Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.
|
|
- Annikki Rantanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }.
2 Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }. Esimerkki. Olkoon R = {(1, 1), (1, 2), (2, 1), (3, 1)}. Sen käänteisrelaatio on R 1 = {(1, 1), (1, 2), (1, 3), (2, 1)}.
3 Käänteisrelaation R 1 nuolikuvio on muuten sama kuin relaation R, paitsi että nuolten kulkusuunnat vaihtuvat. Jos lähtöjoukko halutaan vasemmalle puolelle, niin nuolikuvio on piirrettävä uudestaan vaihtamalla joukkojen paikkaa.
4 Käänteisrelaation R 1 nuolikuvio on muuten sama kuin relaation R, paitsi että nuolten kulkusuunnat vaihtuvat. Jos lähtöjoukko halutaan vasemmalle puolelle, niin nuolikuvio on piirrettävä uudestaan vaihtamalla joukkojen paikkaa. Esimerkki käänteisrelaation nuolikuviosta, digraafista (eli polkukuviosta) ja matriisista Taululla.
5 Esimerkki. Olkoon X kaikkien TaY:ssa opiskelleiden ihmisten joukko ja Y kaikkien TaY:ssa opettajana toimineiden joukko.
6 Esimerkki. Olkoon X kaikkien TaY:ssa opiskelleiden ihmisten joukko ja Y kaikkien TaY:ssa opettajana toimineiden joukko. Määritellääan relaatio R X Y säännöllä: xry x on (ollut) y:n oppilas.
7 Esimerkki. Olkoon X kaikkien TaY:ssa opiskelleiden ihmisten joukko ja Y kaikkien TaY:ssa opettajana toimineiden joukko. Määritellääan relaatio R X Y säännöllä: xry x on (ollut) y:n oppilas. Tällöin sen käänteisrelaation sääntö on yr 1 x y on x:n opettaja.
8 Esimerkki. Olkoon X kaikkien TaY:ssa opiskelleiden ihmisten joukko ja Y kaikkien TaY:ssa opettajana toimineiden joukko. Määritellääan relaatio R X Y säännöllä: xry x on (ollut) y:n oppilas. Tällöin sen käänteisrelaation sääntö on yr 1 x y on x:n opettaja. Kirjoittamalla x:n paikalle y:n ja y:n paikalle x:n saamme sen muotoon xr 1 y x on y:n opettaja.
9 Olkoon R X Y ja olkoon S Y Z. Siis relaation R maalijoukko on sama kuin relaation S lähtöjoukko. Näiden relaatioiden yhdistetty relaatio R S on joukosta X joukkoon Z määritelty relaatio, jonka sääntö on
10 Olkoon R X Y ja olkoon S Y Z. Siis relaation R maalijoukko on sama kuin relaation S lähtöjoukko. Näiden relaatioiden yhdistetty relaatio R S on joukosta X joukkoon Z määritelty relaatio, jonka sääntö on x(r S)z y Y : xry ysz.
11 Olkoon R X Y ja olkoon S Y Z. Siis relaation R maalijoukko on sama kuin relaation S lähtöjoukko. Näiden relaatioiden yhdistetty relaatio R S on joukosta X joukkoon Z määritelty relaatio, jonka sääntö on Toisin sanoen x(r S)z y Y : xry ysz. R S = { (x, z) X Z y Y : (x, y) R (y, z) S }.
12 Olkoon R X Y ja olkoon S Y Z. Siis relaation R maalijoukko on sama kuin relaation S lähtöjoukko. Näiden relaatioiden yhdistetty relaatio R S on joukosta X joukkoon Z määritelty relaatio, jonka sääntö on Toisin sanoen x(r S)z y Y : xry ysz. R S = { (x, z) X Z y Y : (x, y) R (y, z) S }. Alkiot x X ja z Z ovat siis keskenään relaatiossa R S joss nuolikuviossa päästään x:stä nuolia pitkin z:aan.
13 Jos R on joukon X relaatio, voidaan muodostaa yhdistetty relaatio R 2 = R R. Siis xr 2 y pätee joss relaation R polkukuviossa x:stä päästään y:hyn kahden nuolen pituisella reitillä.
14 Jos R on joukon X relaatio, voidaan muodostaa yhdistetty relaatio R 2 = R R. Siis xr 2 y pätee joss relaation R polkukuviossa x:stä päästään y:hyn kahden nuolen pituisella reitillä. Vastaavasti merkitsemme R 3 = (R R) R, jne.
15 Jos R on joukon X relaatio, voidaan muodostaa yhdistetty relaatio R 2 = R R. Siis xr 2 y pätee joss relaation R polkukuviossa x:stä päästään y:hyn kahden nuolen pituisella reitillä. Vastaavasti merkitsemme R 3 = (R R) R, jne. Esimerkki. Olkoon R = {(1, 1), (1, 2), (1, 3), (2, 1)} ja S = {(1, 2), (2, 1), (3, 3))}. Mikä on R S, S R, R 2, S 2, S 3, S 4,...? Taululla.
16 Yleistämme nyt relaatioiden yhdistämisen määritelmän luopumalla R:n maalijoukon ja S:n lähtöjoukon samuudesta.
17 Yleistämme nyt relaatioiden yhdistämisen määritelmän luopumalla R:n maalijoukon ja S:n lähtöjoukon samuudesta. Olkoon R X Y ja olkoon S U Z. Menettelemme kuten edellä, mutta meidän on vaadittava, että y Y U. Saamme relaatiolle R S säännön
18 Yleistämme nyt relaatioiden yhdistämisen määritelmän luopumalla R:n maalijoukon ja S:n lähtöjoukon samuudesta. Olkoon R X Y ja olkoon S U Z. Menettelemme kuten edellä, mutta meidän on vaadittava, että y Y U. Saamme relaatiolle R S säännön x(r S)z y Y U : xry ysz
19 Yleistämme nyt relaatioiden yhdistämisen määritelmän luopumalla R:n maalijoukon ja S:n lähtöjoukon samuudesta. Olkoon R X Y ja olkoon S U Z. Menettelemme kuten edellä, mutta meidän on vaadittava, että y Y U. Saamme relaatiolle R S säännön x(r S)z y Y U : xry ysz eli R S = { (x, z) X Z y Y U : (x, y) R (y, z) S }.
20 Relaatioille voidaan suorittaa joukko-opin laskutoimituksia. Käänteisrelaatio Esimerkki. Jos R X Y ja S X Y ovat relaatioita, niin niiden yhdiste R S on myös relaatio joukosta X joukkoon Y.
21 Relaatioille voidaan suorittaa joukko-opin laskutoimituksia. Käänteisrelaatio Esimerkki. Jos R X Y ja S X Y ovat relaatioita, niin niiden yhdiste R S on myös relaatio joukosta X joukkoon Y. Relaation R S sääntö on x(r S)y (xry xsy).
22 Relaatioille voidaan suorittaa joukko-opin laskutoimituksia. Käänteisrelaatio Esimerkki. Jos R X Y ja S X Y ovat relaatioita, niin niiden yhdiste R S on myös relaatio joukosta X joukkoon Y. Relaation R S sääntö on x(r S)y (xry xsy). Vastaavasti myös R S ja R \ S ovat relaatioita, ja niiden säännöt ovat x(r S)y (xry xsy) x(r \ S)y (xry x Sy)
23 yhdistäminen ei yleisessä tapauksessa ole vaihdannaista, sillä jos R X Y ja S Y Z, missä X Z =, niin S R =, kun taas R S on yleensä epätyhjä.
24 yhdistäminen ei yleisessä tapauksessa ole vaihdannaista, sillä jos R X Y ja S Y Z, missä X Z =, niin S R =, kun taas R S on yleensä epätyhjä. Seuraava esimerkki osoittaa, että vaihdantalaki ei päde vaikka tarkastellaan vain yhdessä joukossa X määriteltyjä relaatioita.
25 yhdistäminen ei yleisessä tapauksessa ole vaihdannaista, sillä jos R X Y ja S Y Z, missä X Z =, niin S R =, kun taas R S on yleensä epätyhjä. Seuraava esimerkki osoittaa, että vaihdantalaki ei päde vaikka tarkastellaan vain yhdessä joukossa X määriteltyjä relaatioita. Esimerkki. Olkoot X = {a, b}, R = {(a, a), (a, b)} ja S = {(b, a)}. Tällöin R S = {(a, a)}, mutta S R = {(b, a), (b, b)}.
26 yhdistäminen ei siis noudata vaihdantalakia, mutta se noudattaa kuitenkin liitäntälakia.
27 yhdistäminen ei siis noudata vaihdantalakia, mutta se noudattaa kuitenkin liitäntälakia. Lause 3. Olkoot R X Y, S Y Z ja T Z U relaatioita. Tälllöin R (S T ) = (R S) T.
28 yhdistäminen ei siis noudata vaihdantalakia, mutta se noudattaa kuitenkin liitäntälakia. Lause 3. Olkoot R X Y, S Y Z ja T Z U relaatioita. Tälllöin R (S T ) = (R S) T. Todistus. Taululla. Liitäntälain perusteella voimme jättää sulut pois ja siis kirjoittaa R S T. Vastaavasti voimme menetellä, kun yhdistettäviä relaatioita on useampia.
29 Jos R on joukossa X määritelty relaatio, niin merkitsemme R n = R R (n kpl).
30 Jos R on joukossa X määritelty relaatio, niin merkitsemme R n = R R (n kpl). Tälllöin xr n y, jos ja vain jos relaation R polkukuviossa alkiosta x päästään alkioon y reitillä, jossa on n nuolta.
31 Jos R on joukossa X määritelty relaatio, niin merkitsemme R n = R R (n kpl). Tälllöin xr n y, jos ja vain jos relaation R polkukuviossa alkiosta x päästään alkioon y reitillä, jossa on n nuolta. Lisäksi on luonnollista määritellä R 0 = I X (joukon X identtinen relaatio) ja R n = (R 1 ) n.
32 Jos R on joukossa X määritelty relaatio, niin merkitsemme R n = R R (n kpl). Tälllöin xr n y, jos ja vain jos relaation R polkukuviossa alkiosta x päästään alkioon y reitillä, jossa on n nuolta. Lisäksi on luonnollista määritellä R 0 = I X (joukon X identtinen relaatio) ja R n = (R 1 ) n. Huom. Relaation potenssimerkintä on valitettavasti ristiriidassa karteesisen tulon potenssimerkinnän kanssa. Jos siitä aiheutuu väärinkäsityksen vaara, niin relaation R n-kertaista karteesista potenssia voidaan merkitä vaikkapa R (n).
33 Lause 4. Olkoot R ja S joukossa X määriteltyjä relaatioita. Tällöin (1) (R 1 ) 1 = R, (2) R S R 1 S 1, (3) (R S) 1 = R 1 S 1, (4) (R S) 1 = R 1 S 1, (5) (R S) 1 = S 1 R 1. Todistus. (osittain) Taululla.
Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.
Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }. Esimerkki. Olkoon R = {(1, 1), (1, 2), (2, 1), (3, 1)}.
LisätiedotAlkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.
ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja
LisätiedotSanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.
Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio
LisätiedotAlkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.
Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
LisätiedotRelaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.
Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.
LisätiedotKarteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21
säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1
LisätiedotMatemaatiikan tukikurssi
Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotRelaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos
LisätiedotJoukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =
LisätiedotMS-A0401 Diskreetin matematiikan perusteet
MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta
LisätiedotLause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
LisätiedotMatematiikan peruskäsitteitä
2 Matematiikan peruskäsitteitä Kurssilla käsitellään matematiikan peruskäsitteitä, mutta lähinnä vain diskreetin matematiikan näkökulmasta. Lukiostakin tuttuja lineaarialgebran ja analyysin peruskäsitteitä
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 1,
Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2
LisätiedotRatkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
LisätiedotMatematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Lisätiedot(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
LisätiedotDiskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
LisätiedotDiskreetti matematiikka Toinen välikoe Vastauksia. 1. Olkoot X = {a, b, c, d} ja Y = {1, 2, 3}, sekä R, S X Y relaatiot
Diskreetti matematiikka Toinen välikoe 14.12.2006 Vastauksia 1. Olkoot X = {a, b, c, d} ja Y = {1, 2, 3}, sekä R, S X Y relaatiot Määritä relaatiot a) R S b) R 1 c) S R 1. Ratkaisu: a) R = {(a, 1), (a,
Lisätiedotx > y : y < x x y : x < y tai x = y x y : x > y tai x = y.
ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
Lisätiedot1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
Lisätiedotkaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
LisätiedotMatematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotMatriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
LisätiedotT Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )
T-79.144 Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 2 5.11.2005 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R A
Lisätiedot(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:
LisätiedotFunktioista. Esimerkki 1
Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka
LisätiedotMAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
LisätiedotFunktiot, L4. Funktio ja funktion kuvaaja. Funktio ja kuvaus. Yhdistetty funktio. eksponenttifunktio. Logaritmi-funktio. Logaritmikaavat.
Funktiot, L4 eksponentti-funktio Funktio (Käytännöllinen määritelmä) 1 Linkkejä kurssi2 / Etälukio (edu.fi) kurssi8, / Etälukio (edu.fi) kurssi8, logaritmifunktio / Etälukio (edu.fi) Funktio (Käytännöllinen
LisätiedotLinkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!
Funktiot, L3a n kuvaaja n kuvaaja n kuvaaja Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!) Funktio (Käytännöllinen
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
LisätiedotFunktion. Käänteisfunktio. Testi 3. Kauhava Aiheet. Funktio ja funktion kuvaaja. Funktion kasvaminen ja väheneminen.
Funktiot Kauhava 26.11.2010 n kuvaaja n kuvaaja n kuvaaja Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!)
LisätiedotTehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
LisätiedotT-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003
T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotKurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotMatriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =
1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja
LisätiedotVastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
LisätiedotKOMBINATORIIKKA JOUKOT JA RELAATIOT
Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......
LisätiedotMiten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
LisätiedotJäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan
Jäännösluokat LUKUTEORIA JA TODIS- TAMINEN, MAA Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan lukujoukkoja 3k k Z =, 6, 3, 0, 3, 6, 3k + k Z =,,,,, 7, 3k + k Z =,,,,, 8, Osoita,
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotHY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
LisätiedotKOMBINATORIIKKA JOUKOT JA RELAATIOT
Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotLineaarialgebra b, kevät 2019
Lineaarialgebra b, kevät 2019 Harjoitusta 4 Maplella with(linearalgebra); (1) Tehtävä 1. Lineaarisia funktioita? a) Asetelma on kelvollinen: lähtö- ja maalijoukko on R-kertoiminen lineaariavaruus ja L
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotHN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
LisätiedotMatematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
LisätiedotJoukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
LisätiedotDiskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:
LisätiedotPredikaattilogiikan malli-teoreettinen semantiikka
Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia
LisätiedotValitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
Lisätiedot5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
LisätiedotDiskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä
LisätiedotIlkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
Lisätiedot[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotDiskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotInsinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotSalausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
Lisätiedot3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
LisätiedotTeema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32
1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki
LisätiedotMatemaattisen analyysin tukikurssi. 1. Kurssikerta ( )
Matemaattisen analyysin tukikurssi 1. Kurssikerta (16.9.2019) Yleistä Tukikurssista - 1. periodi: maanantaisin klo 14:15-15:45 huoneessa SH2 yht. 5 kertaa. Tenttiviikolla ei tukikurssia. 2. periodin ajat
LisätiedotX R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun
Lisätiedot1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
LisätiedotIdeaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat
Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
Lisätiedot6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
LisätiedotSurjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot