AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla

Koko: px
Aloita esitys sivulta:

Download "AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla"

Transkriptio

1 AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla Tähtitieteellinen merenkulkuoppi on oppi, jolla määrätään aluksen sijainti taivaankappaleiden perusteella. Paikanmääritysmenetelmänäon ristisuuntiman eri muodot.

2 Miksi? Apu elektroniikan pettäessä Perinteen säilyttäminen Huvin vuoksi

3 Kurssilla tarvittava materiaali Oppikirja: Merenkulkuopin perusteet III, Avomerinavigointi Plotting Sheet-kartta N.P.401 Sight Reduction Tables Kolmio, harppi, kynä, kumi, paperia, laskin

4 TAIVAANPALLO JA KOORDINAATISTOT Navigoinnissa käytettävät taivaankappaleet Tähtitieteellisessä paikanmäärityksessä tulevat kysymykseen aurinko, kuu, osa kiintotähdistäsekävalovoimaisimmat planeetat eli Venus, Mars, Jupiter ja Saturnus. Merenkulussa käytetään yleisesti 57 valittua kiintotähteä.

5 TAIVAANPALLO Eräs tähtitieteellisen merenkulun perusperiaatteita on, ettätaivaankappaleiden etäisyydellä ei ole merkitystä paikanmäärityksessä. Tärkeääon ainoastaan suunta, jossa ne näkyvät. Taivaankappaleiden projisointia taivaan pallonmuotoiselle pinnalle nimitetään taivaanpalloksi.

6 TAIVAANPALLO Tähtitieteellisessäpaikanmäärityksessäon tiedettävätaivaankappaleiden sijainti taivaanpallolla, jotta niiden avulla voidaan määrittää oma paikka maan pinnalla. Jotta taivaankappaleen paikka taivaanpallolla kyetään ilmoittamaan, pitää käyttää koordinaatteja samaan tapaan kuin niitä käytetään ilmoittamaan sijainti maapallon pinnalla.

7 Maapallon pinnalla käytetään paikan ilmaisemiseksi latitudia ja longitudia

8 Koordinaatistot Tähtitieteellisessä merenkulussa tarvitaan 2 koordinaatistoa; horisontti- ja tuntikulmakoordinaatistoa.

9 HORISONTTIKOORDINAATISTO

10 Horisonttijärjestelmän perustaso on havaitsijan ja horisontin kautta kulkeva taso. Sen perustasona on katsojan horisontti nk tosihorisontti.horisonttia vastaa kohtisuorassa on luotiviiva, joka kulkee havaitsijan ja maapallon keskipisteen kautta taivaanpallon pinnoille. Suoraan havaitsijan yläpuolella on Zeniitti Zja vastakkaisella puolella palloa on Nadiiri Z.

11 Havaitsijan horisontin eli ns. tosihorisontin suuntaisia tasoja kutsutaan korkeusparalleeleiksi, ( maapallon latitudiparalleelit eli leveyspiirit) arvo ilmoitetaan tosikorkeutena tosihorisontista. Zeniitin ja nadiirin kautta kulkevia isoympyröitäkutsutaan vertikaaliympyröiksi =pysty-ympyrät ( maapallon meridiaani eli pituuspiiri), arvo ilmoitetaan atsimuuttikulmanatosihorisontilla

12 Tosihorisontti jakaa taivaanpallon näkyvään ja näkymättömään pallonpuoliskoon.samoin näkyväksi navaksi kutsutaan sitätaivaan napaa, joka on havaitsijaa lähinnä. Vrt näkymätön napa.eteläinen ja Pohjoinen kardinaalipiste sijaitsevat napojen ja Z / Z läpi kulkevan vertikaaliympyrän ja tosihorisontin leikkauspisteessä. Havaitsijan liikkuessa siirtyy zeniitin ja siten myös tosihorisontin paikka.

13 Kohteen korkeus on sen ja taivaanrannan välinen kulma. Zeniitin korkeus on 90. Horisontissa olevan kohteen korkeus on 0. Horisontin alapuolella arvot ovat negatiivisia Nadiirin -90 asti. Zeniittiväliksi z kutsutaan Taivaankappaleen ja zeniitin väliin jäävääpysty-ympyrän kaarta eli 90º-Tosikorkeus Ht.

14 Atsimuutti A ilmoittaa kohteen ilmansuunnan. Se on kaarietäisyys tosihorisontissa olevasta pohjoisesta tai eteläisestä kardinaalipisteestä taivaankappaleen läpi kulkevan vertikaaliympyrän ja tosihorisontin leikkauspisteeseen. Atsimuutti on joko länteen tai itään Nousussa oleva taivaankappaleen A on itäinen (laskussa läntinen) Tk.n ylittäessä meridiaanin se on yleensä korkeimmillaan eli kulminoi (vrt navanympärystähdet) Taivaanpallolla ts.= tosisuuntima saadaan laskemalla atsimuutista.

15 TUNTIKULMAKOORDINAATISTO eli Ekvatoriaalinen koordinaatisto pohjoisella ja eteläisellä pallopuoliskolla

16 TUNTIKULMAKOORDINAATISTO Ekvatoriaalisen koordinaatiston perustasona on Maan päiväntasaajan eli ekvaattorin taso. Sen projektio taivaanpallolla on taivaanpallon ekvaattori. Taivaanpallon ekvaattori jakaa taivaanpallon pohjoiseen ja eteläiseen pallonpuoliskoon. Havaitsijan liike ei vaikuta taivaan napojen eikä ekvaattorin sijaintiin.

17 LATITUDI: Maapallon latitudiparalleelin vastine taivaanpallolla on deklinaatioparalleelija sen arvo ilmoitetaan deklinaationa ekvaattorista. Deklinaatio= taivaankappaleen kulmaetäisyys ekvaattorista. Se on siis joka pohjoista tai eteläistä. Taivaankappaleen ollessa ekvaattoritason yläpuolella, on se positiivinen 90 asti. Alapuolella vastaavasti negatiivinen -90 asti. Taivaankappaleen etäisyyttänäkyvästänavasta deklinaatioympyrälläkutsutaan napaväliksi p= 90 -/+ deklinaatiohavaitsijasta etelään / pohjoiseen

18 LONGITUDI Sitätaivaanpallon deklinaatioympyrää, joka kulkee taivaan napojen Pn ja PS sekäzeniitin Z ja Nadiirin Z kautta, kutsutaan taivaan meridiaaniksi. Kuten meridiaanit ja latitudiparalleelit, leikkaavat myös deklinaatioympyrät ja deklinaatioparalleelit toisensa suorassa kulmassa muodostaen ruuduston, jonka perusteella taivaankappaleen paikka määritetään Meridiaanin vastine on deklinaatioympyräja sen arvo ilmoitetaan tuntikulmanaekvaattorilla myötäpäivään tai 0-24h

19 TÄHTIEN KIINTEÄKOORDINAATISTO

20 TÄHTIEN KIINTEÄKOORDINAATISTO Tkk käyttäähyväksi tuntikulmakoordinaatistoa. Koska taivaan meridiaani muuttuu maan pyöriessä, se ei ole hyväkiintotähtien sijainnin ilmoittamisessa. Kun etäisyyttätulee riittävästi tkleet alkavat kulkea tietyssäsuhteessa toisiinsa nähden. Kiintopisteeksi valitaan kevättasauspiste.

21 TÄHTIEN KIINTEÄKOORDINAATISTO Atsimuutti Akorvataan kulmalla, joka mitataan kiintopisteestätaivaan ekvaattorilla ( kevättasauspiste Aries γ). Deklinaatio Decon kaarietäisyys ekvaattorista taivaankappaleen deklinaatioparalleeliin mitattuna deklinaatioympyrääpitkin.

22 TÄHTIEN KIINTEÄKOORDINAATISTO Meridiaaninvastine on deklinaatioympyräja sen arvo ilmoitetaan sideerisenä tuntikulmana SHA ekvaattorilla. Sideerinen tuntikulma SHAon kaari Arieksesta ekvaattoria pitkin siihen pisteeseen, jossa taivaankappaleen kautta kulkeva deklinaatioympyräleikkaa ekvaattorin. Se lasketaan myötäpäivään

23 NAPAKORKEUS Napakorkeus on tosihorisontista taivaan napaan kulkeva kaari. Koska ekvaattori ja N-S kardinaali-pisteiden välinen suora sekä havaitsijan läpi kulkeva luotiviiva Z-Z ja maapallon Pn-Ps suora ovat kohtisuorassa toisiaan vastaan, ovat napakorkeus ja latitudi yhtä suuret. Napakorkeus pohjoisella ja eteläisellä pallonpuoliskolla

24 TÄHTITIETEEN PERUSKOLMIO Taivaankappale lukitaan tpallolle edellä esitettyjen käsitteiden avulla. Se on tulevien laskujen perustana.

25 TÄHTITIETEEN PERUSKOLMIO kärjet kulmat sivut taivaan napa Pn / Ps HA Zeniittiväli z = 90º - Ht zeniitti Z A Napaväli p = 90º Dec taivaankappale * Havaitsijan etäsyys navasta =90º -lat

26 TÄHTITIETEEN PERUSKOLMIO Kun pallokolmion kulmista tai sivuista tunnetaan 3 suuretta voidaan muut suureet laskea. Laskuissa oletetaan tunnetuksi latitudija NA:sta saadaan taivaankappaleen havaintohetken tuntikulma ja deklinaatio. Korkeustaulukosta lasketaan taivaankappaleen korkeus ja atsimuutti. Kun Deklinaatio tiedetään, saadaan napaväli p. Tosikorkeus Ht saadaan sekstantilla tai korkeustaulukosta( kun tiedetään LHA, dec ja lat). Merkintäpaikan Longitudin ja kellon ajan mukaan NA:sta saatujen tuntikulmien (GHA) tai (SHA ja Arieksen GHA) avulla saadaan paikallinen tuntikulma LHA.

27 Paikanmäärityksen vaiheet: Merkintälasku Alus on kulkiessaan pitänyt merkintälaskulla kirjaa oletetusta paikastaan Aluksella ollaan selvilläpaikasta ainakin asteen tarkkuudella esim. 40 N 25 W Aluksella on mukana myös: Kronografi joka aina näyttää Greenwichin aikaa (UT) Sekstantti Nautical Almanac Sight Reduction Tables

28 Paikkanmäärityslyhyesti Ajankohdaksi valitaan hämärän kellonajat Nautical Almanacista NOUSU MERIHORISONTTI LASKU 0-6 VARSINAINEN, PORVARILLINEN HÄMÄRÄ( CIVIL) NAUTTINEN HÄMÄRÄ TÄHTITIETEELINEN HÄMÄRÄ >18 TÄYDELLINEN PIMEYS >18

29 Merkitään muistiin : Mittauspäivä Havaintohetken aika Taivaankappaleen nimi Merkintäpaikka Mitataan sekstantilla valittujen taivaankappaleiden korkeus horisontista Kuten aikaisemmilta laivurikursseilta tiedämme, yksi sijoittaja ei riitäpaikanmääritykseen. Sijoittajia tulee olla vähintään 2. Suoritetaan laskut

30 INTERPOLOINTI Koska käytämme hyväksi taulukoita on osattava interpoloida, eli löydettäväoikea arvo kahden arvon välistä. Laskenta kaava: Taulukolle C Haetaan tulokselle B oikeaa vastausta: y-x x + C-A * B-A tai y-x y+ C-A * B-C A X y

31 ESIMERKKI eksymätaulukosta Lasketaan arvolle 167 oikea arvo: -8 + [(-6)-(-8)]/( ) x ( )= -8+( 2/10x 7) = -8+1,4 =-6,6 tai -6+[(-6)-(-8)]/( ) x ( )= -6+( 2/10x -3) = ,6 = -6,6

Tähtitieteelliset koordinaattijärjestelemät

Tähtitieteelliset koordinaattijärjestelemät Tähtitieteelliset Huom! Tämä materiaali sisältää symbolifontteja, eli mm. kreikkalaisia kirjaimia. Jos selaimesi ei näytä niitä oikein, ole tarkkana! (Tällä sivulla esiintyy esim. sekä "a" että "alpha"-kirjaimia,

Lisätiedot

TÄHTITIETEEN PERUSTEET (8OP)

TÄHTITIETEEN PERUSTEET (8OP) TÄHTITIETEEN PERUSTEET (8OP) HEIKKI SALO, KEVÄT 2013 (heikki.salo@oulu.fi) Kurssin sisältö/alustava aikataulu: (Luennot pe 12-14 salissa FY 1103) PE 18.1 1. Historiaa/pallotähtitiedettä I to 24.1 Kollokvio

Lisätiedot

SolarView. Käyttäjän opas. AR Software

SolarView. Käyttäjän opas. AR Software SolarView Käyttäjän opas AR Software Sisällysluettelo 1. Johdanto...3 2. Sovelluksen yleiskuvaus...4 2.1 Laitteisto- ja ohjelmistovaatimukset...4 3. Keskeiset käsitteet...5 3.1. Paikkakoordinaatit...5

Lisätiedot

PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveys- asteen mukaiseksi.

PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveys- asteen mukaiseksi. Käyttöohje PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveysasteen mukaiseksi. Kellossa olevat kaupungit auttavat alkuun, tarkempi leveysasteluku löytyy sijaintisi koordinaateista. 2. Kello asetetaan

Lisätiedot

Radiotekniikan sovelluksia

Radiotekniikan sovelluksia Poutanen: GPS-paikanmääritys sivut 72 90 Kai Hahtokari 11.2.2002 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Asko Palviainen Matemaattis-luonnontieteellinen tiedekunta Ajanlasku Kuukalenteri vuodessa 12 kuu-kuukautta ei noudata vuodenaikoja nykyisistä kalentereista

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Sampo Viheriälehto ASTRONOMISEN PAIKANMÄÄRITYKSEN MENETELMÄT

Sampo Viheriälehto ASTRONOMISEN PAIKANMÄÄRITYKSEN MENETELMÄT Sampo Viheriälehto ASTRONOMISEN PAIKANMÄÄRITYKSEN MENETELMÄT Merenkulun koulutusohjelma Merikapteenin suuntautumisvaihtoehto 2010 ASTRONOMISEN PAIKANMÄÄRITYKSEN MENETELMÄT Viheriälehto, Sampo Satakunnan

Lisätiedot

Navigointi/suunnistus

Navigointi/suunnistus Navigointi/suunnistus Aiheita Kartan ja kompassin käyttö Mittakaavat Koordinaatistot Karttapohjoinen/neulapohjoinen Auringon avulla suunnistaminen GPS:n käyttö Reitin/jäljen luonti tietokoneella Reittipisteet

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Suomen Navigaatioliitto Finlands Navigationsförbund Rannikkomerenkulkuopin tutkinto 14.12.2012

Suomen Navigaatioliitto Finlands Navigationsförbund Rannikkomerenkulkuopin tutkinto 14.12.2012 Suomen Navigaatioliitto Finlands Navigationsförbund Rannikkomerenkulkuopin tutkinto 14.12.2012 Tutkinto tehdään 12 m pituisella merikelpoisella moottoriveneellä, jossa on varusteina mm. pääkompassi, kiinteä

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

AstroMaster-sarjan kaukoputket

AstroMaster-sarjan kaukoputket SUOMI AstroMaster-sarjan kaukoputket KÄYTTÖOHJE AstroMaster 90 EQ # 21064 AstroMaster 130 EQ # 31045 AstroMaster 90 EQ-MD # 21069 AstroMaster 130 EQ-MD # 31051 Sisällysluettelo JOHDANTO... 3 KOKOAMINEN...

Lisätiedot

Ohjeita. Datan lukeminen

Ohjeita. Datan lukeminen ATK Tähtitieteessä Harjoitustyö Tehtävä Harjoitystyössä tehdään tähtikartta jostain taivaanpallon alueesta annettujen rektaskensio- ja deklinaatiovälien avulla. Karttaan merkitään tähdet aina kuudenteen

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

14 JOHDANTO Merenkulkuoppiin kuuluu kaksi osaa, joista toista nimitetään terrestiseksi ja toista astronomiseksi merenkuluksi. Terrestiseen merenkulkuun kuuluvat rannikkomerenkulku, kompassioppi, sääoppi,

Lisätiedot

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms.

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. 1. Mikä on suurin kokonaisluku, joka toteuttaa

Lisätiedot

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi. Tehtävä 1 Kirjoita neljä eri funktiota (1/2 pistettä/funktio): 1. Funktio T tra saa herätteenä 3x1-kokoisen paikkavektorin p. Se palauttaa 4x4 muunnosmatriisin, johon sijoitettu p:n koordinaattien mukainen

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Tähtitieteen historiaa, avaruusgeometrian tehtäviä ja muita tehtäviä

Tähtitieteen historiaa, avaruusgeometrian tehtäviä ja muita tehtäviä Tähtitieteen historiaa, avaruusgeometrian tehtäviä ja muita tehtäviä A1. Antiikin kreikkalainen monitieteilijä Eratosthenes (276-194) eaa. onnistui ensimmäisenä mittaamaan 240 eaa. maapallon ympärysmitan

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita MAB: Avaruuskappaleita Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Taivaan merkit. To klo 16.50 18.20 Opistotalo, Helsinginsali, Helsinginkatu 26 FM Jussi Tuovinen

Taivaan merkit. To klo 16.50 18.20 Opistotalo, Helsinginsali, Helsinginkatu 26 FM Jussi Tuovinen Taivaan merkit To klo 16.50 18.20 Opistotalo, Helsinginsali, Helsinginkatu 26 FM Jussi Tuovinen Luentosarjan idea Eläinradan 12 tähtikuviota ovat varmasti tunnetuimpia taivaan tähtikuvioita ja niihin on

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

MAA3 HARJOITUSTEHTÄVIÄ

MAA3 HARJOITUSTEHTÄVIÄ MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

a b c d + + + + + + +

a b c d + + + + + + + 11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

Kolmiomittauksen historiaa

Kolmiomittauksen historiaa Maanmittaus 84:1 (2009) 65 Maanmittaus 84:1 (2009) Historiallinen tietoisku Kolmiomittauksen historiaa Jyrki Puupponen jyrki.puupponen@iki.fi Tiivistelmä. Vuonna 2008 Maanmittauslaitos juhlii 375-vuotistaivaltaan

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ 23 METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ Tässä metodissa on kyse perinteisestä. luettelomaisesta listaustyylistä, jossa meteorit kirjataan ylös. Tietoina meteorista riittää, kuuluuko

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinto 19.4.2013

Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinto 19.4.2013 1 Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinto 19.4.2013 Tutkinnossa käytetty moottorivene on 13 metriä pitkä, sen syväys on 1,2 metriä ja korkeus 3,4 metriä.

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898

PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898 OPS M2-1, Liite 1 21.12.2007 PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898 www.ilmailuhallinto.fi LENTOKONEEN VALOT Huom. Katso luku 6 1. MÄÄRITELMIÄ Kun tässä luvussa

Lisätiedot

Oppimistavoite: ymmärtää, kuinka positiiviset ja negatiiviset magneettiset navat tuottavat työntö- ja vetovoimaa.

Oppimistavoite: ymmärtää, kuinka positiiviset ja negatiiviset magneettiset navat tuottavat työntö- ja vetovoimaa. 1 Magneettiset navat Oppimistavoite: ymmärtää, kuinka positiiviset ja negatiiviset magneettiset navat tuottavat työntö- ja vetovoimaa. 1. Nimeä viisi esinettä, joihin magneetti kiinnittyy. Mikä tahansa

Lisätiedot

Suomen Navigaatioliitto Finlands Navigationsförbund Rannikkomerenkulkuopin 19.4.2013 tutkinnon malliratkaisut

Suomen Navigaatioliitto Finlands Navigationsförbund Rannikkomerenkulkuopin 19.4.2013 tutkinnon malliratkaisut Suomen Navigaatioliitto Finlands Navigationsförbund Rannikkomerenkulkuopin 19.4.2013 tutkinnon malliratkaisut Tutkinto tehdään 12 m pituisella merikelpoisella moottoriveneellä, jossa on varusteina mm.

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

2016/07/05 08:58 1/12 Shortcut Menut

2016/07/05 08:58 1/12 Shortcut Menut 2016/07/05 08:58 1/12 Shortcut Menut Shortcut Menut Shortcut menut voidaan aktivoida seuraavista paikoista. Shortcut menun sisältö riippuu siitä, mistä se aktivoidaan. 1. Shortcut menu suunnitellusta linjasta

Lisätiedot

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Tämän työn tarkoituksena oli saada käsitys siitä,

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

9. Harjoitusjakso III

9. Harjoitusjakso III 9. Harjoitusjakso III Seuraavaksi harjoitellaan kuvien ja tekstin lisäämistä piirtoalueelle. Tarjolla on aikaisempien harjoittelujaksojen tapaan kahden tasoisia harjoituksia: perustaso ja edistynyt taso.

Lisätiedot

SÁME JÁHKI - saamelainen vuosi

SÁME JÁHKI - saamelainen vuosi 6789067890678901267890678906789012678906 6789067890678901267890678906789012678906 6789067890678901267890678906789012678906 67890 67890 678906 678906 678906 67890 67890 67890 67890 67890 678906 678906 678906

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita 6

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita 6 MAB: Avaruuskappaleita 6 Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Nordana -Lo vbo len tuulivoimahanke: Kuvasovitteet

Nordana -Lo vbo len tuulivoimahanke: Kuvasovitteet Nordana -Lo vbo len tuulivoimahanke: Kuvasovitteet 1. Yleistä: Kaikissa kuvasovitteissa on käytetty tuulivoimalatyyppiä Nordex N117 2,4 MW ja/tai Enercon E101 3,0 MW Napakorkeus: 141m / 135,4 m Lavan pituus:

Lisätiedot

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? 1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa

Lisätiedot

AURINKO VALON JA VARJON LÄHDE

AURINKO VALON JA VARJON LÄHDE AURINKO VALON JA VARJON LÄHDE Tavoite: Tarkkaillaan auringon vaikutusta valon lähteenä ja sen vaihtelua vuorokauden ja vuodenaikojen mukaan. Oppilaat voivat tutustua myös aurinkoenergian käsitteeseen.

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

Suomen Navigaatioliitto Finlands Navigationsförbund rf

Suomen Navigaatioliitto Finlands Navigationsförbund rf 1 Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinnon 22.4.2016 tehtävien ratkaisut Tutkinnossa käytetty moottorivene on 13 metriä pitkä, sen syväys on 1,0 metriä ja

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

EUREF-FIN JA KORKEUDET. Pasi Häkli Geodeettinen laitos 10.3.2010

EUREF-FIN JA KORKEUDET. Pasi Häkli Geodeettinen laitos 10.3.2010 EUREF-FIN JA KORKEUDET Pasi Häkli Geodeettinen laitos 10.3.2010 EUREF-FIN:n joitain pääominaisuuksia ITRF96-koordinaatiston kautta globaalin koordinaattijärjestelmän paikallinen/kansallinen realisaatio

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot