Algebralliset menetelmät virheenkorjauskoodin tunnistamisessa
|
|
- Maija-Liisa Tuominen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Algebralliset menetelmät virheenkorjauskoodin tunnistamisessa Jyrki Lahtonen, Anni Hakanen, Taneli Lehtilä, Toni Hotanen, Teemu Pirttimäki, Antti Peltola Turun yliopisto MATINE-tutkimusseminaari,
2 Johdanto Tutkimusongelma: Virheenkorjauskoodin tunnistaminen havaitusta radiosignaalista. Oletuksenamme on, että radiosignaali on jo tulkittu biteiksi. Seuraavana askeleena signaalin käsittelyssä olisi kanavakoodauksen purkaminen. Olemme kehittäneet tunnistusalgoritmeja konvoluutiokoodien ja Reedin-Solomonin koodien tunnistamiseen binäärisyötteestä. Nämä ovat virheenkorjauskoodeja, joilla on paljon algebrallista rakennetta ja sen vuoksi tunnistettavissa pienehköstä datamäärästä. Tunnistusmenetelmät on implementoitu Matlab- ja Mathematica-ohjelmistoilla.
3 Konvoluutiokoodeista
4 Konvoluutiokoodit Virheenkorjauskoodi, jolla viesti koodataan muutaman bitin pätkissä. Kooderin rakenne ilmaistaan generaattorimatriisilla. Esimerkki: ( ) 1 + D 1 + D 1 G = 0 D 1 + D Tärkeitä parametreja: generaattorimatriisin koko ja ulkoinen aste (koodauksen kompleksisuus), vapaa etäisyys (virheenkorjauskyky).
5 Gray-koodit Kiinnitetään koodisanojen pituus n. Järjestetään kaikki n pituiset koodisanat siten, että seuraava sana eroaa edellisestä yhden bitin kohdalla. Esimerkiksi kun n = 2, eräs Gray-koodi on {00, 10, 11, 01}.
6 M-QAM Im Re
7 DQAM Lähde: Weber, W. J., Differential encoding formultiple amplitude and phase shift keying systems, IEEE Trans. Comms., vol. 26, no. 3, Mar. 1978, pp Copyright c 1978 IEEE.
8 ADQAM Lähde: Hwang J, Chiu Y, Liao C. Angle differential-qam scheme for resolving phase ambiguity in continuous transmission system. Int. J. Communication Systems, (6): Copyright c 2007 John Wiley & Sons, Ltd.
9 Muunnokset & siirtymät Gray-koodista toiseen voidaan siirtyä bittien permutoinnin ja vakiovektorin lisäämisen avulla. Kun saatu signaali on muunnettu binääriseksi jonkin QAM-mallin ja Gray-koodin mukaan, käytetty Gray-koodi voidaan vaihtaa toiseen permutoimalla bittejä ja lisäämällä vakiovektori. Väärä Gray-koodi sekoittaa viestin rakennetta. Väärin tulkittu viesti on kuitenkin jonkin konvoluutiokooderin ulostulo. Tällaiselle kooderille saadaan generaattorimatriisi muokkaamalla alkuperäisen koodin generaattorimatriisia.
10 Tunnistus & valinta Menetelmä konvoluutiokoodin generaattorimatriisin tunnistamiseen binäärisestä viestistä on jo olemassa. Väärällä Gray-koodilla saatu generaattorimatriisi on kuitenkin pääsääntöisesti suurempi kuin alkuperäinen. Oikea generaattorimatriisi ja Gray-koodi voidaan tunnistaa käymällä kaikki vaihtoehdot läpi ja valitsemalla koodi, jolla on parhaat ominaisuudet (oletamme, että viestin lähettäjä käyttää hyvää kanavakoodausta).
11 Reedin-Solomonin koodeista
12 RS-koodin määrittely RS-koodit määritellään käyttäen aakkostona äärellistä kuntaa F q. Usein käytössä on esimerkiksi 256-alkioinen kunta F 2 8, jolloin koodisanojen symbolit voidaan esittää 8 bitillä. RS-koodit voidaan määritellä useilla tavoilla. Eräs tavallinen tapa on määritellä RS-koodi C, jonka pituus on n < 256 ja dimensio k, joukkona C = {m(x)g(x) m(x) F 2 8[x], deg(m(x)) < k}, missä g(x) F 2 8[x] on RS-koodin generaattoripolynomi, deg(g(x)) = n k.
13 RS-koodien tunnistaminen RS-koodi siis määräytyy käytetystä äärellisestä kunnasta, koodin pituudesta n, dimensiosta k sekä koodin generaattoripolynomista g(x). Tavoitteena on ensinnäkin kyetä tunnistamaan, onko bittijono tuotettu RS-koodilla, ja jos on, niin lisäksi pystyä tunnistamaan siitä kyseiset koodin määräävät parametrit. Olemme käsitelleet sekä tilannetta, jossa jo tunnemme tavan muuttaa binääriset koodiviestit kunnan alkioiksi, että tapausta, jossa ei ole tiedossa, miten tämä muunnos tehdään. Molempiin tilanteisiin on kehitetty luotettavia tunnistusmenetelmiä.
14 RS-koodien tunnistaminen Helpommassa tapauksessa, kun bittikombinaatiot on jo osattu tulkita äärellisen kunnan alkioiksi, RS-koodin tunnistaminen pystytään tekemään yleensä jo yhdenkin havaitun koodisanan perusteella tarkastelemalla sen nollakohtia. Nollakohdista voidaan päätellä koodin generaattoripolynomi. Bittikombinaatioiden tulkitseminen oikein äärellisen kunnan alkioiksi, esimerkiksi tavun muuntaminen kunnan F 2 8 alkioksi, onkin huomattavasti haastavampi tehtävä. Tämä muunnos voitaisiin periaatteessa tehdä hyvin useilla eri tavoilla, mutta järkeviä vaihtoehtoja on kuitenkin rajoitetusti. Mielellään tämä pitäisi pystyä havaitsemaan datasta.
15 RS-koodien tunnistaminen Ongelman ratkaisemiseen on implementoitu kaksi erilaista tunnistusalgoritmia. Molemmat näistä menetelmistä perustuvat RS-koodin sykliseen rakenteeseen ja hyödyntävät sitä hieman eri tavoin. Esimerkiksi kunnan F 2 8 yli määritellyn k-dimensioisen RS-koodin tunnistamiseksi tarvitaan havainto noin 8k koodilohkosta. RS-koodien syklisyyden vuoksi jokaisesta havaitusta koodilohkosta pystytään kuitenkin tuottamaan k kappaletta koodin sanoja, joten dataa tarvitaan käytännössä noin 8 koodisanan verran. Koodin parametrit pystytään selvittämään etsimällä binääriselle RS-koodille systemaattinen generaattorimatriisi tai vaihtoehtoisesti niin sanotuilla Gröbnerin kannoilla polynomialgebraa käyttäen.
16 RS-koodien tunnistaminen Kehitetyillä tunnistusalgoritmeilla pystytään luotettavasti erottamaan, onko bittijono sattumanvaraisesti generoitu vaiko tuotettu jollain RS-koodilla. Koodilohkojen pituus pystytään usein saamaan selville, vaikka ne sisältäisivät joitain bittivirheitä, mutta kaikkien RS-koodin parametrien tunnistamiseksi havaitun datan tulee kuitenkin olla täysin virheetöntä. Koodin tunnistamiseen liittyy myös monikäsitteisyyttä, jonka merkitystä on tutkittu. Erityisestikin bittiyhdistelmien kuvaus kunnan alkioiksi voidaan tehdä tietyillä eri tavoilla ja onnistua silti tunnistamaan koodin parametrit oikein.
TIIVISTELMÄRAPORTTI. Algebralliset menetelmät virheenkorjauskoodin tunnistuksessa
2017/2500M-0067 ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-663-010-9 TIIVISTELMÄRAPORTTI Algebralliset menetelmät virheenkorjauskoodin tunnistuksessa Dosentti Jyrki Lahtonen, Turun yliopisto, matematiikan
esimerkkejä erilaisista lohkokoodeista
6.2.1 Lohkokoodit tehdään bittiryhmälle bittiryhmään lisätään sovitun algoritmin mukaan ylimääräisiä bittejä [k informaatiobittiä => n koodibittiä, joista n-k lisäbittiä], käytetään yleensä merkintää (n,k)-koodi
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 6. Ryöppyvirheitä korjaavat koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 34 6.1 Peruskäsitteitä Aiemmin on implisiittisesti
TIIVISTELMÄRAPORTTI. Virheenkorjauskoodien tunnistus signaalitiedustelussa
2014/2500M-0014 ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-25-2639-0 TIIVISTELMÄRAPORTTI Virheenkorjauskoodien tunnistus signaalitiedustelussa Prof. Patric Östergård, TkT Jussi Poikonen, Ville
Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?
Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)
Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Virheen havaitseminen ja korjaus
Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Digitaalitekniikan matematiikka Luku 13 Sivu 2 (10) Johdanto Tässä luvussa esitetään virheen havaitsevien ja korjaavien koodaustapojen perusteet ja käyttösovelluksia
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,
MAANPUOLUSTUSKORKEAKOULU VIRHEENKORJAUSALGORITMIT. Kandidaatintutkielma. Kadetti Ville Parkkinen. 99. kadettikurssi Maasotalinja
MAANPUOLUSTUSKORKEAKOULU VIRHEENKORJAUSALGORITMIT Kandidaatintutkielma Kadetti Ville Parkkinen 99. kadettikurssi Maasotalinja Maaliskuu 2015 MAANPUOLUSTUSKORKEAKOULU Kurssi Linja 99. kadettikurssi Maasotalinja
TLT-5400 DIGITAALINEN SIIRTOTEKNIIKKA
TLT-5400 DIGITAALINEN SIIRTOTEKNIIKKA Tehtäväkokoelma: Päivitetty 16.3.2006 / MV 1. Piirrä digitaalisen siirtojärjestelmän yleinen lohkokaavio josta nähdään lähettimen ja vastaanottimen keskeiset toiminnot
Reedin ja Solomonin koodit Katariina Huttunen
Pro Gradu Reedin ja Solomonin koodit Katariina Huttunen Jyväskylän yliopisto Matematiikan laitos Lokakuu 2016 Tiivistelmä Huttunen Katariina, Reedin ja Solomonin koodit, matematiikan pro gradututkielma,
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.6 Alternanttikoodin dekoodaus, kun esiintyy pyyhkiytymiä ja virheitä Joissakin tilanteissa vastaanotetun sanan kirjainta ei saa tulkittua
INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 28 Kari Kärkkäinen Syksy 2015
1 INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS TEENVETO 2 Informaatioteoria tarkastelee tiedonsiirtoa yleisemmällä, hieman abstraktilla tasolla ei enää tarkastella signaaleja aika- tai taajuusalueissa.
Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15)
Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) A = a = i i w i Digitaalitekniikan matematiikka Luku 12 Sivu 2 (15) Johdanto Tässä luvussa esitetään kymmenjärjestelmän lukujen eli BCD-lukujen esitystapoja
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.3 Lineaarisen koodin dekoodaus Oletetaan, että lähetettäessä kanavaan sana c saadaan sana r = c + e, missä e on häiriön aiheuttama
Tietotekniikan valintakoe
Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan
Säännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja
582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta
Signaalien datamuunnokset. Digitaalitekniikan edut
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena
Signaalien datamuunnokset
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan
Kaksi pistettä määräävät suoran, kolme paraabelin miten tämä selittää QR-koodin toiminnan
Solmu /08 Kaksi pistettä määräävät suoran, kolme paraabelin miten tämä selittää QR-koodin toiminnan Jyrki Lahtonen Turun yliopisto, matematiikan ja tilastotieteen laitos Tarinani tavoite on selittää, miten
Radioamatöörikurssi 2016
Radioamatöörikurssi 2016 Modulaatiot Radioiden toiminta 8.11.2016 Tatu Peltola, OH2EAT 1 / 18 Modulaatiot Erilaisia tapoja lähettää tietoa radioaalloilla Esim. puhetta ei yleensä laiteta antenniin sellaisenaan
A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos A! Modulaatioiden
Turingin koneen laajennuksia
Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.
KONVOLUUTIOKOODIT A Tietoliikennetekniikka II Osa 25 Kari Kärkkäinen Syksy 2015
1 KONVOLUUTIOKOODIT KONVOLUUTIOKOODERIN PERUSIDEA 2 Konvoluutiokoodi on lohkoton koodi. Pariteettibitit lasketaan liukuen informaatiobittijonon yli. Muistin pituudesta K käytetään nimitystä vaikutuspituus
JOHDANTO VIRHEENKORJAAVAAN KOODAUKSEEN KANAVAKOODAUSMENETELMÄT A Tietoliikennetekniikka II Osa 22 Kari Kärkkäinen Syksy 2015
1 JOHDANTO VIRHEENKORJAAVAAN KOODAUKSEEN KANAVAKOODAUSMENETELMÄT RESURSSIEN VÄLINEN KAUPANKÄYNTI 2 LÄHETYSTEHO KAISTANLEVEYS MONIMUTKAISUUS VIRHETODEN- NÄKÖISYYS RESURSSIEN VÄLINEN KAUPANKÄYNTI 3 Resurssien
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin
Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä
4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi
Kokonaislukuoptimointi
Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.
Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
S09 04 Kohteiden tunnistaminen 3D datasta
AS 0.3200 Automaatio ja systeemitekniikan projektityöt S09 04 Kohteiden tunnistaminen 3D datasta Loppuraportti 22.5.2009 Akseli Korhonen 1. Projektin esittely Projektin tavoitteena oli algoritmin kehittäminen
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa
WIMAX-järjestelmien suorituskyvyn tutkiminen
Teknillinen korkeakoulu Elektroniikan, tietoliikenteen ja automaation tiedekunta Tietoliikenne- ja tietoverkkotekniikan laitos WIMAX-järjestelmien suorituskyvyn tutkiminen Mika Nupponen Diplomityöseminaari
Laajennetut Preparata-koodit
Laajennetut Preparata-koodit Pro gradu -tutkielma Petri Eklund 1512717 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö 1 Esitietoja 1.1 Yleistä.................................. 1.2
KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM)
1 KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM) CPM & TCM-PERIAATTEET 2 Tehon ja kaistanleveyden säästöihin pyritään, mutta yleensä ne ovat ristiriitaisia
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016
Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
Laskuharjoitus 4 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.
Korkean resoluution ja suuren kuva-alueen SAR
Korkean resoluution ja suuren kuva-alueen SAR MATINE tutkimusseminaari 17.11.2016 Risto Vehmas, Juha Jylhä, Minna Väilä, Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Hankkeelle myönnetty
Hammastankohissin modernisointi. Heikki Laitasalmi
Hammastankohissin modernisointi Heikki Laitasalmi Loppudemossa Mitä oltiinkaan tekemässä V-malli Modbus viestintä (PLC VFD) Esitellään laitteet Lopuksi Modbusia käytännössä Hammastankohissi Arkkitehtuuri
Tietojen haku ja raportit
1(6) Tietojen haku ja raportit Lista- ja Raportti-sivulla on mahdollisuus selata tietokannassa olevia tapahtumia ja poimia tarkasteluun tietyntyyppiset tapahtumat. Käytössä on joukko ehtoja (suodattimia/filttereitä),
HÄLYRI-SOVELLUKSEN KÄYTTÖOHJEET
HÄLYRI-SOVELLUKSEN KÄYTTÖOHJEET 1 TILIN LUONTI Aloita Hälyrin käyttö luomalla tili. Mikäli tilasit tuotteen verkkokaupastamme, sinulla on jo tunnukset eikä uutta tiliä tarvitse luoda. Kirjaudu tällöin
Ongelma 1: Miten tieto kannattaa koodata, jos sen halutaan olevan hyvin vaikeasti luettavaa?
Ongelma 1: Miten tieto kannattaa koodata, jos sen halutaan olevan hyvin vaikeasti luettavaa? 2012-2013 Lasse Lensu 2 Ongelma 2: Miten tietoa voidaan (uudelleen)koodata tehokkaasti? 2012-2013 Lasse Lensu
x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu
2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Laskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
Lineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Vapaapäivien optimointi
Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Vapaapäivien optimointi Väliraportti, 4.4.2014 Asiakas: Computational Intelligence Oy Projektiryhmä: Teemu Kinnunen (projektipäällikkö) Ilari Vähä-Pietilä
Radioamatöörikurssi 2017
Radioamatöörikurssi 2017 Polyteknikkojen Radiokerho Luento 4: Modulaatiot 9.11.2017 Otto Mangs, OH2EMQ, oh2emq@sral.fi 1 / 29 Illan aiheet 1.Signaaleista yleisesti 2.Analogiset modulaatiot 3.Digitaalinen
1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.
1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat
Äänekosken lukio Mab4 Matemaattinen analyysi S2016
Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
VIRHEENKORJAUS JA -ILMAISU
VIRHEENKORJAUS JA -ILMAISU Kanavakoodaus B. Sklar, Digital Communications Langattomien tietoliikennejärjestelmien perusteet: Kanavakoodaus Timo Kokkonen Kevät 29 2 (35) Shannon Hartleyn-laki Otsikon lain
Koodaamme uutta todellisuutta FM Maarit Savolainen https://blog.edu.turku.fi/matikkaajakoodausta/
Koodaamme uutta todellisuutta FM Maarit Savolainen 19.1.2017 https://blog.edu.turku.fi/matikkaajakoodausta/ Mitä on koodaaminen? Koodaus on puhetta tietokoneille. Koodaus on käskyjen antamista tietokoneelle.
Matlab-tietokoneharjoitus
Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,
JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI
1 JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI Miten tiedonsiirrossa tarvittavat perusresurssit (teho & kaista) riippuvat toisistaan? SHANNONIN 2. TEOREEMA = KANAVAKOODAUS 2 Shannonin 2. teoreema
TURBOKOODAUS. Miten turbokoodaus eroaa konvoluutiokoodauksesta? 521361A Tietoliikennetekniikka II Osa 26 Kari Kärkkäinen Syksy 2015
1 TURBOKOODAUS Miten turbokoodaus eroaa konvoluutiokoodauksesta? TURBOKOODAUKSEN IDEA 2 V. 1993 keksityt koodit eivät löytyneet systemaattisen koodausteorian soveltamisen seurauksena pyrkimyksenä päästä
T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut
T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 18 Kari Kärkkäinen Syksy 2015
1 MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 2 M-tilaisilla yhdellä symbolilla siirtyy k = log 2 M bittiä. Symbolivirhetn. sasketaan ensin ja sitten kuvaussäännöstä riippuvalla muunnoskaavalla
Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola
Liikehavaintojen estimointi langattomissa lähiverkoissa Diplomityöseminaari Jukka Ahola ESITYKSEN SISÄLTÖ Työn tausta Tavoitteen asettelu Johdanto Liikehavaintojen jakaminen langattomassa mesh-verkossa
on rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
Pysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan.
Osoittimet Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan. Muistilohkon koko riippuu muuttujan tyypistä, eli kuinka suuria arvoja muuttujan
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
5.3 Ratkeavia ongelmia
153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,
SIGNAALITEORIAN JATKOKURSSI 2003
SIGNAALITEORIAN JATKOKURSSI 2003 Harri Saarnisaari University of Oulu Telecommunication laboratory & Centre for Wireless Communications (CWC) Yhteystiedot Luennot Harri Saarnisaari puh. 553 2842 vastaanotto
ReplicaX työkalu avointen datakopioiden luomiseen
ReplicaX työkalu avointen datakopioiden luomiseen Juha Karvanen ReplicaX on R-koodina toteutettu menetelmä avoimien datakopioiden tuottamiseen terveystiedosta ja muusta datasta, jota ei sellaisenaan voi
815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset
815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/
Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
Shannonin ensimmäinen lause
Shannonin ensimmäinen lause Pro gradu Maija-Liisa Metso Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2014 Sisältö Tiivistelmä 2 1 Johdanto informaatioteoriaan 2 1.1 Informaatioteorian historiaa...................
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari
Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin eteneminen Projekti on edennyt syksyn aikana melko vaikeasti. Aikataulujen
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Algoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 11.4.2019 Timo Männikkö Luento 10 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutusmenetelmä Osajoukon summa Algoritmit 2 Kevät 2019 Luento 10 To
Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana
Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen
Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto
Condess ratamestariohjelman käyttö Aloitus ja alkumäärittelyt Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto Kun kysytään kilpailun nimeä, syötä kuvaava nimi. Samaa nimeä käytetään oletuksena
Käyttöohje LogiComm ohjausjärjestelmä
Käyttöohje LogiComm ohjausjärjestelmä P/N 797 - Finnish - Päävalikko Tässä käyttöohjeessa selostetaan yleiset tehtävät, jotka liittyvät tuotteen varmennustehtäviin ja painesäädön asettamiseen. Täydellinen
AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.
AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä
Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?
Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita
Lahden kaupunki ja EUREF, kokemuksia 7-vuoden yhteiselosta. EUREF-päivä 2.0 4.9.2012
Lahden kaupunki ja EUREF, kokemuksia 7-vuoden yhteiselosta EUREF-päivä 2.0 4.9.2012 ETRS-89 /EUREF-FIN muunnos Lahden kaupungissa 1. Taustaa 2. Muunnosprosessi 2.1 testaus 3. Vaikutukset toimintaympäristöön
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
Plagioinnin tunnistaminen lähdekielisistä ohjelmista
Plagioinnin tunnistaminen lähdekielisistä ohjelmista Plagiointi- ja tutkimusetiikka seminaari 30.09.2003 Kirsti Ala-Mutka TTY/Ohjelmistotekniikka Sisältö Plagiointi ohjelmointikursseilla Tyypillisiä ulkoasumuutoksia
Zeon PDF Driver Trial
Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja
SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN
SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan
Kuva maailmasta Pakettiverkot (Luento 1)
M.Sc.(Tech.) Marko Luoma (1/20) M.Sc.(Tech.) Marko Luoma (2/20) Kuva maailmasta Pakettiverkot (Luento 1) WAN Marko Luoma TKK Teletekniikan laboratorio LAN M.Sc.(Tech.) Marko Luoma (3/20) M.Sc.(Tech.) Marko
jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor
T-1.81 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ti 8.4., 1:1-18: Klusterointi, Konekääntäminen. Versio 1. 1. Kuvaan 1 on piirretty klusteroinnit käyttäen annettuja algoritmeja. Sanojen
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien