Digitaalinen signaalinkäsittely Kuvankäsittely
|
|
- Helmi Hämäläinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät, Opintomoniste, TTKK
2 Sisältö Digitaalisen kuvankäsittelyn perusteet Periaatteet ja sovelluksia Kaksiulotteiset järjestelmät ja DFT Dekonvoluutio Piste-ehostus
3 Digitaalinen kuvankäsittely? Perusajatus: laajennetaan signaalinkäsittelyn perusmenetelmät kahteen ulottuvuuteen Voidaan käyttää samantyyppisiä suotimia Kuvien havaitseminen poikkeaa esim. äänisignaalien havaitsemisesta, joten menetelmissäkin on eroavaisuuksia Termiä ei pidä sekoittaa tavalliseen kuvankäsittelyyn
4 Digitaalisen kuvankäsittelyn alueita ja sovelluksia Kuvien ehostus Joitakin kuvan ominaisuuksia ja piirteitä voidaan parantaa Ei yleensä ideaalista eli yhtä ainoaa oikeaa ratkaisua Tarkoituksen mukaan (esim. ihminen / konenäköalgoritmi) Kuvan restaurointi Kuvassa olevien häiriöiden poisto Pyritään jonkin mallin mukaan ideaaliseen ratkaisuun Esim. liikkeen aiheuttaman vääristymän korjaus Kuva-analyysi Erilaiset tunnistusalgoritmit Tärkeä teollisessa valmistamisessa ja laaduntarkkailussa sekä valvontasovelluksissa
5 2-ulotteiset järjestelmät Yksiulotteisessa tapauksessa signaalia merkittiin x(n):llä 2-ulotteista signaalia merkitään x(m,n):llä Esim. 2-ulotteinen impulssi: ( n, m) 1, 0 kun n 0 ja muulloin. m 0
6 2-ulotteiset järjestelmät ( n, m) 1, 0 kun n 0 ja muulloin. m 0
7 2-ulotteiset järjestelmät Konvoluutio 2-ulotteisella järjestelmällä: y( m, n) j k h( m, n)* h( x( m, n) j, k) x( m j, n k) 2-ulotteisille järjestelmille voidaan vastaavasti määritellä myös DFT ja Z-muunnokset Fourier- ja Z-tasossa voidaan suotimen konvoluutio tehdä pelkällä kertolaskulla eli Y(m,n)=H(m,n)X(m,n) (kts. moniste s )
8 Esimerkki: kuvan Fourier-muunnos
9 Kuvan Fourier-muunnos taajuudet?? Kuvan Fourier-muunnoksessa (DFT) näkyvät samalla tapaa eri taajuuksien voimakkuudet Yleensä kuvan DFT:tä vielä käsitellään Matalimmat taajuudet ovat keskellä Korkeiden taajuuksien osuudet ovat reunoilla Suodatus voidaan tehdä myös taajuustasossa (kuten seuraavassa esimerkissä)
10 Esimerkki: Suodatus taajuustason kautta Lena:n taajuusesitys Suodin taajuustasossa
11 Esimerkki: Suodatus taajuustason kautta Suodatetun Lena:n taajuusesitys Suodatetun Lena:n käänteismuunnos
12 Esimerkki: Suodatus taajuustason kautta
13
14 Dekonvoluutio ja kuvan ehostus Kuvassa olevien häiriöiden syntyä mallinnetaan usein jollakin järjestelmällä tai suotimella Alkuperäisen kuvan x(m,n) ajatellaan menevän jonkin LTIjärjestelmän läpi: y(m,n) = h(m,n)*x(m,n) Eli häiriötä sisältävä, havaitsemamme kuva on y(m,n) Otetaan DFT molemmista puolista: Y(m,n)=H(m,n)X(m,n) Jos halutaan arvioida alkuperäistä kuvaa, saadaan X ( m, n) Y( m, n) H( m, n) (Ks. moniste s )
15 Pisteoperaatiot (piste-ehostus) Kaksiulotteiset muistittomat järjestelmät ovat ns. pisteoperaatioita (point operation) Vaste riippuu ainoastaan yhdestä herätteen (eli sisäänmenosignaalin) arvosta Tarkoituksena on ehostaa kuvaa eli parantaa sen ominaisuuksia (luettavuutta) Tavallisimpia pisteoperaatioita ovat mm. gammakorjaus ja histogrammin ekvalisointi
16 Gammakorjaus Kuvia toistavilla laitteilla (näyttö, videoprojektori, tulostin jne.) on jonkinlainen vääristävä vaikutus kirkkauteen Tätä voidaan kompensoida gammakorjauksella Esimerkiksi monitorin ruudulla näkyvä kuvan intensiteetti I riippuu videosignaalin jännitteestä u siten, että I = u γ (Eksponenttia merkitään siis kreikkalaisella gammalla gammakorjaus) Eri järjestelmissä gamma vaihtelee ja sovittamalla se oikein, saadaan kirkkauden vääristymät korjattua Kuvankäsittelyssä gammakorjausta voidaan käyttää alkuperäisestä tarkoituksesta poiketen kuvan ehostamiseen Kaikista kuvankäsittelyohjelmistakin löytyy gammakorjaus Korjauskäyrä voi olla myös monimutkaisempikin lauseke
17 Histogrammin ekvalisointi Tärkeä menetelmä, jolla saadaan intensiteettijakauma tasoitettua Intensiteettijakaumaa esittää histogrammi Histogrammissa on laskettu jokaisen harmaasävyn (0-255) esiintymien määrä Tuloksena on harmaasävykuvalle 256-alkioinen kokonaislukutaulukko Yleensä kuvankäsittelyohjelmat eivät näytä tarkkaa histogrammia, vaan jonkinlaisen tasoitetun käyrän
18 Histogrammin ekvalisointi Esimerkki: Lena-kuvan histogrammi
19 Histogrammin ekvalisointi Kuva: histogrammin ekvalisointi, moniste s. 104
20 Histogrammin ekvalisointi Kun histogrammi ekvalisoidaan eli tasoitetaan, lasketaan uusi harmaasävy n kaavalla n k 0 n' ( L 1) L 1 k 0 H( k), H( k) missä n on vanha harmaasävyarvo ja H(k) on kuvan histogrammi (L on harmaasävyjen määrä, yleensä L=256) Menetelmä tasoittaa histogrammin, sillä uusi harmaasävyarvo riippuu nykyisen ja sitä tummempien pisteiden määrästä Uusi arvo on kaikkien vanhaa harmaasävyarvoa tummempien summa jaettuna kuvan koolla ja kerrottuna L:llä
21 Histogrammin paikallinen ekvalisointi Histogrammia voidaan tasoittaa myös paikallisesti Tämä tehdään yleensä silloin, kun valotus kuvan eri osissa vaihtelee Erona edelliseen, paikallisessa ekvalisoinnissa käytettävä histogrammi lasketaan jokaiselle kuvan pisteelle erikseen Käytetään tietyn kokoista ikkunaa pisteen ympäriltä Teoreettisesti paras tulos saataisiin ympyrän muotoisella ikkunalla Käytännössä kuitenkin helpointa on käyttää neliön muotoista ikkunaa
22 Histogrammin paikallinen ekvalisointi Kuva: histogrammin paikallinen ekvalisointi, moniste s.106
23 Muita kuvankäsittelyoperaatiota Usein kuvankäsittelyssä käytetään epälineaarisia operaatioita (epälineaarinen suodatus) Epälineaarisuus tekee menetelmien analysoinnista matemaattisesti vaikeaa (ellei jopa mahdotonta) Epälineaarisella suodatuksella saadaan kuitenkin hyviä tuloksia aikaan esim. tietyissä erikoistapauksissa Hyvä esimerkki epälineaarisesta suodatuksesta kuvankäsittelyssä on mediaanisuodatin Voidaan käyttää tietynlaisen kohinan poistossa (salt & pepper noise) Mediaanisuodatus saattaa kuitenkin tehdä kuvaan joitakin eitoivottuja piirteitä
24 Muita kuvankäsittelyoperaatiota Esimerkki: Mediaanisuodatus
25 Muita kuvankäsittelyoperaatioita Lisäksi voidaan tehdä reunanetsintää kynnystystä yhtenäisten alueiden tunnistusta piirteen irrotusta tunnistusta jne. jne.
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,
LisätiedotDigitaalinen signaalinkäsittely Johdanto, näytteistys
Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn
LisätiedotKompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen
TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan
Lisätiedot1, kun m = 0 ja n = 0, 0, muulloin.
Luku 1 Digitaalinen kuvankäsittely Tässä kappaleessa luodaan lyhyt katsaus digitaaliseen kuvankäsittelyyn ja joihinkin sen sovelluksiin. Yksinkertaisimmillaan kuvankäsittelyä voidaan pitää perusmenetelmien
LisätiedotLuku 3. Kuvien ehostus tilatasossa. 3.1 Taustaa
Luku 3 Kuvien ehostus tilatasossa Kuvan ehostamisessa päätavoitteena on käsitellä kuvaa siten, että saatu tulos soveltuu paremmin haluttuun käyttötarkoitukseen kuin alkuperäinen kuva. On siis sovelluskohtaista,
LisätiedotSäätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio
LisätiedotRadioamatöörikurssi 2013
Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
LisätiedotMitä on konvoluutio? Tutustu kuvankäsittelyyn
Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa
LisätiedotRadioamatöörikurssi 2015
Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,
LisätiedotDigitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
LisätiedotKuvien ehostus taajuustasossa
Luku 4 Kuvien ehostus taajuustasossa Ranskalainen matemaatikko Jean Babtiste Joseph Fourier esitti 1807, että mikä tahansa jaksollinen funktio voidaan esittää eritaajuisten sinien ja kosinien painotettuna
LisätiedotAjatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1
3. DATA VEKTORINA 3.1. Vektorit, matriisit, etäisyysmitat Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors {}}{ d vector elements X TKK, Informaatiotekniikan laboratorio 1
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
LisätiedotDigitaalisen kuvankäsittelyn perusteet
Digitaalisen kuvankäsittelyn perusteet Jukka Teuhola Turun yliopisto Tietojenkäsittelytiede Syksy 2010 http://staff.cs.utu.fi/kurssit/digitaalisen_kuvankasittelyn_perusteet/syksy_2010/index.htm DKP-1 J.
LisätiedotMediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin
Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5
LisätiedotS-114.3812 Laskennallinen Neurotiede
S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä
LisätiedotKuvanlaadunparantaminen. Mikko Nuutinen 21.3.2013
Kuvanlaadunparantaminen Mikko Nuutinen 21.3.2013 Luennon sisältö Termistöä Kuvanentisöinti Terävyys unsharp masking Kohina non-local means Linssivääristymän korjaus Kuvanlaadunehostaminen Kontrasti Auto-levels
LisätiedotSpektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Lisätiedot1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
LisätiedotF {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:
BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()
LisätiedotLuku 4 - Kuvien taajuusanalyysi
Luku 4 - Kuvien taajuusanalyysi Matti Eskelinen 8.2.2018 Kuvien taajuusanalyysi Tässä luvussa tutustumme taajuustasoon ja opimme analysoimaan kuvia ja muitakin signaaleja Fourier-muunnoksen avulla. Aiheina
LisätiedotRadioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
LisätiedotT SKJ - TERMEJÄ
T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotLOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
LisätiedotLuku 3. Data vektoreina
1 / 4 Luku 3. Data vektoreina T-61.21 Datasta tietoon, syksy 211 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 3.11.211 2 / 4 Tämän luennon sisältö 1 Data vektoreina Datamatriisi
LisätiedotTämän luennon sisältö. Luku 3. Data vektoreina. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011
Tämän luennon sisältö Luku 3. T-6.2 Datasta tietoon, syksy 2 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto Datamatriisi Piirreirrotus: ääni- ja kuvasignaalit Dimensionaalisuuden
LisätiedotCubature Integration Methods in Non-Linear Kalman Filtering and Smoothing (valmiin työn esittely)
Cubature Integration Methods in Non-Linear Kalman Filtering and Smoothing (valmiin työn esittely) Ohjaaja: Valvoja: TkT Simo Särkkä Prof. Harri Ehtamo 13.9.2010 Aalto-yliopiston teknillinen korkeakoulu
LisätiedotIIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
Lisätiedot12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja.
1.5. Vertailua Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 1.8. luonnehtii vaihtoehtoja. (1)Esisuodatus äärettömästi näytteitä pikseliä kohti Lasketaan projisoidun kohteen palojen
LisätiedotELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.
Lisätiedot1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
Lisätiedot1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on
1467S Digitaalinen kuvankäsittely 1 Johdanto 1.1 Mitä digitaalinen kuvankäsittely on Kuva voidaan ajatella kaksiulotteiseksi funktioksi f(x, y), jossa x ja y ovat koordinaatit ja f:n arvo pisteessä (x,
LisätiedotSignaalinkäsittelyn menetelmät
Signaalinkäsittelyn laitos. Opetusmoniste 25: Institute of Signal Processing. Lecture Notes 25: Heikki Huttunen Signaalinkäsittelyn menetelmät Tampere 25 Opetusmoniste 25: Signaalinkäsittelyn menetelmät
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotLuento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
LisätiedotSuodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)
Suodattimet Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth Suodattimet samalla asteluvulla (amplitudivaste) Kuvasta nähdään että elliptinen suodatin on terävin kaikista suodattimista, mutta sisältää
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla
LisätiedotRadioamatöörikurssi 2018
Radioamatöörikurssi 2018 Radioiden toimintaperiaatteet ja lohkokaaviot 20.11.2018 Tatu Peltola, OH2EAT 1 / 13 Sisältö Lähettimien ja vastaanottimien rakenne eri modulaatiolla Superheterodyne-periaate Välitaajuus
LisätiedotOngelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?
Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse
LisätiedotFYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
Lisätiedot2D piirrelaskennan alkeet, osa I
2D piirrelaskennan alkeet, osa I Ville Tirronen aleator@jyu.fi University of Jyväskylä 18. syyskuuta 2008 Näkökulma Aiheet Tarkastellaan yksinkertaisia 2D kuvankäsittelyoperaattoreita Näkökulmana on tunnistava
LisätiedotHarjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008
Lisätiedot4. Taajuusalueen suodatus 4.1. Taustaa Perusteita
4. Taajuusalueen suodatus 4.1. Taustaa Fourier esitti v. 1807 idean, että laskien yhteen jaksollisia painotettuja funktioita voidaan esittää kuinka tahansa monimutkainen jaksollinen funktio. Kuva 4.1.
Lisätiedot1 Johdanto Mitä digitaalinen kuvankäsittely on Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuvankäsittelyn vaiheet 3
Sisältö 1 Johdanto 1 1.1 Mitä digitaalinen kuvankäsittely on 1 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä 2 1.3 Kuvankäsittelyn vaiheet 3 2 Digitaalisen kuvan perusteet 5 2.1 Havaitseminen
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotSGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007
SGN-3010: Digitaalinen kuvankäsittely I Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007 ii Esipuhe Digitaalinen kuvankäsittely on nopeasti kehittynytsignaalinkäsittelyn osa-alue,
LisätiedotTHE audio feature: MFCC. Mel Frequency Cepstral Coefficients
THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t
Lisätiedot5. Kuvanennallistus. Kuvanennallistus 269
5. Kuvanennallistus Ennallistus eroaa korostamisesta edellisen ollessa objektiivista ja jälkimmäisen pikemmin subjektiivista käsittelyä, vaikka niiden menetelmissä on päällekkäisyyttä. Objektiivinen tarkoittaa,
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Lisätiedot4. Taajuusalueen suodatus 4.1. Taustaa
4. Taajuusalueen suodatus 4.1. Taustaa Fourier esitti v. 1807 idean että laskien yhteen jaksollisia painotettuja funktioita voidaan esittää kuinka tahansa monimutkainen jaksollinen funktio. Kuva 4.1. esittää
LisätiedotCopyright 2015 ECDL Foundation ECDL Kuvankäsittely Sivu 2 / 7
ECDL Kuvankäsittely Tavoite Tässä esitellään tutkintovaatimukset moduulille ECDL Kuvankäsittely, joka määrittelee tarvittavat tiedot ja taidot näyttökokeen suorittamiseen. Tämä dokumentti kuvaa tiedot
LisätiedotKäytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen
LisätiedotSignaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
LisätiedotSGN-4200 Digitaalinen audio
SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,
LisätiedotSupply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet
S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen
LisätiedotHelsinki University of Technology
Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Lisätiedotnykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien
2.1.8. TAAJUUSJAKOKANAVOINTI (FDM) kanavointi eli multipleksointi tarkoittaa usean signaalin siirtoa samalla siirtoyhteydellä käyttäjien kannalta samanaikaisesti analogisten verkkojen siirtojärjestelmät
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotA/D-muuntimia. Flash ADC
A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (
LisätiedotGEOMETRIA MAA3 Geometrian perusobjekteja ja suureita
GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.
LisätiedotNumeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55
Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen
LisätiedotAlipäästösuotimen muuntaminen muiksi perussuotimiksi
Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
LisätiedotSGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen
SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa
LisätiedotA B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
LisätiedotSIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
LisätiedotSäätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D104: Kuvien suodatus 0.9 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio Sisältö 1 Johdanto 1
Lisätiedot1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4
1. Johdanto Kuvanprosessointi tai käsittely juontaa juurensa kahdesta pääasiallisesta alueesta, jotka ovat kuvainformaation parantaminen ihmisen tulkintaa varten ja kuvadatan käsittely talletusta, siirtoa
LisätiedotDigitaalinen audio
8003203 Digitaalinen audio Luennot, kevät 2005 Tuomas Virtanen Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2 Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot, sekä niissä
LisätiedotSpektrin sonifikaatio
Spektrin sonifikaatio AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sisällysluettelo 1. Johdanto... 2 2. Tehtävän kuvaus ja työn rakenne... 2 3. Teoria... 2 3.1 Ääni mekaanisena aaltona...
LisätiedotPekka Pussinen OH8HBG - pekka.pussinen @! oulu.fi
VAIHEKOHINA RADIOJÄRJESTELMISSÄ Pekka Pussinen OH8HBG - pekka.pussinen @! oulu.fi Radiotiedonsiirtojärjestelmissä ilmenevät tekniset ongelmat ovat mitä moninaisimpia. Varsinkin vastaanottimen käyttäytymisessä
LisätiedotHistoriaa musiikillisten äänten fysikaalisesta mallintamisesta
Äänilähteiden fysikaalinen mallintaminen uusin äänisynteesimetodi simuloi soittimen äänentuottomekanismia käyttö musiikillisissa äänissä: -jäljitellään olemassaolevia akustisia instrumentteja -mahdollistaa
LisätiedotQosmioEngine Mullistava videokokemus
QosmioEngine Mullistava videokokemus Qosmio yhdistää QosmioEnginen ja QosmioPlayerin korkealuokkaiset video ominaisuudet, Harman Kardonin kaiuttimet, SRS TruSurround XT:n surround äänen sekä digitaaliset
LisätiedotVirheen kasautumislaki
Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
Lisätiedot12. Laskostumisen teoria ja käytäntö
12.1. Aliakset eli laskostuminen ja näytteistys 12. Laskostumisen teoria ja käytäntö Monet seikat vaikuttavat kuvien laatuun tietokonegrafiikassa. Mallintamisesta ja muista tekijöistä syntyy myös artefakteja,
LisätiedotKatsaus suodatukseen
Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin
LisätiedotKartio ja pyramidi
Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota
Lisätiedote ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,
Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution
LisätiedotTiedonkeruu ja analysointi
Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala 30.9.2015 ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat
LisätiedotHeikki Huttunen Signaalinkäsittelyn perusteet
Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 24: Tampere University of Technology. Department of Signal Processing. Lecture Notes 24: Heikki Huttunen Signaalinkäsittelyn perusteet
LisätiedotLuento 9. tietoverkkotekniikan laitos
Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio
LisätiedotSignaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
LisätiedotLABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)
TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)
LisätiedotS-114.3812 Laskennallinen Neurotiede
S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte
LisätiedotDynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
LisätiedotAvainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku
Pasi Leppäniemi OuLUMA, sivu 1 POLYNOMIPELI Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Luokkataso: 8-9 lk Välineet: pelilauta, polynomikortit, monomikortit, tuloskortit,
LisätiedotMatalan intensiteetin hajaspektrisignaalien havaitseminen ja tunnistaminen elektronisessa sodankäynnissä
Matalan intensiteetin hajaspektrisignaalien havaitseminen ja tunnistaminen elektronisessa sodankäynnissä Toteuttajataho: Harp Technologies Oy Myönnetty rahoitus: 61.924,- Esityksen sisältö Tieteellinen
Lisätiedot