Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava"

Transkriptio

1 Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1

2 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia (FY2-FY8) Lämpö Aallot Liikkeen lait Pyöriminen ja gravitaatio Sähkö Sähkömagnetismi Aine ja säteily Kertauskurssi (FY9) (Mahdollisesti ½ työkurssi FY10?) Kurssit suositellaan suoritettavaksi numerojärjestyksessä. eli

3 Miksi opiskella fysiikkaa? Fysiikkaa tarvitaan niin arkielämän tilanteissa kuin maailmankaikkeuden rakennetta tutkittaessa. Fysiikan perusajatuksia voi soveltaa hyvin myös muissa tieteissä. Fysiikka on kokeellisuuteen ja havaintoihin perustuva luonnontiede. Fysiikan opiskelu on mielenkiintoista ja älyllisesti haastavaa. Esimerkiksi mittaustekniikasta ja graafisesta esitystavasta on hyötyä myös muiden oppiaineiden opiskeluissa. Fysiikan opiskelu antaa lukion jälkeen edellytykset moniin jatkoopiskelumahdollisuuksiin mm. tekniikan, luonnontieteiden, lääketieteen ja maatalous-metsätieteiden aloilla. Näiden opintojen kautta avautuvat ovet laaja-alaisesti erilaisiin ammatteihin kuten lääkärin, opettajan, meteorologin, insinöörin ja tutkijan ammatteihin. 3

4 4

5 Arvioinnista: Kurssikoe Kotitehtävät ja tuntityöskentely vaikuttavat arvosanaan noin yhdellä numerolla. 6

6 Kotitehtävät: Merkitse listaan vain kotitehtävät, jotka merkitään taululle KTtunnuksella. Merkitse listaan vain ne tehtävät, jotka olet tehnyt niin huolella, että olet valmis esittämään ne muille joko dokumenttikameralla tai tussitaululla. Laita yksi tehtävä/ruutu. Tarvittaessa lisää ruutuun a,b,, jos olet tehnyt vain osan tehtävästä. Poissaolo täytyy olla selvitetty heti seuraavalla kerralla, mikäli haluaa merkitä kotitehtäviä poissaolon ajalta! Kotitehtävät säilytettävä ja pyydettäessä annettava opettajalle ennen kurssin arviointia. 7

7 1. Johdanto fysiikan maailmaan Fysiikka on ainetta, energiaa ja perusluonteisia luonnonlakeja tutkiva kokeellinen tiede, joka auttaa ymmärtämään luonnonilmiöitä. Lue kappale 1 ajatuksella. Tee tehtävät 1-1, 1-2, 1-3 (ja 1-4, 1-5, 1-6) sivulta 18. 8

8 2. Kokeellisuus Suure on mitattava ominaisuus. SI-järjestelmä (MAOL s.64/66). Etuliitteet s.22 (MAOL s.65/67) Yksikkö merkitään hakasulkeiden [ ] avulla. Esim. [v]= m/s 9

9 Tilavuusmuunnoksia: mm mm 2 mm 3 cm cm 2 cm 3 dm dm 2 dm 3 m m 2 m 3 10

10 Muunnoksia (Muuntokertoimia MAOL s.68-69/69-70) 10m/s=36 km/h 11

11 Likiarvoilla laskeminen (s.23) Merkitseviä numeroita ovat kaikki luvut, paitsi Pääsääntöisesti kokonaislukujen lopussa olevat nollat. Desimaalilukujen alussa olevat nollat. 12

12 Likiarvoilla laskeminen (s.23) Kerto- ja jakolaskuissa pyöristyksen määrää merkitsevien numeroiden lukumäärä Tällöin epätarkin lähtöarvo on se, jossa merkitseviä numeroita on vähiten. Yhteen- ja vähennyslaskuissa pyöristyksen määrää desimaalien lukumäärä. Tällöin epätarkin lähtöarvo on se, jossa desimaaleja on vähiten. Yhteen- ja vähennyslaskuissa suureilla täytyy olla sama yksikkö. Vastaus aina yksikköineen ja oikealla tarkkuudella! 13

13 2.2 Mittaaminen (s.29) Mittaaminen on vertaamista, jossa selvitetään, kuinka monta kertaa yksikkö mahtuu mitattavaan suureeseen. Mittaustulos yleensä aina likiarvo. Mitattu suure voidaan ilmoittaa muodossa x = x m ± x, jossa x m on mittaustulos ja x on virhe. Todellinen arvo on arvojen x m + x, ja x m - x välissä. 14

14 2.2 Mittaaminen (s.30) 1. Laske mittausten keskiarvo 2. Laske poikkeamat 3. Laske poikkeamien keskiarvo 4. Ilmoita vastaus t=12,256s ± 0,0948s?? 15

15 2.3 Graafinen esitys s (kulmakerroin s.34) Tiheys ρ = m V = massan muutos tilavuuden muutos (MAOL s.127/119) 16

16 2.3 Graafinen esitys (s.34) 17

17 Astian tyhjeneminen (video) 18

18 3. Liike Vauhti vs. nopeus (nopeudella suunta). Keskivauhti v = s t v = s t = 1 m 1 s = 1m/s s = kuljettu matka t =käytetty aika Esim. Ratkaise a) s b) t 19

19 Keskinopeus v k v k = siirtymä = x = x 2 x 1 liikkeen kesto t t 2 t 1 (MAOL s.124/116) delta tarkoittaa muutosta eli = loppuarvo - alkuarvo!!!! Nopeuden etumerkki (+ tai -) kertoo liikkeen suunnan. 20

20 Hetkellinen nopeus Hetkellinen nopeus saadaan aika-matka eli (t,x) -kuvaajan tangentin kulmakertoimesta (esim 1 /s. 52). v = x t 21

21 Tasainen liike (s.55) Tasaisessa liikkeessä nopeus säilyy koko ajan samana (eli sama matka aina samassa ajassa). Nopeus saadaan (t,x)-kuvaajan kulmakertoimesta v = x t. 22

22 Kuvaajat s

23 3.2 Kiihtyvyys a 24

24 3.2 Kiihtyvyys a Kun kappaleen nopeus muuttuu, niin se on kiihtyvässä liikkeessä (myös hidastuva liike on kiihtyvää). Keskikiihtyvyys a k lasketaan kaavasta: a k = nopeuden muutos = v = v 2 v 1 siihen kulunut aika t t 2 t 1 (MAOL s.124/116) a = v t = 1m s 1 s = 1 m/s2 25

25 Kuvaajan fysikaalinen kulmakerroin (t,v)- koordinaatistossa on kappaleen kiihtyvyys a (kuva s.61). Tasaisesti kiihtyvän liikkeen kuvaaja (t,v)-koordinaatistossa on suora. a = v t 26

26 Alla olevat kuvaajat kuvaavat samaa liikettä. Miten kuvasta a) tai kuvasta b) saataisiin määritettyä nopeus jollakin hetkellä? Entäs kappaleen kiihtyvyys? 27

27 Putoaminen (s.64) Putoamiskiihtyvyys g maassa on g = 9,81 m/s 2. (Luonnonvakiot Maol s.70/71). 28

28 Putoaminen esim. 1 /s.66 (miksi kuvaaja ei ole suora?) 29

29 4. Vuorovaikutus ja voima 30

30 4. Vuorovaikutus ja voima Vuorovaikutus aiheuttaa voiman. Voimalla on aina vastavoima eli muodostuu voimapari (NIII). 31

31 Kuvat s.73 32

32 Kosketusvuorovaikutus vs. etävuorovaikutus???? 33

33 Voiman tunnus on F ja sen yksikkö on N eli newton. painovoima G, tukivoima N, jännitysvoima T, kitkavoima F μ Voimanuolen pituus kuvaa voiman suuruutta ja nuolen suunta voiman suuntaa (vektorisuure F ). Jos kokonaisvoima on nolla, niin kappale säilyttää liiketilansa (NI) 34

34 Newtonin lait: Jatkavuuden laki (NI) Dynamiikan peruslaki F=ma (NII) Voima ja vastavoima (NIII) Etälukio 35

35 4.2 Voima liikkeen muutoksen aiheuttajana. Newtonin toinen laki (NII) : a = F m eli kiihtyvyys = voima massa tai F = ma eli voima = massa kiihtyvyys (MAOL s.125/117) 1N=1 kgm/s 2 (MAOL s.66/ 67) 36

36 Kuvat s.84 Tilannekuvia (ympäristö mukana) Vapaakappalekuvia (ei ympäristöä mukana) 37

37 Esimerkki 1/s.85 a) b) 38

38 Mikä voima liikuttaa mopoa??? Sisäiset voimat??? 39

39 Paino Paino G on gravitaatiovuorovaikutuksen aiheuttama voima. Paino tarkoittaa painovoiman suuruutta eli sen yksikkö on sama kuin voiman yksikkö (newton). Massa kuvaa ainemäärää (yksikkö kg). G=mg, m=kappaleen massa ja g on putoamiskiihtyvyys ( 9,81 m/s 2 ). (MAOL s.125/117,s.70/71). vertaa F=ma (100g 1N) 40

40 5. Maailmankaikkeus 41

41 Maailmankaikkeuden rakenteet (lähde oph.fi/etalukio) Aine muodostuu atomeista, jotka koostuvat protoneista, neutroneista ja elektroneista. Protonit ja neutronit muodostavat atomin ytimen, jossa on 99,99% atomin massasta. Elektronit kiertävät ydintä muodostaen ns. elektronipilven (herne <-> 50m). Protonilla ja elektronilla on yhtä suuri mutta vastakkaismerkkinen varaus, ns. alkeisvaraus, jolle käytämme merkintää e. Protonin varaus on positiivinen ja elektronin negatiivinen. 60-luvulla esitettiin, että olisi olemassa vielä pienempiä hiukkasia, kvarkkeja, joista protonit ja neutronit koostuvat. Itse asiassa kaikki (hadronit) alkeishiukkaset paitsi leptonit koostuvat kvarkeista. Leptonit ovat erillisiä hiukkasia kuten esimerkiksi elektroni ja neutriino, mutta kvarkit eivät voi esiintyä vapaina. Kvarkeilla on ominaisuus, joka voi saada jonkin kuudesta arvosta: ylös (up), alas (down), outo (strange), lumo (charm), pohja (bottom) ja huippu (top). Kahta viimeistä kvarkkia kutsutaan myös nimillä kauneus (beauty) ja totuus (truth). Kvarkin varaus määräytyy seuraavasti: up, charm, top --> +2/3e down, strange, bottom --> -1/3e. 42

42 5.1 Perusvuorovaikutukset 43

43 CERN eli Euroopan hiukkastutkimuskeskus (Ranskan ja Sveitsin rajalla) 44

44 5.2 Makro- ja mikrokosmos We have to know, before we can go. 45

45 Mittasuhteita Valovuosi on valon vuodessa kulkema matka eli noin 9, m (MAOL s. 68/69). Tähtitieteellinen yksikkö AU on maan ja auringon keskietäisyys( 149,6 miljoonaa kilometriä). (MAOL s. 68/69) Aurinkokunnan läpimitta on noin 100 AU. Auringosta valo tulee maahan noin 8,3 minuutissa. Lähin naapuritähti noin AU etäisyydellä (Proxima Centauri, noin 4,2 valovuoden päässä). Jos aurinkokuntamme halkaisija olisi 1mm, Linnunradan halkaisija olisi yli 60 km. 46

46 Lue s &

47 5.3 Maailmankaikkeuden synty ja tulevaisuus (kuva s ) 48

48 Tähtien elinkaari 49

49 Komeetta Ison (marras-joulukuu 2013) YLE Animaatio 50

50 6. Energian vapautuminen ja sitoutuminen Energian ja työn yksikkö on 1 J (joule) Energian säilymislaki: energia ei lisäänny eikä vähene, eikä sitä voi luoda tyhjästä eikä hävittää). Energiamuotoja: Säteilyenergia (valo, lämpösäteily, ) Liike-energia (liike, lämpöliike, ääni, ) Potentiaalienergia (kemiallinen energia, ydinenergia, vesivoima, ) E=mc 2 51

51 Lue sivut ja tee niistä omat muistiinpanosi täydentämään edellä kirjoitettuja (kasvihuoneilmiö). Voit lopuksi tehdä myös tehtäviä sivulta

52 Kasvihuoneilmiö Osittain kasvihuoneilmiö on välttämätön elämälle maapallolla. Jos kasvihuoneilmiötä ei esiintyisi, heijastuisi liian paljon lämpösäteilyä pois maapallolta ja keskilämpötilamme täällä olisi noin 30 astetta kylmempi eli maapallo olisi elinkelvoton planeetta. 53

53 7. Säteily Ionisoiva vs. ionisoimaton säteily (MAOL s. 88/87) (ionisoiva säteily kykenee irrottamaan atomista/molekyylistä elektroneja) 54

54 Lue luku 7.1 & tee siitä lyhyet muistiinpanot itsellesi. 55

55 7.2 Ionisoiva säteily 56

56 Radioaktiivisuus: Atomiytimet voivat olla pysyviä eli stabiileja tai radioaktiivisia eli epästabiileja. Radioaktiivisten aineiden atomiytimet lähettävät ionisoivaa säteilyä α-säteily β-säteily γ-säteily (neutroni-säteily) 57

57 α- säteily 58

58 β-säteily 59

59 α-,β- ja γ-säteily 60

60 10f Säteilyn eteneminen ja vaikutukset Alfasäteily pysähtyy helposti, mutta gammasäteily on hyvin läpitunkevaa. Gammasäteily on läpitunkevuutensa vuoksi ihmiselle erittäin vaarallista. Myös alfa- ja beetasäteilyt ovat vaarallisia, jos niitä lähettävää ainetta joutuu sisälle elimistöön. Ionisoiva säteily irrottaa kohtaamistaan atomeista elektroneja. Ionisoiva säteily voi aiheuttaa syöpää ja perinnöllisiä sairauksia. Ionisoiva säteily tuhoaa soluja rikkomalla niissä olevia DNA-molekyylejä. 61

61 62

62 12a Radonin suku Radon on yksi välivaihe radioaktiivisten aineiden sarjassa pysymättömästä U-238 isotoopista pysyvään Pb-206 isotooppiin. Hajoamissarjaa uraani-238:sta lyijy-206:een sanotaan radonin suvuksi. Hajoamissarjassa tapahtuu sekä alfa- että beetahajoamisia. 63

63 11a Puoliintumisaika Puoliintumisaika on aika, jonka kuluessa puolet radioaktiivisen aineen jäljellä olevista ytimistä hajoaa. Ensimmäisen puoliintumisajan kuluttua alkuperäisistä ytimistä on jäljellä puolet, toisen puoliintumisajan kuluttua neljäsosa jne. Aineiden puoliintumisajat vaihtelevat sekunnin murto-osista tuhansiin vuosiin. 64

64 Lue s & tee tehtävät

65 12d Fuusio Fuusio on keveiden ytimien yhdistymistä. Fuusiossa pieni osa massasta muuttuu energiaksi. Auringossa ja muissa tähdissä on käynnissä jatkuva fuusioreaktio, josta niiden valtava säteilyteho on peräisin. Hallitsematon fuusio on saatu aikaan vetypommissa, mutta myös hallitun ydinfuusion käyttöä energiantuotantoon tutkitaan. 66

66 12c Fissio Fissiossa pysymätön raskas ydin hajoaa kahdeksi keskiraskaaksi ytimeksi. Ytimen hajoamisessa pieni osa massasta muuttuu energiaksi. Reaktiotuotteena syntyvät ytimet ovat radioaktiivisia. Esimerkiksi uraanin fissiossa syntyy kaksi keskiraskasta ydintä ja 2 3 neutronia, jotka voivat halkaista uusia uraaniytimiä > ketjureaktio. 67

67 Vihjeitä kokeeseen valmistautumiseen FY1.1. (sivut 6-156) Kokeeseen valmistautuessa kannattaa käyttää apuna jokaisen luvun lopussa olevaa tiivistelmää (& testaa osaatko). Kertaustehtäviä kannattaa tehdä mahdollisimman paljon sivuilta Myös pohjatunnilla voidaan tehdään niitä ja pohjatunnilla on hyvä mahdollisuus kysyä kertaustehtävissä eteen tulleista ongelmista. Kertaustehtäviin löytyy ratkaisut osoitteesta sanomapro.fi (työtilan avain FHZA, työtila vaatii rekisteröitymisen) Apuna kannattaa käyttää myös kirjan esimerkkejä ja tehtyjä tehtäviä. Muistiinpanot (samalla MAOL) kannattaa käydä huolella läpi. Viimevuotinen kurssikoe löytyy Wikispaces sivustolta (Google hakusana petrify1) Pohjatunti xx xx.xx kello x.xx- (tarvittaessa tukiopetusta sen jälkeen). Koe xxx 68

68 Kiitos mielenkiinnosta 69

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

FYS01: Fysiikka luonnontieteenä

FYS01: Fysiikka luonnontieteenä FYS01: Fysiikka luonnontieteenä kurssin muistiinpanot Rami Nuotio päivitetty 29.10.2009 Sisältö 1. Johdanto 3 1.1. Mitä fysiikka on? 3 1.2. Miksi fysiikkaa? 3 2. Mittaaminen 3 2.1. Suure 3 2.2. Yksikönmuunnoksia

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Alkeishiukkaset. Standarimalliin pohjautuen:

Alkeishiukkaset. Standarimalliin pohjautuen: Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi 8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Kpl 2: Vuorovaikutus ja voima

Kpl 2: Vuorovaikutus ja voima Kpl 2: Vuorovaikutus ja voima Jos kaksi eri kappaletta vaikuttavat toisiinsa jollain tavalla, niiden välillä on vuorovaikutus Kahden kappaleen välinen vuorovaikutus saa aikaan kaksi vastakkaista voimaa,

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu 1. Tasainen liike Kappale liikkuu vakionopeudella niin, että suunta ei muutu matka nopeus aika aika Nopeuden laskeminen Yhtälö kirjoitettuna suureilla ja niiden tunnuksilla: Yksiköt alinna nopeus = matka

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Hiukkasfysiikkaa. Tapio Hansson

Hiukkasfysiikkaa. Tapio Hansson Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

4.1 Vuorovaikutuksia Jokainen kappale on aina vuorovaikutuksessa useiden muiden kappaleiden kanssa. Kahden kappaleen vuorovaikutus aiheuttaa

4.1 Vuorovaikutuksia Jokainen kappale on aina vuorovaikutuksessa useiden muiden kappaleiden kanssa. Kahden kappaleen vuorovaikutus aiheuttaa 2.1 Fysiikan suurejärjestelmä Suure on ilmiön, kappaleen tai aineen mitattavissa oleva ominaisuus. Vektorisuureella on suuruus ja suunta, esim. nopeus, voima. Skalaarisuureella on vain suuruus, esim. massa,

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,

Lisätiedot

9.11 a Fysiikka. Espoon kaupungin opetussuunnitelmalinjaukset. Nöykkiön koulu Opetussuunnitelma Fysiikka

9.11 a Fysiikka. Espoon kaupungin opetussuunnitelmalinjaukset. Nöykkiön koulu Opetussuunnitelma Fysiikka 9.11 a Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Perusvuorovaikutukset

Perusvuorovaikutukset Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

1. (d) Aineet asettuvat tiheyksien mukaiseen järjestykseen, aineen A tiheys on suurin ja aineen C pienin. Näin ollen järjestys on C,B ja A.

1. (d) Aineet asettuvat tiheyksien mukaiseen järjestykseen, aineen A tiheys on suurin ja aineen C pienin. Näin ollen järjestys on C,B ja A. Kertaustehtäviä 1. d. b 3. b, d 4. c 5. a, c 6. b 7. a 8. b 9. a 10. b 1. (d) Aineet asettuvat tiheyksien mukaiseen järjestykseen, aineen A tiheys on suurin ja aineen C pienin. Näin ollen järjestys on

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

5.9 Fysiikka. Opetuksen tavoitteet. Fysiikan opetuksen tavoitteena on, että opiskelija

5.9 Fysiikka. Opetuksen tavoitteet. Fysiikan opetuksen tavoitteena on, että opiskelija 5.9 Fysiikka Fysiikan opetus tukee opiskelijoiden luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä osana monipuolista yleissivistystä. Opetus ohjaa opiskelijaa ymmärtämään fysiikan merkitystä

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

FY1 Fysiikka luonnontieteenä

FY1 Fysiikka luonnontieteenä Ismo Koponen 10.12.2014 FY1 Fysiikka luonnontieteenä saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

5.9 Fysiikka Perusopetus Opetuksen tavoitteet Valinnaiset kurssit 1. Liike ja työ (fy1)

5.9 Fysiikka Perusopetus Opetuksen tavoitteet Valinnaiset kurssit 1. Liike ja työ (fy1) 5.9 Fysiikka Fysiikka empiirisenä luonnontieteenä pyrkii ymmärtämään ja selittämään luonnon perusrakennetta ja -ilmiöitä. Ymmärtämisen ja selittämisen pohjana fysiikka käyttää luonnosta kokeellisin menetelmin

Lisätiedot

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Säteilyn historia ja tulevaisuus

Säteilyn historia ja tulevaisuus Säteilyn historia ja tulevaisuus 1. Mistä Maassa oleva uraani on peräisin? 2. Kuka havaitsi röntgensäteilyn ensimmäisenä ja millä nimellä hän sitä kutsui? 3. Miten alfa- ja beetasäteily löydettiin? Copyright

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

Ensimmäisessä fysiikan jaksossa käsitellään maailmankaikkeutta, aineen rakennetta ja ydinenergiaa. Oppikirja s. 7 12 ja 291 322.

Ensimmäisessä fysiikan jaksossa käsitellään maailmankaikkeutta, aineen rakennetta ja ydinenergiaa. Oppikirja s. 7 12 ja 291 322. Fysiikka 1, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Ensimmäisessä fysiikan jaksossa käsitellään maailmankaikkeutta, aineen rakennetta ja ydinenergiaa. Oppikirja s. 7 12 ja 291 322. Tämä dokumentin versio on

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot