4. Todennäköisyyslaskennan kertausta

Koko: px
Aloita esitys sivulta:

Download "4. Todennäköisyyslaskennan kertausta"

Transkriptio

1 Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S Liikeeteoria perusteet - Kevät 006 Otosavaruus, alkeistapaus, tapahtuma Tapahtumie yhdistely Otosavaruus Ω (sample space) o kaikkie mahdolliste alkeistapauste ω (sample) muodostama joukko, ω Ω Esim. 0. Rahaheitto: Ω = {H,T} Esim.. Nopaheitto: Ω = {,,3,4,5,6} Esim.. Asiakkaide lkm joossa: Ω = {0,,,...} Esim. 3. Asiakkaa palveluaika (esim. miuutteia): Ω = { R > 0} Tapahtumat A,B,C,... (evets) ovat otosavaruude Ω mitallisia osajoukkoja, A,B,C,... Ω Esim.. Nopaheitossa parillie luku : A = {,4,6} Esim.. Joo tyhjä : A = {0} Esim. 3. Asiakkaa palvelu kestää yli 3 miuuttia : A = { R > 3.0} Merkitää :llä kaikkie tapahtumie A joukkoa, A Varma tapahtuma: otosavaruus Ω itse Mahdoto tapahtuma: tyhjä joukko 3 Yhdiste (uio) A tai B : A B = {ω Ω ω A tai ω B} Leikkaus (itersectio) A ja B : A B = {ω Ω ω A ja ω B} Komplemetti (complemet) ei A : A c = {ω Ω ω A} Tapahtumat A ja B ovat toistesa poissulkevia (disjoit), jos A B = Kokoelma tapahtumia {B, B, } muodostaa tapahtuma A ositukse (partitio), jos (i) B i B j = kaikilla i j (ii) i B i = A Esim.. Nopaheitossa parittomat ja parilliset luvut osittavat koko otosavaruude: B = {,3,5} ja B = {,4,6} B B B 3 A 4

2 Todeäköisyys Ehdollie todeäköisyys Tapahtuma A todeäköisyyttä (t, probability) merkitää :lla, [0,] Todeäköisyysmitta P o siis s. joukkofuktio, P: [0,] Omiaisuuksia: (i) 0 A (ii) ) = 0 (iii) Ω) = (iv) A c ) = (v) A = + A (vi) A B = A = + (vii) kokoelma {B i } o tapahtuma A ositus = Σ i B i ) (viii) A B B Oletetaa, että tapahtumalle B: > 0 Määr. Tapahtuma A ehdollie todeäköisyys (coditioal probability) ehdolla B o Seuraus: A A = P ( A = A = B 5 6 Kokoaistodeäköisyyde kaava Bayesi kaava Olkoo kokoelma {B i } otosavaruude Ω ositus Tällöi kokoelma {A B i } o tapahtuma A ositus, jote (kts. kalvo 5) ( vii) = i i P ( A B ) Olkoo kokoelma {B i } otosavaruude Ω ositus Oletetaa, että > 0 ja B i ) > 0 kaikilla i. Tällöi (kts. kalvo 6) A B ) B ) A B ) P ( Bi = i = i i Oletaa lisäksi, että B i ) > 0 kaikilla i. Tällöi (kts. kalvo 6) Näi olle, kokoaistodeäköisyyde kaava ojalla (kts. kalvo 7), P ( B ) A B ) = i i i B = i ) A Bi ) B i B ) A B j j j ) Tätä kutsutaa kokoaistodeäköisyyde kaavaksi B B A B 3 B4 Ω 7 Tätä kutsutaa Bayesi kaavaksi t:iäb i ) kutsutaa tapahtumie B i a priori todeäköisyyksiksi t:iäb i taas saotaa tapahtumie B i a posteriori todeäköisyyksiksi (ehdolla, että tapahtuma A tapahtui) 8

3 Tilastollie riippumattomuus Satuaismuuttujat Määr. Tapahtumat A ja B ovat riippumattomia (idepedet), jos P ( A = Seuraus: Vastaavasti: A A = = = A B = = = Määr. Reaaliarvoie satuaismuuttuja (sm, radom variable) o mitallie kuvaus otosavaruudesta Ω reaalilukuje joukkoo R, : Ω R jokaisee alkeistapauksee ω Ω liitetää reaaliluku (ω) Mitallisuus (measurability) tarkoittaa, että kaikki tyyppiä { }: = { ω Ω ( ω) } Ω olevat otosavaruude joukot kuuluvat tapahtumie joukkoo, ts. { } Tapahtuma todeäköisyys o site } 9 0 Esimerkki Tapahtuma idikaattori Rahaa heitetää kolme kertaa peräkkäi Otosavaruus: Ω = {( ω, ω, ω3) ω i {H,T}, i =,,3} Olkoo satuaismuuttuja, joka kertoo klaavoje (T = tails) lkm: äissä kolmessa heitossa: ω HHH HHT HTH THH HTT THT TTH TTT (ω) 0 3 Olkoo A mielivaltaie tapahtuma Määr. Satuaismuuttujaa A, joka määritellää kaavalla, ω A A( ω) = 0, ω A saotaa tapahtuma A idikaattoriksi (idicator) Selvästiki: A = } = c A = 0} = A ) =

4 Kertymäfuktio Satuaismuuttujie tilastollie riippumattomuus Määr. Sm: kertymäfuktio (kf, cumulative distributio fuctio) o kuvaus F : R [0,], joka määritellää kaavalla Kf määrää täydellisesti ko. sm: jakauma (distributio) so. t:t B}, missä B Rja { B} Omiaisuuksia: (i) F o kasvava (ii) F o oikealta jatkuva (iii) F ( ) = 0 (iv) F ( ) = F ( ) } 0 F () Määr. Sm:t ja Y ovat riippumattomia, jos kaikilla ja y, Y y} } Y y} Määr. Sm:t,, ovat täydellisesti riippumattomia, jos kaikilla i ja i,..., } } L } 3 4 Riippumattomie satuaismuuttujie maksimi ja miimi Sisältö Olkoot sm:t,, täydellisesti riippumattomia Merkitää ma := ma{,, }. Tällöi ma }, K, } } L } Merkitää mi := mi{,, }. Tällöi mi > } >, K, > } > } L > } Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat 5 6

5 Diskreetit satuaismuuttujat Pistetodeäköisyysfuktio Määr. Joukkoa A R saotaa diskreetiksi (discrete), jos se o äärellie, A = {,, }, tai umeroituvasti ääretö, A = {,, }. Määr. Sm o diskreetti, jos o olemassa sellaie diskreetti joukko S R, että Seuraus: = } 0 kaikilla S S } = = } = 0 kaikilla S Joukkoa S saotaa sm: arvojoukoksi 7 Olkoo sm diskreetti Sm: jakauma määräävät pistetodeäköisyydet p i, pi : = i}, i S Määr. Sm: pistetodeäköisyysfuktio (ptf, probability mass fuctio) p : R [0,] määritellää kaavalla p, = i i p ( ) : = } = 0, S Kf o tässä tapauksessa seuraava porrasfuktio: p F ( ) } = i i: i S 8 Esimerkki Diskreettie satuaismuuttujie riippumattomuus p () F () Diskreetit sm:t ja Y ovat riippumattomia, jos ja vai jos kaikilla i S ja y j S Y P { = i, Y = y j} = i} Y = y j} pistetodeäköisyysfuktio (ptf) kertymäfuktio (kf) S = {,, 3, 4 } 9 0

6 Odotusarvo Variassi Määr. Sm: odotusarvo (mea, epectatio) määritellää kaavalla µ : = E[ ]: = = } = p ( ) = pi i S S i Huom.. Odotusarvo o (hyvi) määritelty vai, jos Σ i p i i < Huom.. Jos i 0 ja Σ i p i i =, ii voidaa merkitä E[] = Määr. Sm: variassi (variace) määritellää kaavalla σ : = D [ ]: = Var[ ]: = E[( E[ ]) ] Kätevä kaava (todista!): D [ ] = E[ ] E[ ] Omiaisuuksia: (i) c R E[c] = ce[] (ii) E[ + Y] = E[] + E[Y] (iii) ja Y riippumattomia E[Y] = E[]E[Y] Omiaisuuksia: (i) c R D [c] = c D [] (ii) ja Y riippumattomia D [ + Y] = D [] + D [Y] Kovariassi Muita jakaumaa liittyviä tuuslukuja Määr. Sm:ie ja Y välie kovariassi (covariace) määr. kaavalla Määr. Sm: hajota (stadard deviatio): σ Y : = Cov[, Y ]: = E[( E[ ])( Y E[ Y ])] σ : = D [ ]: = D [ ] Kätevä kaava (todista!): Määr. Sm: variaatiokerroi (coefficiet of variatio): Cov[, Y ] = E[ Y ] E[ ] E[ Y ] D[ ] c : = C[ ]: = E[ ] Omiaisuuksia: (i) Cov[,] = Var[] (ii) Cov[,Y] = Cov[Y,] (iii) Cov[+Y,Z] = Cov[,Z] + Cov[Y,Z] (iv) ja Y riippumattomia Cov[,Y] = 0 3 Määr. Sm: k:s mometti (momet), k =,,...: ( k) k µ : = E[ ] 4

7 Riippumattomie satuaismuuttujie keskiarvo Suurte lukuje laki (SLL) Olkoot sm:t,, riippumattomia ja samoi jakautueita (IID) odotusarvoaa µ ja variassiaa σ Merkitää äide sm:ie keskiarvoa (sample mea) seuraavasti: : = i i= Tällöi (todista!) E[ ] = µ D σ [ ] = D[ σ ] = 5 Olkoot sm:t,, riippumattomia ja samoi jakautueita (IID) odotusarvoaa µ ja variassiaa σ Heikko suurte lukuje laki: kaikilla ε > 0 Vahva suurte lukuje laki: todeäköisyydellä Seuraus: Suurilla : arvoilla µ > ε} 0 µ µ 6 Sisältö Beroulli-jakauma Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat kuvaa yksittäistä satuaiskoetta, joka tuloksea joko oistumie () tai epäoistumie (0); vrt. rahaheitto oistumie t:llä p (ja epäoistumie t:llä p) Arvojoukko: S = {0,} Pistetodeöisyydet: Beroulli( p), p (0,) P { = 0} = p, = } = p Odotusarvo: E[] = ( p) 0 + p = p Toie mometti: E[ ] = ( p) 0 + p = p Variassi: D [] = E[ ] E[] = p p = p( p) 7 8

8 Biomijakauma Geometrie jakauma Bi(, p), {,,...}, p (0,) Geom( p), p (0,) oistumiste lkm :ssä perättäisessä ja toisistaa riippumattomassa satuaiskokeessa; = + + (missä i Beroulli(p)) = satuaiskokeide lkm p = oistumise t yksittäisessä satuaiskokeessa ( ) =! i i!( i)! Arvojoukko: S = {0,,,}! = ( ) L Pistetodeäköisyydet: i i ( ) p ( p = i} = i ) Odotusarvo: E[] = E[ ] + + E[ ] = p Variassi: D [] = D [ ] + + D [ ] = p( p) riippumattomuus! peräkkäiste oistumiste lkm ee esimmäistä epäoistumista (sarjassa peräkkäisiä ja toisistaa riippumattomia satuaiskokeita) p = oistumise t yksittäisessä satuaiskokeessa Arvojoukko: S = {0,, } Pistetodeäköisyydet: i = i} = p ( p) Odotusarvo: E[] = i ip i ( p) = p/( p) Toie mometti: E[ ] = i i p i ( p) = (p/( p)) + p/( p) Variassi: D [] = E[ ] E[] = p/( p) 9 30 Geometrise jakauma uohtavaisuusomiaisuus Geometrisesti jakautueide satuaismuuttujie miimi Geometrisella jakaumalla o s. uohtavaisuusomiaisuus (memoryless property): kaikilla i,j {0,,...} Todista! i + j i} j} Ohje: Todista esi, että i} = p i Olkoot sm:t Geom(p ) ja Geom(p ) riippumattomia Tällöi ja Todista! Ohje: Kts. kalvo 5 mi : = mi{, } Geom( p p) mi p = } = i i p p, i {,} 3 3

9 Poisso-jakauma Esimerkki biomijakauma rajatapaus, ku ja p 0 site, että p a Arvojoukko: S = {0,, } Pistetodeäköisyydet: a i a = i} = e i! Odotusarvo: E[] = a Poisso ( a), a > 0 Toie mometti: E[( )] = a E[ ] = a + a Variassi: D [] = E[ ] E[] = a Oletetaa, että paikalliskeskuksee o kytkettyä 00 tilaajaa yksittäise tilaaja omiaisliikee o 0.0 erlagia tilaajat toimivat toisistaa riippumattomasti Tällöi käyissäolevie puheluje lkm Bi(00,0.0) Vastaava Poisso-approksimaatio: Poisso(.0) Pistetodeäköisyyksie vertailua: Bi(00,0.0) Poisso(.0) Poisso-jakauma omiaisuuksia Sisältö (i) Summa: Olkoot sm:t Poisso(a ) ja Poisso(a ) riippumattomia. Tällöi + Poisso( a + a) (ii) Satuaisotata: Olkoo Poisso(a) alkioide lkm (jossaki satuaise kokoisessa joukossa). Valitaa äistä alkioista satuaie osajoukko (jokaie yksittäie alkio otetaa mukaa t:llä p), joka kokoa merkitää Y:llä. Tällöi Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat Y Poisso( pa) (iii) Satuaislajittelu: Olkoot sm:t ja Y kute yllä (ii). Merk. Z = Y. Tällöi Y ja Z ovat riippumattomia (ehdolla, että :ä ei tueta), Z Poisso(( p) a) 35 36

10 Jatkuvat satuaismuutujat Esimerkki Määr. Sm o jatkuva (cotiuous), jos o olemassa sellaie itegroituva fuktio f : R R +, että kaikilla Rpätee F ( ) : } = f ( y) dy Fuktiota f saotaa sm: tiheysfuktioksi (tf, probability desity fuctio) Joukkoa S, missä f > 0, saotaa sm: arvojoukoksi Omiaisuuksia: (i) = } = 0 kaikilla R (ii) a < < b} a b} = a b f () d (iii) A} = A f () d (iv) R} = - f () d = S f () d = 37 f () F () 3 3 tiheysfuktio (tf) kertymäfuktio (kf) S = (, 3 ) 38 Odotusarvo ja muita jakaumaa liittyviä tuuslukuja Sisältö Määr. Sm: odotusarvo (mea) määritellää kaavalla µ : = E[ ]: = f ( ) d Huom.. Odotusarvo o (hyvi) määritelty vai, jos - f () d < Huom.. Jos S =R + ja 0 f () =, ii voidaa merkitä E[] = Jatkuva sm: odotusarvolla o samat omiaisuudet kui diskreeti sm: odotusarvolla (kts. kalvo ) Muut jakaumaa liittyvät tuusluvut (variassi, kovariassi,...) määritellää odotusarvo avulla täsmällee samoi kui diskreeti sm: tapauksessa Näi olle myös äide tuuslukuje omiaisuudet säilyvät (kts. kalvot -4) 39 Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat 40

11 Tasajakauma Ekspoettijakauma U( a, b), a < b Ep ( λ), λ > 0 jatkuva vastie opaheitolle (kaikki arvot yhtä todeäköisiä ) Arvojoukko: S = (a,b) Tiheysfuktio (tf): Kertymäfuktio (kf): f ( ) =, ( a, b) b a F ( ) : } a = =, ( a, b) b a Odotusarvo: E[] = a b /(b a) d = (a + b)/ Toie mometti: E[ ] = a b /(b a) d = (a + ab + b )/3 Variassi: D [] = E[ ] E[] = (b a) / 4 geometrise jakauma jatkuva vastie ( epäoistumie t:llä λdt) (t,t+h] > t} = λh + o(h), missä o(h)/h 0, ku h 0 Arvojoukko: S = (0, ) Tiheysfuktio (tf): λ f ( ) = λe, > 0 Kertymäfuktio (kf): λ F ( ) : } = e, > 0 Odotusarvo: E[] = 0 λ ep( λ) d = /λ Toie mometti: E[ ] = 0 λ ep( λ) d = /λ Variassi: D [] = E[ ] E[] = /λ 4 Ekspoettijakauma uohtavaisuusomiaisuus Ekspoetiaalisesti jakautueide satuaismuuttujie miimi Ekspoettijakaumalla o s. uohtavaisuusomiaisuus (memoryless property): kaikilla,y (0, ) Todista! P { > + y > } > y} Ohje: Todista esi, että > } = e λ Sovellus: Oletetaa, että puheluje pitoajat ovat ekspoetiaalisesti jakautueita odotusarvoaa h miuuttia. Tarkastellaa puhelua, joka o jo kestäyt aja miuuttia. Uohtavaisuusomiaisuude ojalla tällä ei ole mitää merkitystä puhelu jäljellä oleva kesto kaalta: keskimääri tällaie puhelu kestää vielä h miuuttia (siis + h miuuttia kaikekaikkiaa)! 43 Olkoot sm:t Ep(λ ) ja Ep(λ ) riippumattomia. Tällöi ja Todista! Ohje: Kts. kalvo 5 mi : = mi{, } Ep( λ + λ) mi λ = } = i i λ + λ, i {,} 44

12 Normeerattu ormaalijakauma Normaalijakauma N(0,) N( µ, σ ), µ R, σ > 0 riippumattomie ja samoi jakautueide (odotusarvoa 0 ja variassia ) sm:ie ormeeratu summa rajatapaus (kts. kalvo 48) Arvojoukko: S = (, ) Tiheysfuktio (tf): f ( ) ( ) : = ϕ = e π Kertymäfuktio (kf): F ( ) : } = Φ( ) : = ϕ( y) dy Odotusarvo: E[] = 0 (tf symmetrie!) Variassi: D [] = 45 jos( µ)/σ N(0,) Arvojoukko: S = (, ) Tiheysfuktio (tf): ( ) f ( ) : = F '( ) = σ ϕ µ σ Kertymäfuktio (kf): µ µ µ F ( ) : } = P = Φ σ σ σ { } ( ) Odotusarvo: E[] = µ+σe[( µ)/σ] = µ (tf symmetr. µ: suhtee) Variassi: D [] =σ D [( µ)/σ] =σ 46 Normaalijakauma omiaisuuksia Keskeie raja-arvolause (KRL) (i) Lieaarimuuos: Olk. N(µ,σ ) ja α,β R. Tällöi Y : = α + β N( αµ + β, α σ ) (ii) Summa: Olkoot sm:t N(µ,σ ) ja N(µ,σ ) riippumattomia. Tällöi + N( µ + µ, σ + σ ) Olkoot sm:t,, riippumattomia ja samoi jakautueita (IID) odotusarvoaa µ ja variassiaa σ (ja lisäksi kolmas mometti olemassa) Keskeie raja-arvolause: i.d. ( µ ) N(0,) σ / (iii) Otoskeskiarvo: Olkoot sm:t i N(µ,σ ), i =,, riippumattomia ja samoi jakautueita (IID) oudattae ormaalijakaumaa. Tällöi iide keskiarvolle (vrt. kalvo 5) pätee : N(, = i µ σ ) i= Seuraus: Suurilla : arvoilla N( µ, σ ) 47 48

13 Sisältö Muita satuaismuuttujia Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat Puhtaasti diskreettie ja jatkuvie sm:ie lisäksi o olemassa äide sekamuotoja Esimerkki: Merk. W:llä asiakkaa odotusaikaa M/M/ joossa. Sm: W jakaumalla o s. atomi ollassa (ts. W = 0} = ρ>0), mutta muute jakauma o jatkuva F W () ρ Saastoa otosavaruus = sample space tapahtuma = evet todeäköisyys = probability ehdollie t = coditioal probability riippumattomuus = idepedece satuaismuuttuja = radom variable idikaattori = idicator jakauma = distributio kertymäfuktio = cumulative distributio fuctio diskreetti = discrete pistetodeäköisyysfuktio = probability mass fuctio odotusarvo = mea (value) = epectatio variassi = variace kovariassi = covariace hajota = stadard deviatio variaatiokerroi = coefficiet of variatio suurte lukuje laki = law of large umbers jatkuva = cotiuous tiheysfuktio = probability desity fuctio uohtavaisuusomiaisuus = memoryless property keskeie raja-arvolause = cetral limit theorem 5

4. Todennäköisyyslaskennan kertausta

4. Todennäköisyyslaskennan kertausta luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1 Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause

Lisätiedot

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia Todeäköisyyslasketa I, kesä 207 Helsigi yliopisto/avoi yliopisto Harjoitus 3, ratkaisuehdotuksia. Aikaisemma viiko teemaa. Edessäsi o kaksi laatikkoa A ja B. Laatikossa A o 8 palloa, joista puolet valkoisia.

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyysjakaumia

Todennäköisyyslaskenta: Todennäköisyysjakaumia Todeäköisyysjakaumia Todeäköisyyslasketa: Todeäköisyysjakaumia 6. Diskreettejä jakaumia 7. Jatkuvia jakaumia 8. Normaalijakaumasta johdettuja jakaumia 9. Moiulotteisia jakaumia Ilkka Melli 35 Todeäköisyysjakaumia

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

Tilastollinen todennäköisyys

Tilastollinen todennäköisyys Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia

Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Tilastollinen päättely II, kevät 2017 Harjoitus 3B Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat: Mat-2.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Diskeetit jakaumat Jatkuvat jakaumat Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Ketymäfuktio, Mediaai, Negatiivie biomijakauma,

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 2 Aiheet: Satuaismuuttujat ja todeäköisyysjakaumat Kertymäfuktio, pistetodeäköisyysfuktio ja tiheysfuktio Jakaumie tuusluvut Tärkeimmät

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).

1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit). Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi

Lisätiedot

Tilastolliset luottamusvälit

Tilastolliset luottamusvälit Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude

Lisätiedot

6.1 Riippumattomat satunnaismuuttujat

6.1 Riippumattomat satunnaismuuttujat Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

EX1 EX 2 EX =

EX1 EX 2 EX = HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Ehdollinen todennäköisyys

Ehdollinen todennäköisyys Ehdollie todeäköisyys Kerrataa muutama todeäköisyyslaskea laskusäätö. Tapahtuma E komplemettitapahtuma E o "E ei tapahdu". Koska todeäköisyyksie summa o 1, P ( E = 1 P (E. Joskus o helpompi laskea komplemettitapahtuma

Lisätiedot

Estimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku

Estimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku Tilastollie päättely 6.1. Johdato Bayesi kaava, Bayeslaie lähestymistapa, Eakkotieto, Estimoiti, Frekvetistie lähestymistapa, Frekvessitulkita, Klassie lähestymistapa, Luottamustaso, Luottamusväli, Merkitsevyystaso,

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

((12345A, 5, 1, 5), (98759K, 1, 5, 2), (33312K, 4, 4, 3), (23453B, 4, 4, 3), (21453U, 3, 3, 3)),

((12345A, 5, 1, 5), (98759K, 1, 5, 2), (33312K, 4, 4, 3), (23453B, 4, 4, 3), (21453U, 3, 3, 3)), Luku 6 Datajoukkoje jakaumat, tuusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto 28. marraskuuta 207 6. Datajoukko ja datakehikko Tässä moisteessa datajoukko tarkoittaa järjestettyä listaa keskeää samatyyppisiä

Lisätiedot

Estimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku

Estimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku Tilastollie päättely 6.1. Johdato Bayesi kaava, Bayeslaie lähestymistapa, Eakkotieto, Estimoiti, Frekvetistie lähestymistapa, Frekvessitulkita, Klassie lähestymistapa, Luottamustaso, Luottamusväli, Merkitsevyystaso,

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Diskreettejä jakaumia. Diskreettejä jakaumia. Diskreettejä jakaumia Mitä opimme? 2/3. Diskreettejä jakaumia Mitä opimme? 1/3

Diskreettejä jakaumia. Diskreettejä jakaumia. Diskreettejä jakaumia Mitä opimme? 2/3. Diskreettejä jakaumia Mitä opimme? 1/3 TKK (c) Ilkka Melli (4) Diskeettejä jakaumia Johdatus todeäköisyyslasketaa Diskeettejä jakaumia Diskeetti tasaie jakauma Beoulli-jakauma Biomijakauma Geometie jakauma Negatiivie biomijakauma Hyegeometie

Lisätiedot

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6A

Tilastollinen päättömyys, kevät 2017 Harjoitus 6A Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyysjakaumia

Todennäköisyyslaskenta: Todennäköisyysjakaumia Todeäköisyysjakaumia Todeäköisyyslasketa: Todeäköisyysjakaumia 6. Diskreettejä jakaumia 7. Jatkuvia jakaumia 8. Normaalijakaumasta johdettuja jakaumia 9. Moiulotteisia jakaumia TKK @ Ilkka Melli (6) 33

Lisätiedot

Kurssin alkuosan sisältö. Tilastotieteen jatkokurssi. Kurssin loppuosan sisältö. 1. Todennäköisyyslaskenta. Heikki Hyhkö. 1. Todennäköisyyslaskenta

Kurssin alkuosan sisältö. Tilastotieteen jatkokurssi. Kurssin loppuosan sisältö. 1. Todennäköisyyslaskenta. Heikki Hyhkö. 1. Todennäköisyyslaskenta Tilastotietee jatkokurssi Heikki Hyhkö kesä 03. Todeäköisyyslasketa Kurssi alkuosa sisältö Klassie todeäköisyys Kombiatoriikka Kokoaistodeäköisyys. Todeäköisyysjakaumat Satuaismuuttuja Odotusarvo& variassi

Lisätiedot

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

Harjoitukset 1 : Tilastokertaus

Harjoitukset 1 : Tilastokertaus 31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.

Lisätiedot

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 7 Luotettavuus Koherentit järjestelmät Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi

Lisätiedot

Suurten poikkeamien teoriasta sovelluksena satunnaiskulku satunnaisessa ympäristössä. Kirjoittanut: Juha-Antti Isojärvi Ohjaaja: Jaakko Lehtomaa

Suurten poikkeamien teoriasta sovelluksena satunnaiskulku satunnaisessa ympäristössä. Kirjoittanut: Juha-Antti Isojärvi Ohjaaja: Jaakko Lehtomaa Suurte poikkeamie teoriasta sovelluksea satuaiskulku satuaisessa ympäristössä Kirjoittaut: Juha-Atti Isojärvi Ohjaaja: Jaakko Lehtomaa 20. lokakuuta 204 Tiivistelmä Pitkissä kolikoheittosarjoissa kruuie

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Kokonaisvahinkomäärän normaaliapproksimointi vinoille jakaumille

Kokonaisvahinkomäärän normaaliapproksimointi vinoille jakaumille Tiedekuta/Osasto Fakultet/Sektio Faculty Matemaattis-luootieteellie Tekijä Författare Author Ja-Erik Lausala Työ imi Arbetets titel Title Oppiaie Läroäme Subject Työ laji Arbetets art Level Tiivistelmä

Lisätiedot

Teoria. Tilastotietojen keruu

Teoria. Tilastotietojen keruu S-38.348 Tietoverkkoje simuloiti / Tuloste keruu ja aalyysi Teoria Johdato simuloitii Simuloii kulku -- prosessi realisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tuloste keruu ja aalyysi

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella

Lisätiedot

Tilastolliset menetelmät

Tilastolliset menetelmät Tilastolliset meetelmät tilastolliste meetelmie tarkoitus o: estimoida eliaika- (vikaatumisaika, korjausaika- jakaumie ja -mallie parametreja eliaikakokeide, laitteide käyttökokemustiedo yms. perusteella

Lisätiedot

Todennäköisyyslaskennan peruskäsitteet. Todennäköisyyslaskennan peruskäsitteet. Todennäköisyyslaskennan peruskäsitteet: Mitä opimme?

Todennäköisyyslaskennan peruskäsitteet. Todennäköisyyslaskennan peruskäsitteet. Todennäköisyyslaskennan peruskäsitteet: Mitä opimme? TKK (c) Ilkka Melli (2004) 1 Todeäköisyyslaskea peruskäsitteet Johdatus todeäköisyyslasketaa Todeäköisyyslaskea peruskäsitteet TKK (c) Ilkka Melli (2004) 2 Todeäköisyyslaskea peruskäsitteet: Mitä opimme?

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt Todeäköisyys ja se laskusääöt Todeäköisyyslasketa: Todeäköisyys ja se laskusääöt 1. Johdato 2. Joukko opi peruskäsitteet 3. Todeäköisyyslaskea peruskäsitteet 4. Todeäköisyyslaskea peruslaskusääöt 5. Klassie

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( ) JYVÄSKYLÄN YLIOPISTO Harjoituste 3 ratkaisut MATEMATIIKAN JA TILASTOTIETEEN LAITOS Topologiset vektoriavaruudet 3.1. Jokaie kompakti joukko K R määrää fuktioavaruudessa E = C(R ) = {f : R R f o jatkuva}

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä

Lisätiedot

Antti Majaniemi Matematiikka IV Tilastot ja todennäköisyys

Antti Majaniemi Matematiikka IV Tilastot ja todennäköisyys Atti Majaiemi Matematiikka IV Tilastot ja todeäköisyys ( x) ( x) -x x 06 ISBN 978-95-93-87-5 Tämä teos o lisesoitu Creative Commos Nimeä-EiKaupallie 4.0 Kasaivälie -lisessillä. Tarkastele lisessiä osoitteessa

Lisätiedot

Todennäköisyyslaskun kertaus. Heliövaara 1

Todennäköisyyslaskun kertaus. Heliövaara 1 Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770. JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot