Perusvuorovaikutukset

Koko: px
Aloita esitys sivulta:

Download "Perusvuorovaikutukset"

Transkriptio

1 Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009

2 Sisältö 1 Johdanto Perusvuorovaikutusten historia Teoria Gravitaatio Sähkömagneettinen vuorovaikutus Vahva vuorovaikutus Heikko vuorovaikutus Kaavojen selitykset Lähteet Painetut lähteet Painamattomat lähteet Kuvat Liitteet Liite 1 sähkömagneettinen säteily Liite 2 Neutronin beta-hajoaminen...18

3 1 Johdanto Esitelmämme käsittelee perusvuorovaikutusten (gravitaation, sähkömagneettisen-, heikon- ja vahvan vuorovaikutuksen) historiaa, teorioita, ilmenemismuotoja sekä niiden välisiä suhteita. Yritämme ymmärrettävästi ja havainnollisesti kertoa perusvuorovaikutusten perusluonteesta ja niihin liittyvistä kaavoista ilman muita tarkempia laskennallisia teorioita. 2 Perusvuorovaikutusten historia Eri perusvuorovaikutukset ovat alun perin olleet eräänlaisia selitysmalleja eri fysikaalisiin ilmiöihin, joiden on ajateltu vaikuttavan eri etäisyyksillä. Selitysmalleja käytettiin etenkin vaikeasti selitettävien ilmiöiden tulkitsemiseen. Gravitaation perusteet kehittivät 1600-luvulla eläneet tiedemiehet muun muassa Galileo Galilei ( ) sekä Isaac Newton ( ). Newtonin ensimmäisen lain eli jatkavuuden lain mukaan kappale, johon

4 ei vaikuta tai vaikuttavien voimien summa on nolla, pysyy levossa tai jatkaa liikettään suoraviivaisesti muuttumattomalla nopeudella. Newtonin ajatusmaailma oli hyvinkin ajastaan poikkeava, sillä yleinen käsitys oli, että liikkeeseen tarvittaisiin aina voimaa. Galilei tiesi jo ennen Newtonia, että voimaa tarvittiin vain kappaleen liiketilan muuttamiseen, joskin Newton täsmensi tätä ensimmäisessä sekä toisessa laissaan. Newtonin toinen laki eli dynamiikan peruslaki on skalaarisessa muodossaan F=ma. Newton esitti lain kuitenkin sanallisesti ja täsmällisesti se voidaan ilmoittaa moderneilla matemaattisilla merkinnöillä. Hän esitti siis kappaleeseen vaikuttavan voiman liikemäärän ja ajanmuutoksen avulla. Newtonin painovoimateorian idea oli kuitenkin alun perin Robert Hookelta. Newtonin ja Hookin ollessa kirjeenvaihdossa Hook esitteli hypoteesin, jonka mukaan aurinko vetää planeettoja puoleensa voimalla, joka on kääntäen verrannollinen etäisyyden neliöön. Hän oli varmentunut siitä, että tämä aiheutti aurinkokuntamme planeetoille tyypillisen elliptisen radan. Newtonin lähettämässä vastauksessa hän sanoo, ettei ole koskaan kuullut kyseisestä teoriasta. Pian hän kuitenkin alkoi tutkia ongelmaa ja löysikin ratkaisun aurinkokuntamme planeettojen ratojen elliptisyyttä koskeneeseen kysymykseen. Ratkaisun löydettyään hän kuitenkin päätti salata tietonsa Hookilta, koska Newton koki Hookin kilpailijakseen. Newtonin perusideana oli, että eri kappaleiden välillä vaikuttaa vetovoimia ja taivaankappaleiden liikkeet tapahtuvat tämän voiman alaisena mekaniikan peruslakien mukaisesti. Newton ymmärsi, että Maassa tapahtuvien ilmiöiden takana on sama ilmiö, joka pitää Kuun Maata kiertävällä radalla.

5 Sähkömagnetismin historian isänä taas pidetään André-Marie Ampèrea ( ). Hän esitti nykyaikaisen sähkömagnetismin matemaattisen perusteorian: kaksi yhdensuuntaista virtajohdinta vaikuttavat aina toisiinsa magneettisella voimalla, joka on verrannollinen virranvoimakkuuksien tuloon ja kääntäen verrannollinen niiden väliseen etäisyyteen. Ydinvoimaan kuuluvat heikko- ja vahva vuorovaikutus ovat historiassa melko uusia käsitteitä. Ydinvoima-termiä on käytetty vuodesta 1932, jolloin James Chadwick löysi neutronin. Alusta alkaen tavoitteena ydinfysiikassa on ollut ymmärtää atomiytimen ominaisuuksia ydinhiukkasparien välillä. Vuonna 1935 Hideki Yukawa teki ensimmäisen yrityksen selittää ydinvoiman luonnetta. Tämän teorian mukaan massiiviset bosonit (mesonit) toimivat välittäjinä kahden ydinhiukkasen eli nukleonin välisessä vuorovaikutuksessa. James Chadwick Hideki Yukawa

6 3 Teoria 3.1 Gravitaatio Gravitaatio on yksi neljästä vuorovaikutuksesta, ja se on helposti havaittavissa. Gravitaatiovoima eli yleisesti painovoima on gravitaatiovuorovaikutuksen aiheuttama voima, joka vetää kaikkia massallisia kappaleita toisiaan kohti. Muihin neljään perusvuorovaikutukseen verrattuna gravitaatio on heikoin. Gravitaatiovoimien vaikutuksesta ainetta on kasautunut erilaisiksi muodostumiksi mm. tähdiksi ja planeetoiksi. Gravitaatio on osallisena auringon ja Maan välisessä vuorovaikutuksessa ja kuun aiheuttamassa vuorovesi-ilmiöstä maapallolla. Painovoiman ansiosta mekin pysymme Maan pinnalla. Gravitaation yhteydessä puhutaan painovoiman kiihtyvyydestä g. Koska eri taivaankappaleilla on erilaiset massat ja säteet, niiden läheisyydessä vallitsevat putoamiskiihtyvyydet ovat erilaiset. Putoamiskiihtyvyys jonkin planeettamaisen kappaleen pinnalla on. Maan putoamiskiihtyvyys on n. 9,81 m/s 2 (eli 1g) ja vertailun vuoksi vastaavat lukemat vuoristoradoissa voivat hyvinkin olla 3-4,5g ja Auringolla putoamiskiihtyvyys on n. 273,95 m/s 2 (eli 27,9g).

7 Albert Einsteinin yleinen suhteellisuusteoria esittää painovoiman aika-avaruuden kaareutumisena massiivisten kappaleiden lähellä. Yksi fysiikan suurimmista ratkaisemattomista ongelmista on miksi massan hitaudella ja gravitaatiolla on havaittavissa suora yhteys. Nykyinen tiede kykenee selittämään gravitaatiota hyvin vähän. gravitaatiota ei ole kyetty selvittämään kvanteilla eikä se myöskään kuulu standardimalliin, mutta sen välittäjähiukkanen on alustavasti nimetty gravitoniksi. CERN:ssä sijaitsevan LHC-kiihdyttimen (Large Hadron Collider, suom. Suuri hadronitörmäytin) yksi tarkoituksista on selvittää gravitaation perusluonnetta sekä löytää toistaiseksi havaitsematon gravitoni. Sen havaitseminen on osoittautunut hyvin ongelmalliseksi, olettaen että se on olemassa. Koska gravitaatiovoima on hyvin heikko, sen aiheuttamien gravitaatioaaltojen olemassaoloa ei ole kyetty suoraan osoittamaan vaikka yleinen suhteellisuusteoria sen ennustaa. Gravitaatioaaltojen oletetaan olevan gravitonien koherentteja tiloja, kuten sähkömagneettiset aallot ovat fotonien koherentteja tiloja. Hankkeet kuten LIGO ja VIRGO, jotka etsivät gravitaatioaaltoja ovat vasta alkamassa. Gravitaatiolla oletetaan olevan myös vastakkainen antigravitaatiovoima, jonka olemassaolo eräiden teorioiden mukaan vaatisi painovoimaa hylkivän tai negatiivisen massan omaavan materiaalin olemassaolon. Mikäli antigravitaatio kyettäisiin todistamaan, sen voitaisiin ajatella mahdollistavan ns. ilmaisen energian olemassaolon.

8 3.2 Sähkömagneettinen vuorovaikutus Sähkömagneettinen vuorovaikutus on parhaiten tunnettu perusvuorovaikutus ja sen välittäjähiukkasia kutsutaan fotoneiksi eli valokvanteiksi. Ne ovat stabiileja välittäjähiukkasia, joilla ei ole lepomassaa eikä sähkövarausta. Sähkömagneettista vuorovaikutusta kuvaavan kvanttikenttäteorian, QED:n, mukaan kappaleet, jotka ovat sähkömagneettisessa vuorovaikutuksessa keskenään lähettävät jatkuvasti fotoneja ympärilleen joka suuntaan. Sähkömagneettinen vuorovaikutus pitää sisällään sähköisen ja magneettisen vuorovaikutuksen. Sähkömagneettinen vuorovaikutus sitoo elektronit ytimen ympärille. Kvanttikenttäteoria eli kvanttielektrodynamiikka (QED) on tarkin tunnettu fysikaalinen teoria. Maxwellin yhtälöt koostuvat neljästä yhtälöstä, jotka kuvaavat magneettisten kenttien käyttäytymistä ja niiden keskinäisiä vuorovaikutuksia. Yhdessä väliainerelaatioiden ja Lorentzin voiman kanssa Maxwelin yhtälöt selittävät koko sähkömagneettisen luonnonilmiön makroskooppisessa mittakaavassa. Fysiikassa Lorentzin voima on voima, jonka sähkömagneettinen kenttä aiheuttaa varattuun hiukkaseen. Yhtälöt ovat saaneet nimensä James Clerk Maxwellin mukaan ja häntä pidetäänkin nykyaikaisen sähkömagnetismin isänä. Maxwell kuvasi edellä mainitut ilmiöt vuonna 1861, joiden pohjalta Oliver Heaviside kokosi vuonna 1884 tunnetun Maxwellin neljän yhtälön kokoelman, jotka kuuluvat seuraavasti:

9 kuinka sähkövaraus tuottaa sähkökentän (Gaussin laki) kuinka magneettisia monopoleja ei ole olemassa (Gaussin laki magneettikentille) kuinka muuttuva magneettikenttä tuottaa sähkökentän (Faradayn induktiolaki) ja kuinka sähkövirta ja muuttuva sähkökenttä tuottavat magneettikentän (Ampèren laki + Maxwellin lisäys).

10 3.3 Vahva vuorovaikutus Vahva vuorovaikutus (värivoima, vahva voima, vahva ydinvoima) on vahvin neljästä hiukkasfysiikan standardimallin perusvuorovaikutuksesta. Se koostuu kahdesta erilaisesta voimasta, perus- ja jäännösvoimista. Perusvoima sitoo kvarkkeja yhteen muodostaen hadroneja eli alkeishiukkasia, joita ovat esimerkiksi protonit ja neutronit. Jäännösvoima pitää puolestaan hadroneja kiinni toisissaan eli huolehtii siitä, että atomien ytimet pysyvät kasassa sitomalla toisiinsa protoneja, joiden välillä on positiivisten varaustensa takia voimakas poistovoima. Protonien lisäksi vahva vuorovaikutus sitoo myös neutroneja sekä neutroneja ja protoneja toisiinsa. Vahvan vuorovaikutuksen välittäjähiukkanen on mittabosoneihin kuuluva gluoni. Vahvassa vuorovaikutuksessa olennaisessa osassa ovat mm. kvarkit ja hadronit. Kvarkeilla on ns. värejä, joita on kolme (sininen punainen ja vihreä). Jokaisella värillä on lisäksi oma antivärinsä. Eriväriset kvarkit vetävät toisiaan puoleensa (värivoima), kuten eri sähkövaraukset omaavat hiukkaset vetävät toisiaan. Muodostuvan hiukkasen on oltava kokonaisvärivaraukseltaan aina neutraali. Neutraali hiukkanen muodostuu kaikista kolmesta värivarauksesta tai antivärivarauksesta tai kvarkista ja sitä vastaavan antivärivarauksen omaavasta antikvarkista. Värivoima ulottuu myös hadronien ulkopuolelle ja tämä saa ytimet pysymään koossa (ydinvoima).

11 Vahvan vuorovaikutuksen vaikutusala on hyvin pieni, vain 0,4-2fm. Mikäli etäisyys kasvaa yli 2fm, vahva vuorovaikutus heikkenee hyvin nopeasti. Jos taas etäisyys on alle 0,4fm, vahva vuorovaikutus muuttuu vahvaksi hylkiväksi voimaksi. Se myös estää protoneita koskettamasta toisiaan. Nukleonin halkaisija on noin 1fm ja ytimen n. 10fm. Tämän takia ytimen vastakkaisilla puolilla olevien nukleonien välille ei synny vahvaa vuorovaikutusta, vaan se vaikuttaa ainoastaan vierekkäisten naapurinukleonien välillä. Tämä taas johtaa siihen, että monet raskaat atomit ovat epästabiileja niiden sisällä vaikuttavien löyhempien vuorovaikutusten vuoksi.

12 3.4 Heikko vuorovaikutus Heikko vuorovaikutus ei nimestään huolimatta ole heikoin perusvuorovaikutuslaji, joskin sen vuorovaikutuksen kantama on hyvin lyhyt, vain n m. Sille ominaisiin piirteisiin kuuluu mm. kyky vaihtaa hiukkasen toiseksi. Heikon vuorovaikutuksen välittäjähiukkaset ovat nimeltään välibosonit W +, Z 0 ja W -. Heikon vuorovaikutuksen ansiosta massiiviset kvarkit ja leptonit voivat hajota kevyemmiksi kvarkeiksi ja leptoneiksi. Alkeishiukkasten hajoaminen on kuitenkin hyvin merkillinen ilmiö, sillä sen seurauksena kyseinen hiukkanen häviää ja tilalle syntyy kaksi tai useampia massaltaan kevyempiä hiukkasia. Reaktiossa kuitenkin energia ja kokonaismassa säilyvät samoina, vaikka jokaisen uuden hiukkasen massa pienenee alkuperäisen hajonneen hiukkasen kokoon nähden. Beetahajoamisena tunnettu ilmiö oli ensimmäinen heikon vuorovaikutuksen alaisuuteen liittyvä ilmiö, mutta myöhemmin on löydetty lukuisia muita samankaltaisia reaktioita. Radioaktiivisessa β + -hajoamisessa atomin ytimessä protonin kvarkkirakenne muuttuu uud:sta uudeksi kokoonpanoksi udd. Tämä on seurausta heikosta vuorovaikutuksesta, jolloin yksi kvarkki vaihtaa makua, eli yksi u-kvarkki vaihtuu d-kvarkiksi. Samaan aikaan emittoituu välibosoni W +, joka muuttuu positroniksi e + ja neutriinoksi v. Neutroni kykenee hajoamaan sekä vapaana, että atomien ytimessä β - -hajoamisessa. Beetasäteily on siis seurausta heikosta vuorovaikutuksesta.

13 4 Kaavojen selitykset F=ma o F = voima o m = massa o a = kiihtyvyys o (ei löytynyt selitystä) o g = putoamiskiihtyvyys o R = etäisyys planeetan keskipisteestä o M = planeetan massa o G=gravitaatiovakio o = pintaintegraali pinnan A yli o = sähkövuon tiheys (yksikkönä C/m 2 ) o = pinnan differentiaalisen neliön pinta-ala siten, että ulospäin suuntautuva normaalivektori määrää sen suunnan o Q A = pinnan sisäänsä sulkema varaus

14 o = (ei löytynyt selitystä) o B = magneettivuon tiheys o = pinnan differentiaalisen neliön pinta-ala siten, että ulospäin suuntautuva normaalivektori määrää sen suunnan o p i = pinnan sisäänsä sulkemien magneettisten napojen voimakkuuksien summa o E ind = virtasilmukkaan indusoituva jännite o Φ M = silmukan läpäisevän magneettivuon muutos o o o o o = polkuintegraali suljettua käyrää S pitkin = magneettivuon tiheys = infinitesimaalisen pieni alkio (differentiaali) suljetusta käyrästä = on vapaan avaruuden permeabiliteetti = käyrän C sisäänsä sulkeman alueen läpi kulkeva virta (eli virrantiheyden pintaintegraali)

15 5 Lähteet 5.1 Painetut lähteet Fysiikka 8, Aine ja säteily (Tammi) 5.2 Painamattomat lähteet Kuvat

16

17 6 Liitteet 6.1 Liite 1 sähkömagneettinen säteily

18 6.2 Liite 2 Neutronin beta-hajoaminen Neutroni (udd) hajoaa protoniksi (uud), elektroniksi ja antineutriinoksi. Tätä kutsutaan neutronin betahajoamiseksi. Kuva 1: Neutroni (varaus = 0) koostuu yhdestä ylös- (u) ja kahdesta alas-kvarkista (d). Kuva 2: Yksi alas-kvarkki (d) muuttuu ylös-kvarkiksi (u). Koska alas-kvarkilla on varaus -1/3 ja ylös-kvarkilla on varaus 2/3, prosessin välitilassa esiintyy virtuaalinen W- hiukkanen, joka kumoaa (-1) varauksen (joten kokonaisvaraus säilyy!) Kuva 3: Uusi ylös kvarkki irtoaa emittoituvasta W-:sta. Neutronista on tullut nyt protoni. Kuva 4: Elektroni ja antineutriino syntyvät virtuaalisesta W-bosonista. Kuva 5: Protoni, elektroni ja antineutriino liikkuvat poispäin toisistaan.

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set

STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set STANDARDIMALLI Fysiikan standardimalli on hiukkasmaailman malli, joka liittää yhteen alkeishiukkaset ja niiden vuorovaikutukset gravitaatiota lukuun ottamatta. Standardimallin mukaan kaikki aine koostuu

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria

Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka

Lisätiedot

Alkeishiukkaset. Standarimalliin pohjautuen:

Alkeishiukkaset. Standarimalliin pohjautuen: Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi

Lisätiedot

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli

Lisätiedot

LHC -riskianalyysi. Emmi Ruokokoski

LHC -riskianalyysi. Emmi Ruokokoski LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski

Lisätiedot

Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto

Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Vuorovaikutuksien mittamallit

Vuorovaikutuksien mittamallit Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava

Lisätiedot

QCD vahvojen vuorovaikutusten monimutkainen teoria

QCD vahvojen vuorovaikutusten monimutkainen teoria QCD vahvojen vuorovaikutusten monimutkainen teoria Aleksi Vuorinen Helsingin yliopisto Hiukkasfysiikan kesäkoulu Helsingin yliopisto, 18.5.2017 Päälähde: P. Hoyer, Introduction to QCD, http://www.helsinki.fi/~hoyer/talks/mugla_hoyer.pdf

Lisätiedot

Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa

Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka

Lisätiedot

Neutriino-oskillaatiot

Neutriino-oskillaatiot Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

Mahtuuko kaikkeus liitutaululle?

Mahtuuko kaikkeus liitutaululle? Mahtuuko kaikkeus liitutaululle? Teoreettinen näkökulma hiukkasfysiikkaan Jaana Heikkilä, CERN, 304-1-007 7.2.2017 Ylioppilas, 2010, Madetojan musiikkilukio, Oulu LuK (Fysiikka, teor. fysiikka), 2013,

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

FYS01: Fysiikka luonnontieteenä

FYS01: Fysiikka luonnontieteenä FYS01: Fysiikka luonnontieteenä kurssin muistiinpanot Rami Nuotio päivitetty 29.10.2009 Sisältö 1. Johdanto 3 1.1. Mitä fysiikka on? 3 1.2. Miksi fysiikkaa? 3 2. Mittaaminen 3 2.1. Suure 3 2.2. Yksikönmuunnoksia

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Sisältö. Artikkelit. Viitteet. Artikkelilisenssit

Sisältö. Artikkelit. Viitteet. Artikkelilisenssit Sisältö Artikkelit Kvanttikenttäteoria 1 Vuorovaikutus 1 Sähkömagneettinen vuorovaikutus 2 Kenttä (fysiikka) 4 Kvanttisähködynamiikka 12 Sähkövaraus 13 Hiukkasfysiikan standardimalli 18 Mittabosoni 21

Lisätiedot

Arttu Haapiainen ja Timo Kamppinen. Standardimalli & Supersymmetria

Arttu Haapiainen ja Timo Kamppinen. Standardimalli & Supersymmetria Standardimalli & Supersymmetria Standardimalli Hiukkasfysiikan Standardimalli on teoria, joka kuvaa hiukkaset ja voimat, jotka vaikuttavat luonnossa. Ympärillämme näkyvä maailma koostuu ylös- ja alas-kvarkeista

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Aineen rakenteesta. Tapio Hansson

Aineen rakenteesta. Tapio Hansson Aineen rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

Fysiikan nykytila ja saavutukset

Fysiikan nykytila ja saavutukset Fysiikan nykytila ja saavutukset Jako osa-alueisiin Nykyfysiikan jako pääaloihin voidaan tehdä sen perusteella mitä fysiikassa tällä hetkellä tutkitaan aktiivisesti (eli tutkimuskohteen mukaan). Näitä

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011

Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011 Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011 Higgsin bosoni on ainoa hiukkasfysiikan standardimallin (SM) ennustama hiukkanen, jota ei ole vielä löydetty

Lisätiedot

(Hiukkas)fysiikan standardimalli

(Hiukkas)fysiikan standardimalli Alkeishiukkasista maailmankaikkeuteen: (Hiukkas)fysiikan standardimalli Helsingin Yliopisto Kaikki koostuu alkeishiukkasista: Aine koostuu protoneista, neutroneista ja elektroneista Protonit ja neutronit

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

FY1 Fysiikka luonnontieteenä

FY1 Fysiikka luonnontieteenä Ismo Koponen 10.12.2014 FY1 Fysiikka luonnontieteenä saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi?

Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi? Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi? Ainetta ja sen perusosasia, protoneja, pidetään ikuisesti pysyvinä. Eräät hiukkasfysiikan teoriat ennustavat

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Havainto uudesta 125 GeV painavasta hiukkasesta

Havainto uudesta 125 GeV painavasta hiukkasesta Havainto uudesta 125 GeV painavasta hiukkasesta CMS-koe CERN 4. heinäkuuta 2012 Yhteenveto CERNin Large Hadron Collider (LHC) -törmäyttimen Compact Muon Solenoid (CMS) -kokeen tutkijat ovat tänään julkistaneet

Lisätiedot

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Hiukkasfysiikka, kosmologia, ja kaikki se?

Hiukkasfysiikka, kosmologia, ja kaikki se? Hiukkasfysiikka, kosmologia, ja kaikki se? Kari Rummukainen Fysiikan laitos & Fysiikan tutkimuslaitos (HIP) Helsingin Yliopisto Kari Rummukainen Hiukkasfysiikka + kosmologia Varhainen maailmankaikkeus

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

FY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00

FY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00 FY8 Sivu 1 FY8_muistiinpanot 10. marraskuuta 2013 10:00 Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. FY8 Sivu 2 Sähkömagneettinen säteily s. 5 11.

Lisätiedot

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Fysiikkaa runoilijoille Osa 2: suppea suhteellisuusteoria

Fysiikkaa runoilijoille Osa 2: suppea suhteellisuusteoria Fysiikkaa runoilijoille Osa 2: suppea suhteellisuusteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Hiukkaset ja kentät Klassisessa mekaniikassa

Lisätiedot

Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen

Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen Maa on pallo Sacrobosco, 1550 Maan muodon vaikutus varjon muotoon kuunpimennyksessä Kuva Petrus

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Suomalainen tutkimus LHC:llä. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos

Suomalainen tutkimus LHC:llä. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos 2.12.2009 Mitä hiukkasfysiikka tutkii? Hiukkasfysiikka tutkii aineen pienimpiä rakennusosia ja niiden välisiä vuorovaikutuksia.

Lisätiedot

RTEK-2000 Statiikan perusteet 4 op

RTEK-2000 Statiikan perusteet 4 op RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Hiukkaskiihdyttimet. Tapio Hansson

Hiukkaskiihdyttimet. Tapio Hansson Hiukkaskiihdyttimet Tapio Hansson Miksi kiihdyttää hiukkasia? Hiukkaskiihdyttimien kehittäminen on ollut ehkä tärkein yksittäinen kehityssuunta alkeishiukkasfysiikassa. Hyöty, joka saadaan hiukkasten kiihdyttämisestä

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje

EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje Pohjois-Suomen yksikkö Q 15/25/2006/1 Rovaniemi 20.2.2006 EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje Pertti Turunen 2006 GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä 20.2.2006 Tekijät

Lisätiedot

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

12. Hiukkasfysiikka Peruskäsitteitä. Antihiukkaset

12. Hiukkasfysiikka Peruskäsitteitä. Antihiukkaset LaFy IV, 2016 153 12. Hiukkasfysiikka Hiukkasfysiikan voidaan katsoa alkaneen siitä, kun Thomson löysi elektronin v. 1897. Rutherford löysi kulta-atomin ytimen v. 1913. Hän myös nimesi vetyatomin ytimen

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Suhteellisuusteorian vajavuudesta

Suhteellisuusteorian vajavuudesta Suhteellisuusteorian vajavuudesta Isa-Av ain Totuuden talosta House of Truth http://www.houseoftruth.education Sisältö 1 Newtonin lait 2 2 Supermassiiviset mustat aukot 2 3 Suhteellisuusteorian perusta

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot