S Laskennallinen Neurotiede
|
|
- Julia Tikkanen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 S Laskennallinen Neurotiede Projektityö Heikki Hyyti 60451P
2 Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte luodaan kaavalla 1 tiettyyn kulmaan, θ, tietyllä paikkataajuudella, ω, ja taajuudella, ω : S x, y, t) = cos( xω cos( θ ) + yω sin( θ ) + tω ) (1) ( t Tällä kaavalla tehtyjä stimuluksia on esitelty kuvassa 1. Siinä vasemmassa reunassa on esitetty kymmenen kuvan mittainen stimulus eri kulman, θ, arvoilla. Keskellä kuvassa on sama stimulus kun vain paikkataajuutta, ω, on muutettu. Viimeisenä oikealla on esitetty taajuuden, ω t, muutoksien vaikutus stimulukseen S. t Kuva 1: Kymmenen aikajakson mittaisia esimerkkisyötteitä yhtä parametria muutettaessa Etsitään neuronille optimaalinen stimulus eli stimulus, jolle neuroni laukoo eniten. Aloitin haun suurin piirtein keskeltä taajuuden ja paikkataajuuden alueita ja lähdin haarukoimaan kulmaa, φ. Tiesin, että V1 alueen neuroni on erittäin herkkä vain tietyn suuntaiselle stimulukselle, joten hain ensimmäisenä oikean kulman. Laskin kuvassa näkyvän neuronin aktiivisuuden kulman funktiona niin, että taajuus ja paikkataajuus olivat alkuarvoissaan. Huomasin, että kuvassa on tarkka piikki erään kulman kohdalla. Valitsin kulmaksi sen ja aloin hakea paikkataajuutta samalla periaatteella. Löysin ensimmäisellä laskentakierroksella jonkinnäköiset arvot kulmalle, taajuudelle ja paikkataajuudelle. Kuitenkin tarkat optimit määritin iteroimalla kuvassa 3 näkyvän virityskäyrästön avulla. Laskin siis aina virityskäyrästön ja määritin kaikkien kolmen muuttujan arvot maksimiinsa ja toistin tätä muutamia kertoja. Näin lopulta sain suhteellisen hyvät arviot optimaaliselle neuronin syötteelle. Kuvan 3 virityskäyrästöön on lisäksi merkitty punaisilla ruuduilla määrittämäni optimiarvot. Ne ovat kulmalle θ = 7π / 4, paikkataajuudelle ω = ja taajuudelle ω = t
3 Kuva : Neuronin aktiivisuuden haku kulman perusteella Kuva 3: Neuronin aktiivisuuden virityskäyrästö 3
4 Seuraavaksi piti määrittää neuronin reseptiivisen kentän koko. Sen onnistuu tekemällä keskelle kuvaa R säteinen pyöreä maski, niin että maski ei päästä reunoille tulevaa kuvaa lävitseen, vaan nollaa sen. Stimulus on siis seuraavan kaavan mukainen: ( ( x x0 ) + ( y y0 ) ) cos( xω cos( θ ) + yω sin( θ ) + tωt ) S( x, y, t) = F () Kaavassa F saa arvon 0, jos sen argumentti on suurempi kuin R, ja muulloin arvon 1. Laskin erikokoisista maskeista läpi menneitä stimuluksia ja piirsin käyrän, jossa saatujen piikkien lukumäärä on esitetty maskin säteen funktiona. Se on esitetty kuvassa 5. Siihen on lisäksi merkitty punaisella ruudulla valitsemani kohta, jossa aukon kasvattaminen ei enää juurikaan kasvattanut piikkien lukumäärää. Säteeksi R saatiin siis Kuva 4: Neuronin aktiivisuus maskin säteen funktiona Kaavalla () luotua stimulusta on esitetty yhden ajallisen syklin verran kuvassa 5, kun R = 3.67, θ = 7π / 4, ω = ja ω = t Kuva 5: Yksi sykli optimaalista stimulusta 4
5 Tehtävä : Reseptiivisen kentän arviointi STA:n avulla Tässä tehtävässä piti laskea LNP -malli neuronillemme. Valkoista Gaussista kohinaa, jonka varianssi on 0.5 ja keskiarvo 0, sisältävää syötettä generoitiin satatuhatta aikayksikköä pitkä näyte. Yhden aikayksikön pituus on 60ms, joten pituutta stimulukselle tuli 100 minuuttia. Vasta näin pitkällä näytejonolla saatiin laskettua siedettäviä piikin laukaisuun johtaneita keskiarvoja, (spike triggered average, STA). STA:n laskemiseksi siirrettiin jokaisen aikayksikön aikana tulleet piikit omaan laatikkoonsa histogrammin avulla. Tämän jälkeen laskettiin erikseen 0,1,, viivästettyjen Stimulusten keskiarvo laatikossa olevien piikkien määrällä kerrottuna. Havaittiin, että viivästykset 0-5 riittivät hyvin, koska sitä seuraavat STA:n kuvat olivat enää pelkkää kohinaa. Valittiin STA:ksi 6 perättäistä keskiarvokuvaa viiveillä 0-5, jotka on myös esitetty kuvassa 6. Kuva 6: Piikin laukaisuun johtaneet keskiarvot eri viivästyksillä (STA) Seuraavaksi nauhoitettiin neuronilta samasta stimuluksesta sadan kerran piikit ja laskettiin siitä histogrammi niin, että jokaista aikayksikköä vastasi yksi laatikko. Seuraavaksi suodatettiin sama stimulus STA:lla ja saatiin näin keskiarvot jokaista kuvaa kohti STA -mallin ennustamasta laukomistaajuudesta. Kuvassa 7 on piirretty päällekkäin lyhyt osa nauhoitetusta ja keskiarvostetusta laukomistaajuudesta sekä STA-mallista saadusta laukomistaajuudesta. 5
6 Kuva 7: Neuronin laukomistaajuus ja STA-mallin estimaatti Nämä kaksi arvoa näyttäisivät korreloivan ainakin jotenkin. Seuraavaksi kuvaan 8 on laskettu näiden kahden arvon korrelaatio niin, että pystyakselilla on oikea neuronista nauhoitettu laukomistaajuus ja vaaka-akselilla on STA-mallista saamani estimaatti. Kuvaan on piirretty korrelaatiopisteiden lisäksi sigmoid-funktio punaisella värillä. Funktio arvoineen on kirjoitettu kuvan oikeaan alalaitaan. Kuva 8: Neuronin laukomistaajuuden ja STA-mallin estimaatin korrelaatio 6
7 Tehtävä 3: Gabor-funktion sovittaminen reseptiiviseen kenttään Tehtävässä piti valita STA:sta sellainen aikaikkuna, jossa on pinnanmuodot parhaiten näkyvillä. Valitsin kuvassa 6 vasemmalla keskellä olevan aikayksikköä viivästetyn STA-kuvan. Tähän kuvaan piti sovittaa Gabor-funktio: (, ) xr yr G x y = C cos( ωx φ) σ σ r (3) x y x y r r = x cos( θ ) + y sin( θ ) = y cos( θ ) x sin( θ ) (4) Ensiksi Gabor-funktiolle annettiin tehtävässä 1 määritetyt arvot. Saatiin kuvan 9 tulos, jossa on piirretty rinnakkain oikea STA-mallista otettu kuva ja Gabor-funktiolla tehty kuva. Kuva 9: Ensimmäisen tehtävän arvoilla määritetty Gabor-funktio Kuvasta 9 on lisäksi laskettuna neliöllinen virhetermi STA-kuvan ja Gabor-funktion välillä. Havaitaan että se on erittäin suuri. Lisäksi käyrän muodosta voidaan päätellä, että Gabor-funktio on muuten hyvin lähellä oikeata, mutta keskihajonnat, σ ja σ, ovat aivan liian isot. Pienennetään ne arvoon 1.5 ja piirretään sama kuva uudelleen kuvaan 10. Virhetermi määritellään kaavalla: E = x, y ( S x, y) G( x, y) ) x ( (5) Kaavassa S(x,y) on STA-mallin kuva ja G(x,y) on Gabor-funktio. y 7
8 Kuva 10: Gabor-funktio hieman muokatuilla ensimmäisen tehtävän arvoilla Kuvassa 10 virhe on jo todella pieni. Kuitenkin minimoitaessa virhettä Matlab:n avulla, saadaan kuvassa 11 näkyvä tilanne, jossa virhe on vielä dekadin pienempi ja kuvat näyttävät 3D-pintana jo aivan samalta. Intensiteettikuvissa yllä voi havaita, että Gabor-funktion kuvaajasta puuttuu pieni röpöisyys reunoista. Optimoimalla pienintä virhettä saatiin siis paljon tarkempi kuva kuin ensimmäisen tehtävän arvojen perusteella. Kuva 11: Gabor-funktio, kun virhe STA-mallin kuvaan nähden on minimoitu 8
9 Tehtävä 4: Neuronin mallin simuloiminen Viimeisessä tehtävässä tekemääni neuronin mallin vastetta verrattiin oikean neuronin vasteeseen, kun stimuluksena käytettiin luonnollista videota. Luonnollinen video on kokonaisuutenaan piirretty pikkukuvina kuvaan 1. Kuva 1: Luonnollinen Snat -stimulus kokonaisuudessaan, kesto 6s, 60ms/kuva Kuvan 1 stimulus syötettiin neuroniin ja tallennettiin. Seuraavaksi sama stimulus suodatettiin STAmallillamme. Sen jälkeen saadut tulokset kerrottiin kuvassa 8 määritetyllä sigmoid-funktiolla, jolloin saatiin oikeata neuronin laukomistaajuutta vastaava estimaatti. Tästä estimaatista tehtiin seuraavaksi homogeenisten Poissonnin prosessien avulla piikkejä, jotka piirrettiin kuvaan 13 yhdessä neuronin antamien piikkien kanssa. Kuva 13: Neuronin vaste ja STA-mallin estimaatista tehty stokastinen vaste 9
10 Kuvasta 13 nähdään, että piikit ovat sattuneet ajallisesti melko samoihin aikoihin. Tiheimmät kohdat ovat molemmissa samoissa paikoissa ja muutenkin piikit vastaavat melko hyvin toistensa paikkoja. Malli on siis onnistunut suhteellisen hyvin. Ainoa puute on mallin alusta puuttuvat 5 aikayksikköä ja niiden aiheuttamat vaikutukset. Ne jäävät suodatuksessa huomiotta. Alkuperäistä neuronia ja laskemaani mallia on hyvä myös verrata histogrammikuvina. Kuvassa 14 on ylimpänä esitettynä neuronin vasteen histogrammi, jossa on jokaista kuvaa kohti saatujen piikkien lukumäärä. Keskimmäisenä kuvassa on Luomani mallin antaman vasteen histogrammi, jossa on samoin saatujen piikkien lukumäärä kuvaa kohti. Alimpana kuvassa on mallini laukomistaajuuden estimaatti ennen stokastista Poissonnin prosessia. Havaitaan, että jokainen kuva eroaa lähes yhtä paljon toisistaan. Tällöin voidaan päätellä että Poissonnin prosessiksi muuttaminen muuttaa kuviota niin paljon, että tätä paremmaksi mallia on jo todella vaikea saada. Kuva 14: Neuronin vasteen vertailua rakentamaani malliin ja mallin sisäiseen laukomistaajuuteen ennen piikit luovaa stokastista Poissonnin prosessia 10
S-114.3812 Laskennallinen Neurotiede
S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä
S Laskennallinen Neurotiede
S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
4757 4h. MAGNEETTIKENTÄT
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti
Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
6.6. Tasoitus ja terävöinti
6.6. Tasoitus ja terävöinti Seuraavassa muutetaan pikselin arvoa perustuen mpäristön pikselien ominaisuuksiin. Kuvan 6.18.a nojalla ja Lukujen 3.4. ja 3.5. harmaasävjen käsittelssä esitellillä menetelmillä
Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä
Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät
Integrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
Kompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117
ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ
ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan
Laskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi
Muodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
Sinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
SMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka
Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.
Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo
Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017
Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8
A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
Elektroniikka, kierros 3
Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f
Mittaustulosten tilastollinen käsittely
Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe
STOKASTISET PROSESSIT
TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan
Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin
BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
HARJOITUS 7 SEISOVAT AALLOT TAVOITE
SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
MATEMATIIKKA 3 VIIKKOTUNTIA
EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla
ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla
Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT
3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään
1 PID-taajuusvastesuunnittelun esimerkki
Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )
Demo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)
Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 26.2. Nelli Salminen nelli.salminen@helsinki.fi D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11
MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
Radioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
PID-sa a timen viritta minen Matlabilla ja simulinkilla
PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut
Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Differentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot
Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.3.07 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet
197 Lausu logaritmeja käyttämättä jaksollisen desimaaliluvun (kymmenysluvun) 0,578703703 kuutiojuuri jaksollisena desimaalilukuna. [S3, pitempi kurssi] Ratkaisut 1917 197 1917 Tarkastelemme kolmiota ABC,
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
Mitä on konvoluutio? Tutustu kuvankäsittelyyn
Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa
l s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
5. Numeerisesta derivoinnista
Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan
Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds
Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä
KAAVAT. Sisällysluettelo
Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli
Kenguru 2016 Student lukiosarja
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473
Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Matemaattinen Analyysi
Vaasan yliopisto, kevät 2015 / ORMS1010 Matemaattinen Analyysi 7. harjoitus, viikko 17 R1 ma 16 18 D115 (20.4.) R2 ke 12 14 B209 (22.4.) 1. Määritä funktiolle f (x) 1 + 0,1x Taylorin sarja kehityskeskuksena
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
6.8 Erityisfunktioiden sovelluksia
6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa
1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato
Tehtävä 1 Osana laajempaa tutkimusprojektia mitattiin kävelynopeutta yli 80-vuotiaita tutkittavia. Osalla tutkittavista oli lääkärintarkastuksen yhteydessä annettu kielto osallistua fyysistä rasitusta
Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita
Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita 1. Laske 3 21 12 3. a) 27 b) 28 c) 29 d) 30 e) 31 Ratkaisu. 3 21 12 3 = 63 36 = 27. 2. Peräkylän matematiikkakerholla on kaksi tapaa
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
Otoskoko 107 kpl. a) 27 b) 2654
1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää
Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.
Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan
A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät
Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:
Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA
Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2015 1 / 25 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion