Ekvivleninen vuokerroin Kφ on edelleen 3 Vs. b. kenäpiirin jännieen rvo, joll pyörimisnopeus sdn noeuksi 700 rmp i. Silloin nkkurijännieen rvo on nimellinen 00 V. Oleen, eä nimellispyörimisnopeudell kenäpiirin jännie oli 300 V. c. ehävän 4.b:n vv nkkurivir d. ehävän 4.b: vv nimellismomeni

2 SÄHKÖENERGAEKNKKA Hrjoius - lueno 9 ehävä 1 Oheisess kuvss on ssähkökoneen sijiskykenämlli. Joh pyörimisnopeuden kv momenin funkion kun mgneoinivuo φ j nkkurijännie V ov vkioin. Piirrä johmsi kv -ω soss kun nkkurijännie on 00 V j nkkuriresinssi on 1Ω. Ekvivlenivuokerroin Kφ on 3 Vs. Rkisu V < E R sijiskykenäpiiriä sdn: Kurssin klvoi sdn: E < ϖ j < joi rkin nkkurivir: < V < ϖ R jok sijoien piiriyhälöön: R ϖ <, ( j rkin pyörimisnopeus: ehävä ehävän 1 mooorin kuormn n yökone, jonk momeni on vkio =30 Nm. Lske c. mooorin pyörimisnopeus d. nkkurivirrn rvo Rkisu R ϖ <, ( pyörimisnopeus edelliseä ehävää:

3 sijoimll lukurvo: < 00V R < 1ς,, < 30Nm < 3Vs j sdn: ϖ <, 1 < rd/ s n 3 3, eli ϖ < 60 < 606 rpm ο b. Ankkurivir: 30 < < < 10A 3 ehävä 3 ehävän 1 mooori käynnieään levo ilmn kuorm kykemällä sen nkkuripiiri 00 V DC jännieläheeseen. Lske mooorin käynniysvir kun ekvivlenivuokerroin Kφ on edelleen 3 Vs. Lske, millä jännieen rvoll mooori piäisi käynniä kun siihen kykeyn kuormn momeni on 30 Nm niin, eä käynniysvir on rjoieu kolmeen kern nimellisvir (nimellisvir on =10 A, lskeu ehävässä.b) Jos mooori käynnieään lisäämällä srjresinssi nkkuripiiriin, lske resinssin rvo kun nkkurijännie on 00 V j nkkurivir hlun edelleen rjoi kolmenkeriseksi nimellisvir. Rkisu V < E R Piiriyhälöä käyäen j oemll eä V 00 pyörimisnopeus on noll, sdn: E < < < 00A R 1 < ϖ < 0 kosk käynniyksessä ämä vir on lin suuri, joen kone ei void käynniä nimellisjännieellä. Jos hlun rjoi vir kolmenkeriseksi nimellisvir, eli < 3 < 3 10 < 30 A voidn V lske rviv jännieä näin: < R < 1 (3 10) < 30 V Jos vir rjoien käyämällä ylimääräinen käynniysresinssi, voidn lske rviv resinssi 00 R <, R <, 1 < 5.67 ς R R ( < 30 näin:, eli ehävä 4

4 ehävän 1 mooorin nopeus hlun sääää. Lske e. nkkurijännieen rvo, joll pyörimisnopeus on 400 rpm kun kuormmomeni on 30 Nm. Ekvivlenivuokerroin Kφ on edelleen 3 Vs. f. kenäpiirin jännieen rvo, joll pyörimisnopeus sdn noeuksi 700 rmp i. Silloin nkkurijännieen rvo on nimellinen 00 V. Oleen, eä nimellispyörimisnopeudell kenäpiirin jännie oli 300 V. g. ehävän 4.b:n vv nkkurivir h. ehävän 4.b: vv nimellismomeni Rkisu n < 400rpm. pyörimisnopeus olleess 1 rkoi, eä n 400 ϖ < ο < ο < rd/s sijoimll piiriyhälöön sdn mooorin jännieeksi: V < ( ϖ R 1 red 1 ( red 30 < < V 3 n b. Nimellisjännieellä iin ehävässä pyörimisnopeudeksi ϖ < 60 < 606 rpm ο, ämä rkoi siä, eä päääksemme 700 rpm pyörimisnopeueen piäisi siiryä kenäheikennyslueelle, eli mgneoinivuo piäisi pienenää. ällinen oimenpide suorien pienenämällä mgneoinikäämin syööjännie. olemll lineri riippuvuu jännieen j vuon välillä voidn lske ämän suorn kulmkerroin: ( red < CV f, red ( 3 red C < < < 0.01s V 300 f, red lsken sien kulmpyörimisnopeus: n 700 ϖ < ο < ο < rd/s piiriyhälöä V < K ϖ R ε( ( j sijoimll < 00V R < 1ς,, < 30Nm j 73.3 rd/s ϖ < rkin uusi

5 ( Vs i ( ekvivlenivuokerroin: < 0.16 <.57 Vs, joi vlin suurempi V mhdollinen j sillä lsken mgneoinipiirin jännie: f (.57 < < < 57 V C 0.01 c. Ensin lsken indusoiunu jännie nneull pyörimisnopeudell ( <.57 Vs d. ekvivlenivuokeroimell : E < ( ϖ < < V ϖ < 73.3 rd/s j uudell V < E R Sien käyeään piiriyhälö j lsken nkkurivir: V, E 00, < < < R A Huomn, eä nkkuri vir on suurempi kuin nimellisvir. Se rkoi, eä nimellismomeni ei void svu nimellisvirrll. Silloin lsken uusi kenäheikennyslueell ( Nm < olev nimellismomeni, jok v nimellisvir:, red < <

6 Integraali ja derivaatta

6 Integraali ja derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 6 Inegrli j deriv 6. Inegrli ylärjns funkion. Olkoon Määriä kun () [, ], (b) ], 3]., kun [, ],, kun ], 3]. f() d, [, 3],. Osoi, eä jos funkio f on Riemnn-inegroiuv

Lisätiedot

4. Integraalilaskenta

4. Integraalilaskenta 4. Inegrlilsken Joh8elev esimerkki: kun hiukksen pikk s( erivoin jn suheen, sn hiukksen nopeus: v( = s'( Kun nopeus erivoin jn suheen sn kiihyvyys ( = v'( Kääneinen ongelm: hiukksen kiihyvyys on (. Mikä

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

SATE2180 Kenttäteorian perusteet syksy / 6 Laskuharjoitus 7 / Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE2180 Kenttäteorian perusteet syksy / 6 Laskuharjoitus 7 / Siirrosvirta ja indusoitunut sähkömotorinen voima ATE18 Kenäeorin perusee syksy 18 1 / 6 Lskuhrjoius 7 / iirrosvir j inusoiunu sähkömoorinen voim Tehävä 1. All olevn kuvn mukinen piiri on sinimuooisesi värähelevässä j epähomogeenisess mgneeikenässä sin

Lisätiedot

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 [kw] [PS] 110 150 100 136 90 122 80 109 250 230 210 190 70 60 50 95 82 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500 2000

Lisätiedot

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 125 PS 100 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136 90 122

Lisätiedot

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 350 330 [kw] [PS] 110 150 100 136 310 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

SATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 10 / Kaksiporttien ABCD-parametrit ja siirtojohdot aikatasossa

SATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 10 / Kaksiporttien ABCD-parametrit ja siirtojohdot aikatasossa SATE050 Piirianalyysi II syksy 06 kevä 07 / 6 Tehävä. Määriä alla olevassa kuvassa esieylle piirille kejumariisi sekä sen avulla syööpiseimpedanssi Z(s), un kuormana on resisanssi k. i () L i () u () C

Lisätiedot

1 3 5 7 9 11 12 13 15 [Nm] 400 375 350 325 300 275 250 225 200 175 150 155 PS 100 PS 125 PS [kw][ps] 140 190 130 176 120 163 110 149 100 136 125 30 100 20 1000 1500 2000 2500 3000 3500 4000 4500 RPM 90

Lisätiedot

SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi

SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto

Lisätiedot

SATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta!

SATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta! SAT5 Piirinlyysi II syksy 6 / 8 skuhrjoius / Trnsini-ilmiö (rkisu muodosn diff. yhälö, I s käyä plc-muunnos!) Thävä. All olvss kuvss siyssä piirissä kykin siiryy hkllä = snnos snoon viivä (= induknssin

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 9: Teheveninin ja Nortonin menetelmät

SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 9: Teheveninin ja Nortonin menetelmät SATE1140 Piirinlyysi, os 1 kevät 2018 1 /7 Tehtävä 1. Lske ortonin menetelmän vull ll olevss kuvss esitetyssä piirissä jännite U 3. 20 A, E 345 V, E 660 V, Z 130, Z 30, Z 545. 3 Z 1 Z 2 E 2 Z 3 U 3 Kuv

Lisätiedot

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen 76619A Sähkömgnetismi, 7 op Kertustehtäviä, 1. välikokeen lue Vstukset tehtävien jälkeen 1. Kolme pistevrust sijitsee xy-koordintistoss ll olevn kuvn mukisesti. Vrus +Q sijitsee kohdss x =, toinen vrus

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54

FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54 FORD RANGER 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 28 28 29 29 30 [Nm] 475 450 425 400 375 [kw] [PS] 180 245 165 224 150 204 135 184 31 350

Lisätiedot

4. Määritä oheisen kehän plastinen rajakuorma. Tarkista, ettei myötöehtoa rikota missään. Piirrä tasapainoehdot toteuttava taivutusmomenttijakauma.

4. Määritä oheisen kehän plastinen rajakuorma. Tarkista, ettei myötöehtoa rikota missään. Piirrä tasapainoehdot toteuttava taivutusmomenttijakauma. Rk-4.00 Rkenteiden mekniikk I tentti/exm,..0 Kirjoit jokiseen koeeriin selvästi - ointojkson nimi, koodi j tentin äivämäärä - kikki nimesi uhuttelunimi lleviivttun - koulutusohjelm, oiskelijnumero, myös

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

FordRanger 1 0 965237 2 3 4 5 7 6 143 PS 156 PS RPM 1000 1500 2000 2500 3000 3500 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 0 120 110 100 90 80 70 60 50 40 30 20 10 [Nm] [kw] 0 163

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 6, mallivastaukset Syksy 2016

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 6, mallivastaukset Syksy 2016 Alto-yliopisto, Teknillisen fysiikn litos Sipilä/Heikinheimo PHYS-E0460 Rektorifysiikn perusteet Hrjoitus 6, mllivstukset Syksy 016 Tehtävä 3 on tämän hrjoituskierroksen tulutehtävä. Vlmistudu esittelemään

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli 1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

KURSSIN TÄRKEIMPIÄ AIHEITA

KURSSIN TÄRKEIMPIÄ AIHEITA KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

DEE Sähkömoottorikäyttöjen laboratoriotyöt. Tasavirtakäyttö

DEE Sähkömoottorikäyttöjen laboratoriotyöt. Tasavirtakäyttö Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1 KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,

Lisätiedot

Oikosulkumoottorin vääntömomenttikäyrä. s = 0 n = n s

Oikosulkumoottorin vääntömomenttikäyrä. s = 0 n = n s Oikosulkumoottorin vääntömomenttikäyrä M max M n M nk. kippauspiste M = momentti M max = maksimimomentti M n = nimellismomentti s = jättämä n = kierrosnopeus n s = tahtikierrosnopeus n n = nimelliskierrosnopeus

Lisätiedot

S Fysiikka IV (ES) Tentti

S Fysiikka IV (ES) Tentti S-46 Fysiikk V (ES) Tentti 95 Mss-bsorptiokerroin on linerinen bsorptiokerroin jettun ineen tiheydellä, µ = Σ ρ Se riippuu ineest j säteilyn energist udn j lyijyn ss-bsorptiokertoiet, MeV:n gsäteilylle

Lisätiedot

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS 6 SyyysjarjesemaD/APCLH 24 LH 24 ETS SyyysjarjesemaDAPCLH24 LH24 ETS 75 cy 100 122A YE 2 +30 230 1063 RO 0 1019 101A RO 25 RO 40 101C RD 25 J73 123 123A CNWH 1S CN/WH 1 13122A J 342A 22 20 YE 10 1 1CY

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Tehtävä 1. TEL-1360 Sähkömoottorikäytöt Laskuharjoitus 4/2011

Tehtävä 1. TEL-1360 Sähkömoottorikäytöt Laskuharjoitus 4/2011 TE-1360 Sähkömoottorikäytöt askuharjoitus 4/2011 Tehtävä 1. n = 750 V ; I n = 200 A ; a = 8 mh ; R a = 0,16 Ohm ; I max = 500 A ; i max0 = 60 A ; f s = 100 Hz astart = 30 V ; = 500 750 V ; cos φ = 1 Kyseessä

Lisätiedot

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y) Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet SATE0 Stttinen kenttäteoi kevät 07 / Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. All olevss kuvss sisimmän johteen ( = mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 40 V. Alueell < < 50 mm

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Tasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt

Tasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan A1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus 6/ VÄRÄHTELYMEKANIIKKA SESSIO 6: Yhde vpussee vimeev poväähely, yleie jsollie uomius YLEINEN JAKSOLLINEN KUORMITUS Hmois heäeä vsv pysyvä poväähely lusee löyyy helposi oeilemll. Hmoise heäee eoi void hyödyää

Lisätiedot

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 5, mallivastaukset Syksy 2016

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 5, mallivastaukset Syksy 2016 Alto-yliopisto, Teknillisen fysiikn litos Sipilä/Heikinheimo PHYS-E0460 Rektorifysiikn perusteet Hrjoitus 5, mllivstukset Syksy 2016 Tehtävä 2 on tämän hrjoituskierroksen tulutehtävä Vlmistudu esittelemään

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarie järjeelmä Harjoiu 6, harjoiuenpiäjille arkoieu rakaiuehdouke Tää harjoiukea käiellään aplace-muunnoa ja en hyödynämiä differeniaaliyhälöiden rakaiemiea Tehävä Määrielmän mukaan funkion f

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA 1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

EDE Elementtimenetelmän perusteet. Luento vk 1 Syksy Matematiikan ja matriisilaskennan kertausta

EDE Elementtimenetelmän perusteet. Luento vk 1 Syksy Matematiikan ja matriisilaskennan kertausta mperee tekillie yliopisto hum.8.3 Kostruktiotekiik litos EDE-00 Elemettimeetelmä perusteet. Lueto vk Syksy 03. Mtemtiik j mtriisilske kertust Yleistä Kirjoittele täe joiti kurssi keskeisiä sioit iille,

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

Pehmokäynnistimen asennus koteloon (riviasennus katso erillisohje) a) 3RW40 2: 15 mm [0.59 in] 3RW40 3; 3RW40 4: 30 mm [1.18 in]

Pehmokäynnistimen asennus koteloon (riviasennus katso erillisohje) a) 3RW40 2: 15 mm [0.59 in] 3RW40 3; 3RW40 4: 30 mm [1.18 in] Pehmokäynnisin 3RW40 2, 3RW40 3, 3RW40 4 Suomi Lue ja ymmärrä oheise ohjee ennen kuin asenna, käyä ai ylläpidä laieisoa.! VAARA HHUOMIO Vaarallinen jännie. Voi aiheuaa vamman ai kuoleman Laieen luoeava

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet ATE0 tttinen kenttäteoi kevät 06 / 6 Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. Kuvss esitetyn kpelin sisimmän johteen ( =,5 mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 00. Alueell,5 <

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

4. kierros. 1. Lähipäivä

4. kierros. 1. Lähipäivä 4. kierros 1. Lähipäivä Viikon aihe Taajuuskompensointi, operaatiovahvistin ja sen kytkennät Taajuuskompensaattorit Mitoitus Kontaktiopetusta: 8 h Kotitehtäviä: 4 h + 0 h Tavoitteet: tietää Operaatiovahvistimen

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten .4.8 intintegrli. He krtion z x + y sylinterin x + y y sisäpuolelle jäävän osn pint-l käyttämällä npkoordinttej x r cosθ j y r sinθ jolloin epäyhtälö x + y y on r sinθ. Rtkisu: Symmetrin nojll voidn trkstell

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä

Lineaarialgebra MATH.1040 / Piirianalyysiä Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 09: Yhden vapausasteen vaimeneva ominaisvärähtely

VÄRÄHTELYMEKANIIKKA SESSIO 09: Yhden vapausasteen vaimeneva ominaisvärähtely 9/ VÄRÄHTELYMEKNKK SESSO 9: Yhn vpun vinv oinivärähly LKEYHTÄLÖ Viooi vinnu vinnuvoin oln olvn uorn vrrnnollinn värählvän n nopun li F v () jo on vinnuvio. Kuv on viooii vinnun värählijän prulli, jo vinnu

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä 766319A Sähkömgnetismi, 7 op Vnhoj tenttitehtäviä 1. Puoliympyrän muotoon tivutettu suv on vrttu tsisesti siten, että vrus pituusyksikköä kohti on λ. Puoliympyrän säde on. Lske sähkökenttä puoliympyrän

Lisätiedot

Solutions for power transmission. Teräsnivelet.

Solutions for power transmission. Teräsnivelet. Solutions for power transmission Teräsnivelet www.konaflex.fi Liukulaakeroitu tyyppi TS vakioporauksilla TS on kattava sarja teräksisiä liukulaakeroituja ristiniveliä. Yksiniveliset alkupään koot lieriöporauksin

Lisätiedot

Luokat ja oliot. Ville Sundberg

Luokat ja oliot. Ville Sundberg Luokat ja oliot Ville Sundberg 12.9.2007 Maailma on täynnä olioita Myös tietokoneohjelmat koostuvat olioista Σ Ο ω Μ ς υ φ Ϊ Φ Θ ψ Љ Є Ύ χ Й Mikä on olio? Tietokoneohjelman rakennuspalikka Oliolla on kaksi

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op)

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op) LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi Servokäyttö (0,9 op) JOHDNTO Työssä tarkastellaan kestomagnetoitua tasavirtamoottoria. oneelle viritetään PI-säätäjä

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot