2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

Koko: px
Aloita esitys sivulta:

Download "2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki"

Transkriptio

1 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka on F 12 = Gm 1m 2 ˆr r , (61) on missä ˆr 12 = r 12 /r 12 = ( r 2 r 1 )/ r 2 r 1 on yksikkövektori ja missä gravitaatiovakio G = 6, N m 2 /kg 2. (62) Ohuen homogeenisen pallokuoren (massa M, säde R) voima pistemäiseen kappaleeseen (massa m) on F = G mm ˆr, r R (63) r2 F = 0, r < R. (64) 15

2 Homogeenisen pallon (massa M, säde R) voima pistemäiseen kappaleeseen (massa m) on F = G mm ˆr, r2 r R (65) F = G mm rˆr, R3 r < R. (66) 2.2 Kappaleen paino Kappaleen paino on kaikkien maailmankaikkeuden massojen yhteisvaikutus kappaleeseen. Lähellä maanpintaa muiden massojen kuin maan vaikutus on häviävän pieni, joten w = m g = G mm E R 2 E ˆr, (67) missä maan massa M E = 5, kg ja säde R E = 6, m. Painovoiman kiihtyvyys lähellä maanpintaa on g = GM E, (68) RE 2 joka on riippumaton kappaleen massasta. Etäisyydellä r R E ylöspäin maanpinnasta, m-massaisen kappaleen paino on w = GM Em r 2. (69) Koska maapallo pyörii eikä se ole täysin pyörähdyssymmetrinen, kappaleen näennäinen paino ei ole aivan sama kuin sen todellinen paino, vaan se riippuu siitä, millä leveysasteella kappale sijaitsee. Tähän kysymykseen palataan, kun tarkastellaan kiihtyvässä liikkeessä olevia koordinaatistoja. 16

3 2.3 Voimakentät Gravitaatiokentän voimakkuus määritellään Homogeeninen gravitaatiokenttä on g( r) = F ( r) m. (70) g( r) = g = vakio. (71) Kenttäviivat kuvaavat sitä, mihin suuntaan testihiukkanen (massa m) lähtisi liikkumaan, jos se vapautettaisiin levosta. Pistemäisen kappaleen muodostama (esimerkiksi homogeenisen pallon ulkopuolella, massa M) gravitaatiokenttä g( r) = G M ˆr. (72) r2 Kenttäviivojen tiheys kuvaa kentän voimakkuutta, eli mitä tiheämmässä kenttäviivoja on, sitä voimakkaampi kenttäkin on. 2.4 Potentiaalienergia Vakiokentän aikaansaama potentiaalienergia Homogeeniselle gravitaatiokentälle 17

4 W 12 = 2 1 F s = 2 1 mgĵ (dx î + dy ĵ) = mg(y 2 y 1 ) = U, (73) joten U = mg(y y 0 ). (74) Koska vain potentiaalienergian muutoksella on merkitystä, gravitaation potentiaalienergian nollakohta voidaan valita vapaasti. r 2 -kentän aikaansaama potentiaalienergia Lähellä maanpintaa, jolloin r = R E + h, missä h R E, gravitaatiovoiman kappaleeseen aiheuttama potentiaalienergia on lähes vakio U = mgh + U 0. (75) Kauempana maanpinnasta potentiaalienergia ei pysykään vakiona, vaan se muuttuu etäisyyden funktiona. Yleisesti gravitaatiovoiman tekemä työ W 12 = r2 r 1 = GmM E r 2 Fg d s = GmM E r2 r 1 dr r 2 GmM E r 1 = U. (76) 18

5 Potentiaalienergiaksi saadaan siis U(r) = GmM E, U = 0, kun r =. (77) r Potentiaalienergian nollakohta U( r 0 ) = 0 kannattaa valita siten, että voima häviää siinä, eli F ( r 0 ) = 0 Pallokuoren potentiaalienergia U(r) = G mm r, r R (78) U(r) = G mm R, r < R. (79) Homogeenisen pallon potentiaalienergia U(r) = G mm r, r R (80) U(r) = G mm ( 3 R 3 2 R2 1 ) 2 r2, r < R. (81) 19

6 Elastinen potentiaalienergia Jousen tekemä työ siirtymässä x 1 x 2 on W = x2 x2 F x dx = kx dx = 1 x 1 x 1 2 k(x2 2 x 2 a) = U, (82) joten jousen potentiaalienergia on U(x) = 1 2 kx2 ja U(0) = 0. (83) 2.5 Planeettaliike Ratojen luokittelu Systeemi on sidotussa tilassa, kun E mek < 0. Tällöin esimerkiksi komeetan rata auringon ympäri on ellipsi. Myös ympyräliike on mahdollinen. Systeemin sidosenergia on E mek, mikä tarvitaan hajoittamaan systeemi. Systeemi on avoin, jos E mek 0. Tällöin komeettaa ei sido mikään, jolloin se voi poistua vapaasti aurinkokunnasta. Komeetta on parabolisella radalla, jos E mek = 0, ja hyperbolisella radalla, jos E mek > 0. Tasainen ympyräliike Gravitaatiovoima pitää kappaleen ympyräradalla. Newton II: Tästä saadaan ratanopeus ja kiertoaika GMm r 2 = mv2 r. (84) GM v = r (85) T = 2πr r v = 2π 3 GM. (86) 20

7 Mekaaninen energia on E mek = K + U = 1 2 mv2 + = 1 2 mgm r GMm r ( GMm ) r = 1 GMm. (87) 2 r Elliptinen liike Yleisessä tapauksessa planeettaliikkeessä on kolme säilyvää suuretta. Mekaaninen energia säilyy E mek = K + U = 1 ( ) GMm 2 mv2 = vakio. (88) r Koska voima F ja planeetan paikka r ovat yhdensuuntaiset vektorit, niin voiman momentti M = r F = 0, joten kulmaliikemäärä säilyy L = m r v = vakio, (89) eli liike tapahtuu tasossa. Koska kahden vektorin muodostaman kolmion pinta-ala voidaan määrittää vektoritulon avulla, niin edellisestä seuraa, että da dt = 1 d r 2 r dt = 1 2 r v = L = vakio. (90) 2m Kolmas säilyvä suure on ns. Laplace Runge Lenz-vektori R = ( v L) GMmˆr = vakio. (91) 21

8 Tämän avulla voidaan johtaa planeetan radan yhtälö napakoordinaateissa (r, φ) α r(φ) = 1 ε cos φ, (92) missä α = L2 ja ε = R 1 + 2L2 E. GMm 2 GMm G 2 M 2 m 3 Saatu tulos on kartioleikkauksen yhtälö. ε on radan eksentrisyys (epäkeskisyys). Kun ε = 0, tuloksena on ympyrä, kun 0 < ε < 1, niin ellipsi, kun ε = 1, niin paraabeli ja kun ε > 1, niin tuloksena on hyperbeli. Elliptisessä liikkeessä isoakselin puolikas a = α ja pikkuakselin puolikas b = α 1 ε 2 1 ε 2. Radan kiertoaika on nyt T = rata dt = 2m L rata da = 2m L (πab) = 2π GM a 3/2. (93) Keplerin lait Keplerin 1. laki: Kaikki planeetat liikkuvat auringon ympäri pitkin elliptisiä ratoja, joiden toisessa polttopisteessä aurinko sijaitsee. (Yhtälö (92), kun 0 < ε < 1.) Keplerin 2. laki: Planeetan ja auringon välinen jana pyyhkäisee aina samansuuruisen pinta-alan samassa ajassa. (Yhtälö (90)) Keplerin 3. laki: Planeetan kiertoajalle on voimassa T 2 = Ca 3, jossa a on isoakselin puolikas ja C = vakio. (Yhtälö (93)) 2.6 Keskeisvoimakenttä Gravitaatio on esimerkki keskeisvoimakentästä. Yleisessä keskeiskentässä voima on F ( r) = f(r)ˆr (94) ja vastaava potentiaalienergia määritellään yhtälöllä f(r) = du(r). (95) dr 22

9 Konservatiivisessa keskeisliikkeessä mekaaninen energia säilyy. voidaan kirjoittaa napakoordinaateissa (r, φ) Mekaaninen energia E = K + U = 1 2 m(ṙ2 + r 2 φ2 ) + U(r). (96) Kulmaliikemäärä säilyy ja se voidaan nyt kirjoittaa napakoordinaattien avulla L = mr 2 φ. (97) Systeemin energia voidaan kirjoittaa kulmaliikemäärän avulla muotoon E = 1 2 mṙ2 + U eff (r), (98) missä efektiivinen potentiaalienergia on U eff (r) = U(r) + L2 2mr 2. (99) Yhtälöstä (98) voidaan ratkaista aika t = ±( 1 2 m)1/2 dr [E U eff (r)] 1/2 + t 0, (100) josta kääntämällä saadaan ratkaistua etäisyys r ajan funktiona. Sijoittamalla tämä yhtälöön (97) saadaan ratkaistua kulma φ ajan funktiona φ = Lm 1 dt [r(t)] 2 + φ 0. (101) Ratkaisuksi on siis saatu muodollisesti r(t) ja φ(t), mitkä antavat keskeisliikkeen yleisen ratkaisun. Usein ei kuitenkaan olla kiinnostuneita suureiden aikariippuvuudesta. Tällöin riittää ratkaista r:n ja φ:n riippuvuus toisistaan. Ketjusääntö antaa ṙ = dr dφ dφ dt = dr L dφ mr, (102) 2 joka voidaan sijoittaa yhtälöön (98). Tästä saadaan edelleen ratkaistua radalle yhtälö φ(r) = ±L(2m) 1/2 dr r 2 [E U eff (r)] 1/2 + φ 0. (103) Gravitaatiokentässä tästä saadaan integroitua radan yhtälö napakoordinaateissa r = α 1 + ε cos(φ φ 0 ). (104) 23

10 Saadaan siis sama tulos kuin aikaisemminkin, jolloin planeettaliike ratkaistiin Laplace Runge Lenz-vektorin avulla näennäisesti ilman integrointia. Laplace Runge Lenz-vektori säilyy vain, jos f(r) = Cr 2, missä C on vakio. Muilla keskeiskentillä R kiertyy liikkeen tasossa. Muiden planeettojen vaikutus tai yleisen suhteellisuusteorian korjaukset aiheuttavat planeettojen liikkeeseen perihelin prekession (aurinkoa lähinnä olevan radan pisteen kiertymän). 2.7 Redusoitu massa Tarkastellaan kahta vuorovaikuttavaa kappaletta (massat m 1 ja m 2 ). Systeemin massakeskipistevektori on R C valitun origon O suhteen ja r 21 = r 1 r 2 r on kappaleen 1 paikka suhteessa kappaleeseen 2. Kappaleiden vuorovaikuttaessaan keskenään niiden toisiinsa vaikuttavat voimat ovat yhtäsuuret mutta vastakkaissuuntaiset F 21 = F 12 F. (105) Kappaleiden liikeyhtälöt ovat Näistä saadaan ratkaistua yhtälöt suureille R C ja r m 1 d 2 r 1 dt 2 = F (106) m 2 d 2 r 2 dt 2 = F. (107) d 2 dt (m 1 r m 2 r 2 ) = 0 (108) m 1 m 2 d 2 r m 1 + m 2 dt 2 = F. (109) Edellisessä käytetään massakeskipisteen määritelmää ja jälkimmäisessä määritellään ns. redusoitu massa 24

11 µ = m 1m 2 m 1 + m 2, (110) jolloin saadaan V C = vakio (111) µ d2 r dt 2 = F. (112) Kahden kappaleen ongelma voidaan siis ratkaista tarkastelemalla erikseen massakeskipisteen ja sen suhteen tapahtuvaa liikettä. Liike-energiaksi saadaan K = 1 2 m 1v m 2v 2 2 = 1 2 MV 2 C µv2, (113) missä v = v 1 v 2, eli massakeskipisteen liike-energiaan lisätään suhteellisen liikkeen liike-energia. Potentiaalienergia on U( r 1, r 2 ) = U(r), (114) koska voima vaikuttaa kappaleiden yhdysjanan suuntaisesti ja sen suuruus riippuu vain kappaleiden välisestä etäisyydestä. Mekaaninen energia on siis E = 1 2 MV 2 C µv2 + U(r). (115) Systeemin kulmaliikemäärä massakeskipisteen suhteen on vastaavasti L = µ r v. (116) Kahden kappaleen systeemi voidaan siis redusoida kahdeksi yhden kappaleen ongelmaksi siten, että (i) m 1 + m 2 -massainen kappale on paikassa R C ja liikkuu nopeudella V C ja (ii) µ-massainen kappale liikkuu keskeiskentässä, jonka potentiaalienergia on U(r). Aikaisemmin planeetaliikkeessä laskettiin liike käyttäen planeetan massaa, oikeampi tulos saadaan, kun planeetan massan tilalla käytetään planeetan redusoitua massaa. Samoin kaikissa kahden kappaleen välisissä vuorovaikutuksissa pitää tämä korjaus tehdä, kuten esimerkiksi vetyatomissa ja hiukkasten sironnassa. 25

12 2.8 Sironta Sirontakokeilla voidaan saada tietoa aineen rakenteesta ja vuorovaikutuksen luonteesta. Edellä keskeiskentän tapauksessa tarkasteltiin lähinnä attraktiivista vuorovaikutusta. Tällöin sironta tapahtuu, kun hiukkanen on hyperbolisella radalla. Myös repulsiivisessa vuorovaikutuksessa, kuten samanmerkkisten varattujen hiukkasten tapauksessa, tapahtuu sirontaa. Rata on myös hyperbeli, mutta mekanismi eroaa hiukan attraktiiviseen tapaukseen verrattuna, kuten kuvastakin näkee. Törmäävä tai siroava hiukkanen saapuu äärettömyydestä nopeudella v törmäysparametrilla b kohtiohiukkaseen tai sirontakeskukseen nähden. Sironnan jälkeen hiukkanen liikkuu sirontakulmaan θ kohtiosta poispäin. Törmäysparametria ei voida säätää tarkasti ja siksi kohtiota ammutaankin hiukkassuihkulla, jossa hiukkasilla on erilaisia törmäysparametreja. Kokeissa havaitaan kohtiosta sironneiden hiukkasten jakauma sirontakulman funktiona. Kohtion rakenne sekä törmäävien hiukkasten ja kohtion välinen vuorovaikutus määräävät sirontakulmajakauman, eli törmäysparametrin b ja sirontakulman θ välisen yhteyden. 26

13 Sirontaa kuvaava fysikaalinen suure on sirontavaikutusala, joka kertoo, millä todennäköisyydellä hiukkanen siroaa kohtiosta. Jos kohtion säde on R, niin geometrinen sirontavaikutusala on πr 2. Kuitenkin usein ollaan kiinnostuneita sironnan kulmajakaumasta. Lisäksi kun vuorovaikutus on isotrooppinen, niin törmäyskulmajakauma on aksiaalisymmetrinen. Tällöin avaruuskulmaksi saadaan dω = da = 2π sin θdθ. (117) R2 Differentiaalinen sirontavaikutusala kuvaa sironnan riippuvuutta sirontakulmasta θ, eli se antaa todennäköisyysjakauman hiukkasen sironnalle avaruuskulmaan dω. Differentiaalinen sirontavaikutusala määritellään dσ dω = 2πb db 2π sin θ dθ = b db sin θ dθ (118) missä itseisarvot pitävät huolen siitä, että differentiaalinen sirontavaikutusala on positiivinen suure. Yksiköt [ dσ ] = dω m2. Kokonaissirontavaikutusala on σ tot = dω dσ dω. (119) 27

14 Kovien pallojen sironnassa b = a cos( 1 θ). (120) 2 Differentiaalinen sirontavaikutusala on dσ dω = 1 4 a2, (121) mikä on vakio, eli törmäävät pallot siroavat tasaisesti joka suuntaan törmättyään kohtiopalloon. Kokonaissirontavaikutusala on joka on sama kuin pallon geometrinen sirontavaikutusala. σ tot = πa 2, (122) Rutherfordin sironnassa tutkitaan varattujen hiukkasten (varaus ze ja massa m) sirontaa varatuista ytimistä (varaus Ze ja massa M). Varausten välillä vallitsee Coulombin vuorovaikutus. Törmäysparametriksi saadaan b = k zz e2 µv 2 cot( 1 θ), (123) 2 missä Coulombin vakio k = 1/(4πɛ 0 ). Differentiaalinen sirontavaikutusala on ( ) dσ k zz e 2 2 dω = 4E sin 2 ( 1θ) (124) 2 ja konaissirontavaikutusala on σ tot =, (125) koska Coulombin vuorovaikutuksen kantama on äärettömän pitkä. Todellisessa aineessa, joka on neutraalia, elektronit varjostavat ytimen varausta siten, että vuorovaikutuksella on äärellinen kantama ja siten σ tot <. 28

Luento 10: Keskeisvoimat ja gravitaatio

Luento 10: Keskeisvoimat ja gravitaatio Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio

Luento 12: Keskeisvoimat ja gravitaatio Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen 6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition

Lisätiedot

5.13 Planetaarinen liike, ympyräradat

5.13 Planetaarinen liike, ympyräradat 5.13 Planetaarinen liike, ympyräradat Muistellaan menneitä Jo peruskoulussa lienee opetettu tämä Newtonin gravitaatiolaki kahden kappaleen välisestä gravitaatiovoimasta: Tässä yhtälössä G on gravitaatiovakio

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA Kahden kappaleen suhteellisen liikkeen yhtälö: R m 2 R = µ R r 3 jossa µ = G(m 1 + m 2 ) Liikeyhtälön integraalit m 1 R 1 R 2 k = R R suhteellisen liikkeen imp.mom/massayksikkö

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Ratayhtälö ja Keplerin lait

Ratayhtälö ja Keplerin lait Ratayhtälö ja Kelerin lait ε = LY r = 1 + 2El2 mk 2 K-I Planeettarata on ellisi eli sille ε = 1 + ε cos ϕ ; = l2 mk ε = 0 ymyrä = eksentrisyys; 0 < ε < 1 ellisi ε = 1 araabeli ε > 1 hyerbeli r on etäisyys

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2 Differentiaaliyhtälön numeerisesta ratkaisemisesta Olkoot D R 2 alue ja r, f, g : D R jatkuvia funktioita. Differentiaaliyhtälön y r(x, y) suuntaelementtikenttä on kuvaus D R 2, (x, y) (, r(x, y)). Suuntaelementtikenttä

Lisätiedot

Taivaanmekaniikkaa. Liikeyhtälöt

Taivaanmekaniikkaa. Liikeyhtälöt Taivaanmekaniikkaa Liikeyhtälöt Olkoot kahden kappaleen (esim. Auringon ja planeetan) massat m 1 ja m 2 ja paikkavektorit jossakin kiinteässä inertiaalikoordinaatistossa r 1 ja r 2. Merkitään r:llä planeetan

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Kierrätystä kosmoksessa

Kierrätystä kosmoksessa Sähkö&Tele (003) 5 63 Kierrätystä kosmoksessa Osmo Hassi Planeetta ellipsiradalla Ellipsirataa kiertävän planeetan ratanopeuden neliö v e saadaan yhtälöstä v e a ω sin (ω t) + b ω cos (ω t), missä ω on

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Keskeisliikkeen liikeyhtälö

Keskeisliikkeen liikeyhtälö Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Mekaniikka. Hannu Koskinen

Mekaniikka. Hannu Koskinen Mekaniikka Hannu Koskinen Syksy 2002 2 Kurssin tavoitteista Nämä luentomuistiinpanot kattavat 6 opintoviikon kurssin Mekaniikka, joka on pakollinen kurssi teoreettisessa fysiikan cum laude-tasolla ja varsin

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Työ ja kineettinen energia

Työ ja kineettinen energia Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

x = sinu z = sin2u sinv

x = sinu z = sin2u sinv 9. Toisen asteen käyrät ja pinnat 9.1. Käyrän ja pinnan käsitteet 371. Piirrä seuraavat käyrät: { x = cos3t a) y = sin5t, t [0,2π], b) x = cost t y = sint t, t 0. 372. Lausu napakoordinaattikäyrät a) r

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

ATOMIN KVANTTIMEKAANINEN MALLI...133

ATOMIN KVANTTIMEKAANINEN MALLI...133 ATOMIN KVANTTIMEKAANINEN MALLI...133 4.1 Johdanto...133 4. Atomin ydinmallin kehittyminen...134 4.3 Rutherfordin sironta...136 4.4 Rutherfordin sironnan kulmariippuvuus...138 4.5 Makroskooppisen vaikutusalan

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) 1 Voimat mekanismeissa Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) 12.2.2016 Sisältö Staattiset voimat Staattinen tasapainotila Vapaakappalekuva Tasapainoyhtälöt Kitkavoimat Hitausvoimat Hitausvoimien

Lisätiedot

Elektrodynamiikka, kevät 2002

Elektrodynamiikka, kevät 2002 Elektrodynamiikka, kevät 2002 Painovirheiden ja epätäsmällisyyksien korjauksia sekä muita pieniä lisäyksiä luentomonisteeseen Tähän on korjattu sellaiset painovirheet ja epämääräisyydet, joista voi olla

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot