FYS01: Fysiikka luonnontieteenä

Koko: px
Aloita esitys sivulta:

Download "FYS01: Fysiikka luonnontieteenä"

Transkriptio

1 FYS01: Fysiikka luonnontieteenä kurssin muistiinpanot Rami Nuotio päivitetty

2 Sisältö 1. Johdanto Mitä fysiikka on? Miksi fysiikkaa? 3 2. Mittaaminen Suure Yksikönmuunnoksia Likiarvoilla laskeminen Mittaaminen Graafinen esitys 5 3. Liike Vauhti ja nopeus Tasainen liike Kiihtyvyys Putoaminen 8 4. Vuorovaikutus ja voima Voima ja liikkeen muutos 9 5. Maailmankaikkeuden rakenne Perusvuorovaikutukset ja -hiukkaset Makrokosmos ja maailmankaikkeuden synty Energia Säteily Ionisoimaton säteily Ionisoiva säteily 13 1 Alkusanat Tämä moniste sisältää Seinäjoen lukion II jaksossa pitämieni fysiikan ykköskurssien muistiinpanoja, mutta ei kuitenkaan (ainakaan vielä) piirrettyjä kuvia tai kuvaajia eikä tehtyjä mittaustöitä/tuloksia! Moniste on tarkoitettu (1) OPISKELIJALLE: Käsin kirjoitettujen muistiinpanojen TUEKSI. Jos olet ollut poissa tunnilta tai et ole ehtinyt kirjoittaa/saada selvää joistain merkinnöistä, voit kopioida muistiinpanot täältä. Muista kopioida kuvat ja kuvaajat kaverilta!) (2) Opettajalle: Kurssimuistiinpanojen tallentamiseksi pysyvämpään muotoon. Muistiinpanot EIVÄT KORVAA OPPIKIRJAA, vaan tukevat ja pyrkivät selkeyttämään kirjassa käytyjä asioita. Kaikki tehtävät ovat oppikirjasta ja viittaan monisteessa myös kirjan esimerkkeihin. Kirjan tekstiä ja esimerkkejä KANNATTAA LUKEA kurssin edetessä tehtävien tekemisen lisäksi, sillä etenemme useimmiten vain todella vähän kerrallaan sivumääräisesti ja asia on helpompi omaksua vähän kerrallaan kuin juuri ennen koetta. Vielä varoitus: Monisteessa saattaa helposti olla painovirheitä! Jos jokin näyttää kummalliselta tai väärältä, se voi hyvinkin olla väärin. Vertaa silloin

3 2kaverin kanssa tunnilla kirjoitettuun ja ilmoittakaa virheestä, niin korjaan sen tekstiin.

4 1.1. Mitä fysiikka on? 1. Johdanto Fysiikka on kokeellinen luonnontiede. Fysiikassa tieto pohjautuu havaintoihin ja mittauksiin. Fysiikka etsii matemaattisia lainalaisuuksia kuvaamaan luonnonilmiöitä Miksi fysiikkaa? Luonnonilmiöiden ymmärtäminen Yleissivistys Ongelmanratkaisutaidot Tekniset sovellukset Jatko-opinnot ja työelämä (luonnontieteen alat, tekniikka, lääketiede, koulutus, tutkimus, liike-elämä, julkishallinto) Lue itsenäisesti oppikirjan sivut Suure. 2. Mittaaminen Suure on ilmiön, kappaleen tai aineen mitattavissa oleva ominaisuus. Vektorisuureella on suuruus ja suunta, esim. nopeus, voima. Skalaarisuureella on vain suuruus, esim. massa, aika. Suureita mitataan vertaamalla sovittuun mittayksikköön, esim. sekunti, metri, jalka, kyynärä... Standardisointi johti SI-järjestelmään (ks. MAOL s. 66). Perussuure Tunnus Yksikkö pituus l,s m massa m kg aika. t s Johdannaissuure Tunnus Yksikkö tiheys ρ kg/m 3 nopeus v m/s kiihtyvyys a m/s 2 voima. F kgm/s 2 = N Suureen yksikkö voidaan merkitä hakasulkeiden avulla, esim. [m] = 1 kg. 3

5 4 Pienille ja suurille luvuille käytetään kymmenpotenssiesitystä tai kerrannaisyksiköitä (ks. MAOL s. 67). Esim. punaisen valon aallonpituus on 700 nanometriä. Metreinä 700nm = m = 0, m. Tehtäväsarja 1. s : 2 2, 2 9, 2 10, 2 11, 2 12, 2 13, Yksikönmuunnoksia. Yksikönmuunnos km/h m/s suoritetaan kertomalla lukuarvo luvulla 3,6. Esimerkiksi 50 km h 1000 m 1000 m = 50 = s 3600 s = 50 3,6 = 13,888...m/s 14m/s. Yksikönmuunnos km/h m/s suoritetaan jakamalla lukuarvo luvulla 3, Likiarvoilla laskeminen. Mittaustulokset ovat aina likiarvoja. Merkitsevät numerot kertovat lukuarvon tarkkuuden. Yleissääntö: Merkitseviä numeroita ovat kaikki muut paitsi kokonaisluvun loppunollat desimaaliluvun alkunollat Jos lukuja kerrotaan, jaetaan tai korotetaan potenssiin, niin tulokseen tulee niin monta merkitsevää numeroa kuin epätarkimmassa lähtöarvossa. Esim. 9,81 }{{} 3 merkitsevää 1200 }{{} 2 merkitsevää m s = } {{ }. 2 merkitsevää Jos lukuja lasketaan yhteen tai vähennetään, niin tulokseen tulee yhtä monta desimaalia kuin epätarkimmassa lähtöarvossa. Esim. 80 cm + 2,4 cm + 0,198 cm = 82,598 cm 83 cm. Välivaiheissa ei saa pyöristää liikaa! On otettava mukaan vähintään 2 merkitsevää numeroa enemmän kuin lopputuloksen tarkkuuteen. Tehtäväsarja 2. s. 27: 2 15, 2 16, 2 17, Mittaaminen. Mittaustulos on aina likiarvo. Mittausvirhe johtuu mittausvälineistä mittaajasta mitattavasta kohteesta

6 mittausolosuhteista. Mittaustarkkuus kertoo mittauksen luotettavuuden. Mitattu suure voidaan ilmoittaa muodossa 5 x = x m ± x, missä x m on mittaustulos ja x virhe. Mittaustulosta voi tarkentaa toistamalla mittaus useasti ja laskemalla mittausten keskiarvo. Virhettä voidaan arvioida laskemalla kunkin mittauksen poikkeama keskiarvosta ja sitten näiden poikkeamien keskiarvo. Esim. Jos mittaustulos t 1 = 14,05 s ja kaikkien mittaustulosten keskiarvo on 14,161 s, niin tuloksen t 1 poikkeama keskiarvosta on t 1 = 14,05 s 14,161 s = 0,111 s = 0,111 s. x i t i /s t i /s Tehtäväsarja 3. s. 31: 2 22, 2 25, 2 26, Graafinen esitys. Esitetään suureiden (x ja y) mittaustulokset (x,y)-koordinaatistossa. Suure x on vaaka-akselilla ja y pystyakselilla. Suureen tunnus merkitään akselien positiiviselle puolelle. Yksikkö sekä mitta-asteikko merkitään akselien negatiiviselle puolelle. Tavoite on löytää matemaattinen malli suureiden riippuvuudelle. Piirretään kuvaaja, joka istuu mahdollisimman hyvin mittaustuloksiin (esim. suora, paraabeli, hyperbeli...). Pisteitä EI saa yhdistää murtoviivalla, vaan on tehtävä graafinen tasoitus, joka vähentää satunnaisvirheiden vaikutusta. Jos kuvaaja on suora, on kyseessä lineaarinen malli: x ja y ovat suoraan verrannollisia eli x y tai y = kx missä k on suoran fysikaalinen kulmakerroin. Mitä jyrkempi suora, sitä suurempi on kulmakerroin. Kulmakerroin voidaan laskea k = y x = y 2 y 1 x 2 x 1

7 6 Huom! Ota pisteet (x 1,y 1 ) ja (x 2,y 2 ) tasoitetulta suoralta, sillä mittauspisteet eivät välttämättä ole suoralla! Interpolointi tarkoittaa arvojen määritystä mittaustulosten väliltä ja ekstrapolointi mittaustulosten ulkopuolelta. Esimerkiksi tiheys ρ = m V voidaan määrittää fysikaalisena kulmakertoimena. 3. Liike Liikkeen lajeja ovat etenemisliike pyörimisliike värähtelyliike aaltoliike Liike on suhteellista Esim. Maa pyörii, mutta emme tunne sitä, koska pyörimme sen mukana. Laiva purjehtii rantaviivan suuntaan nopeudella 6 m/s. Kannella matruusi heittää pallon kaverilleen nopeudella 10 m/s laivan kulkusuuntaan. Maalta katsoen pallon nopeus on 16 m/s. Tässä luvussa tutkitaan suoraviivaista liikettä: eteen/taakse tai ylös/alas Vauhti ja nopeus. Nopeus on vektorisuure, eli sillä on suuruus ja suunta. Esimerkiksi v 1 = 3 m/s länteen ja v 2 = 2 m/s kaakkoon. Nopeuden suuruutta sanotaan vauhdiksi. Vauhtia käytetään, jos suunta on epäoleellinen. Esim. Auton vauhti oli 78 km/h. Usein nopeus (suuruus ja/tai suunta) vaihtelee matkan aikana. Keskivauhti on v = s t = kuljettu matka matkaan kulunut aika Ylläolevasta yhtälöstä voidaan ratkaista myös aika tai matka: t = s v s = vt Katso kirjan esimerkit s Tehtäväsarja 4. s. 46: 3 1, 3 2, 3 3, 3 5, 3 9. Siirtymä x on kahden pisteen välinen etäisyys Keskinopeus on

8 7 v k = x t = x 2 x 1 = siirtymä t 2 t 1 liikkeen kesto Huomaa, että muutos on aina loppuarvo - alkuarvo. Jos liike on suoraviivaista ja tapahtuu vain yhteen suuntaan, niin siirtymä = kokonaismatka eli x = s ja keskinopeus = keskivauhti, ts. v k = v. Siis mitä eroa on keskinopeudella ja keskivauhdilla? Jos uimari ui 25 m altaan päästä päähän ajassa 45 s, niin mutta v = s t = 50 m 45 s v k = x t = x 2 x 1 t 2 t 1 1,1 m/s, = 0 m 0 m 45 s 0 s = 0 m/s, koska alku- ja loppupaikka on sama! Kun liike on suoraviivaista, niin nopeuden etumerkki kertoo liikkeen suunnan. Hetkellinen nopeus ajan hetkellä t saadaan x(t)-kuvaajasta piirtämällä kuvaajalle tangenttisuora kohtaan t ja laskemalla sen kulmakerroin. Tehtäväsarja 5. s. 53: 3 11, 3 12, 3 13, 3 15, Tasainen liike. Liike on tasaista, jos kappaleen vauhti on vakio (eli ei muutu) ja liikkeen suunta ei muutu. Kappaleen lähtöpaikka voi olla muukin kuin x = 0. Aika yleensä aloitetaan nollasta. Liike voi tapahtua myös negatiiviseen suuntaan. Jälkimmäisessä tilanteessa kuvaaja on laskeva suora, jonka kulmakerroin on negatiivinen, ts. v < 0. Kappale liikkuu taaksepäin. Yhtälöstä v = x t voidaan ratkaista x = v t. Jos lähtöpaikka on x 0 ja sitten kuljetaan nopeudella v ajan t verran, niin paikka on x = x 0 + vt. Kappaleen siirtymä x saadaan (t,v)-koordinaatistossa fysikaalisena pinta-alana. Erityisesti tasaisessa liikkeessä Katso kirjan esimerkki 1, s. 57. x = v t Tehtäväsarja , 3 20, 3 21, 3 22, 3 23, 3 24, 3 25.

9 83.3. Kiihtyvyys. Liike on usein muuttuvaa: Nopeuden suuruus, suunta tai molemmat muuttuvat. Kiihtyvyys a on nopeuden muutosnopeus : a = v t = v 2 v 1 t 2 t 1 Kiihtyvyyden yksikkö [a] = [v] m [t] = s s = m s 1 s = m s 2 Tasaisesti kiihtyvässä liikkeessä kiihtyvyys on vakio eli kuvaaja (t,v)- koordinaatistossa on suora ja (t,x)-koordinaatistossa paraabeli. Keskikiihtyvyys kuvaa nopeuden keskimääräistä muutosta aikavälillä t 1... t 2. a k = v t = v 2 v 1 t 2 t Putoaminen. Jos ilmanvastus on pieni, niin (Maassa) kaikilla kappaleilla on massasta riippumatta sama kiihtyvyys, putoamiskiihtyvyys g 9,81 m/s 2. Putoamisen alussa liike on likimain tasaisesti kiihtyvää. Ilmanvastus kasvaa nopeuden kasvaessa, jolloin kappaleen kiihtyvyys pienenee kunnes lopulta nopeus ei enää kasva. Tehtäväsarja , 3 33, 3 35, 3 37, Tee myös kirjan kappaleen 3 lopussa oleva testi sivulta Vuorovaikutus ja voima Kappaleet vuorovaikuttavat keskenään. Esim. Maa vetää omenaa puoleensa. Käsi tukee omenaa ja estää sitä putoamasta. Vuorovaikutuksia ilmentävät voimat. Voima F on vektorisuure ja sen yksikkö [F ] = N (newton). Kosketusvoimia ovat mm. Tukivoima N Langan jännitysvoima T Kitka F µ Väliaineen (ilman-, veden-) vastus F v Jousivoima Etävoimia (kappaleet eivät ole kosketuksissa) ovat mm.

10 9 paino eli painovoima eli gravitaatiovoima Ḡ sähköinen voima magneettinen voima jne. Voimat esiintyvät aina pareittain: Voiman ja vastavoiman laki eli Newtonin III laki: Kahden kappaleen A ja B kohdistama voima F AB on yhtä suuri, mutta vastakkaissuuntainen B:n A:han kohdistamaan voimaan F BA nähden. Esim. Maa vetää omenaa puoleensa yhtä suurella mutta vastakkaissuuntaisella voimalla kuin omena vetää Maata. Kokonaisvoimalla tarkoitetaan kaikkien (merkityksellisten) kappaleeseen vaikuttavien voimien yhteisvaikutusta. Esim. Jäällä liukuvaan kiekkoon vaikuttavat gravitaatio alaspäin pinnan tukivoima ylöspäin kitka liikettä vastaan ilmanvastus liikettä vastaan Huom. Ei liikkeen suuntaista voimaa, jos mikään ei työnnä kiekkoa! Voimakuvio (vapaakappalekuvio) esittää kappaleeseen vaikuttavat voimat (suunnat ja voimakkuudet). Esim. Liukuva kiekko (kopioi kuvio kaverilta!) Huom! Kiekkoon vaikuttavat N ja Ḡ yhtä suuret (yhtä pitkät vektorit) ja vastakkaissuuntaiset, joten ne kumoavat toisensa. F µ ja F v hidastavat liikettä. Entä jos ei olisi ollenkaan vastusvoimia? Tai entä jos kiekkoa työnnetään eteenpäin yhtäsuurella voimalla kuin F µ ja F v yhteensä? Jatkavuuden laki eli Newtonin I laki: Kappale, johon vaikuttava kokonaisvoima on nolla, on levossa (ellei se liiku) tai jatkaa suoraviivaista etenemistä nopeuden muuttumatta. Tehtäväsarja ,4 4,4 5,4 6, Voima ja liikkeen muutos. Kappaleen liike muuttuu, kun sen nopeus kasvaa tai suunta muuttuu eli sillä on kiihtyvyyttä. Liikkeen muutokseen tarvitaan aina ulkoinen voima Esim. Kitka auton renkaiden ja tien välissä. Dynamiikan peruslaki eli Newtonin II laki: Kappaleeseen vaikuttava kokonaisvoima F antaa m-massaiselle kappaleelle kiihtyvyyden ā siten,

11 10 että ā = F m, toisin sanoen F = mā. Yhtälöä F = mā sanotaan kappaleen liikeyhtälöksi. ā:n suunta on sama kuin F :n suunta. Mitä suurempi F, sitä suurempi a. Mitä suurempi m, sitä pienempi a eli raskaamman kappaleen liiketilaa on vaikeampi muuttaa! Kahden kappaleen vuorovaikutuksessa massa ilmenee hitautena eli inertiana, kappaleen ominaisuutena vastustaa liiketilan muutosta. Kevyt kiekko pysähtyy maalivahtiin, mies liikahtaa tuskin ollenkaan. Voimatehtävissä tilanteesta kannattaa piirtää kuva. Tilannekuva hahmottelee kokonaisuuden. Voimakuvio (= vapaakappalekuva) rajaa tarkastelun tutkittavaan kappaleeseen. Esim. Auto vetää vaakasuoralla tiellä lavaa, jonka kyydissä on lipasto. Piirrä lavaan kohdistuvat voimat. (Oletetaan ilmanvastus pieneksi.) Tilannekuva: (kopioi kaverilta!) Etsi kuvasta lavan kanssa vuorovaikuttavat kappaleet. Vapaakappalekuva: (kopioi kaverilta!) Tehtäväsarja , 4 16, 4 7, 4 18, 4 19, Paino G on gravitaatiovuorovaikutuksen aiheuttama voima, joka kohdistuu kohti Maan keskipistettä (ja määrittää suunnan alas ). Newtonin II lain mukaan ḡ = Ḡ, eli Ḡ = mḡ. m missä g on putoamiskiihtyvyys 9,81 m/s 2. Vapaassa putoamisessa kappaleeseen kohdistuu vain G. Painoton tila johtuu siitä, että kaikki kappaleet putoavat yhtä nopeasti eli tukivoimia ei ole. Kuussa putoamiskiihtyvyys on noin 1/6 g:stä. Siis myös G on Kuussa 1/6 painosta Maassa, vaikka massa onkin sama. Tehtäväsarja , 4 13, 4 15, 4 21, 4 23, Tee myös kirjan kappaleen 4 lopussa oleva testi sivulta Maailmankaikkeuden rakenne 5.1. Perusvuorovaikutukset ja -hiukkaset.

12 Kaikki fysikaaliset vuorovaikutukset selittyvät perusvuorovaikutuksilla 11 (4 kpl): Perusvuorovaikutus suhteellinen voimakkuus välittäjähiukkanen vahva 1 gluoni sähkömagneettinen fotoni heikko välibosoni gravitaatio gravitoni 2 teoriaa: Klassisen fysiikan kenttä kuvaa etävuorovaikutusta, esim. magneettikenttä Hiukkasfysiikan malli: välittäjähiukkaset Isaac Newtonin gravitaatiolaki v. 1687: Gravitaatiovoima riippuu vuorovaikuttavien kappaleiden massoista ja etäisyydestä toisistaan. Gravitaatio on aina vetovoima ja se heikkenee etäisyyden kasvaessa Sähköinen ja magneettinen voima ovat joko vetäviä (erimerkkiset) tai hylkiviä (samanmerkkiset) Aineen kemialliset ominaisuudet sekä kosketusvoimat aiheutuvat atomien välisistä sähkömagneettisista voimista! Vahva vuorovaikutus pitää atomiytimen koossa. Atomi koostuu elektronipilvestä ja ytimestä. Elektronipilvessä ovat elektronit e ja ytimessä protonit p + sekä neutronit n. Yhteisnimeltään ytimen osat ovat nukleoneja. Kuvat atomeista ovat harhaanjohtavia. Atomin massa on 99,9% ytimessä ja atomin halkaisija on kertainen ytimen kokoon nähden. Nukleonit koostuvat kvarkeista. Kvarkkeja on 6 eri lajia: ylös u alas d outo s lumo c tosi t kaunis b Protoni koostuu kahdesta u-kvarkista ja yhdestä d-kvarkista (uud) ja neutroni kahdesta d-kvarkista ja yhdestä u-kvarkista (ddu). u-kvarkin varaus on + 2/3 e ja d-kvarkin varaus on -1/3 e, joten esim. protonin varaus on summa 2/3 + 2/3-1/3 = +1 kuten tiedämmekin. Kvarkkeja ei esiinny vapaina. Elektroni on leptoni. Leptonejakin on 6 eri lajia.

13 12 Kaikki maailmankaikkeuden näkyvä aine koostuu perushiukkasista = kvarkit + leptonit (ks. kirjan s. 116 taulukko). Käytännössä kaikki havaitsemamme aine koostuu u- ja d-kvarkeista ja elektroneista. Jokaisella perushiukkasella on vielä oma antihiukkasensa, esim. elektronilla positroni. Vahva vuorovaikutus aiheuttaa ydinvoiman kvarkkien välille. Sopivan lähellä toisiaan nukleonit sitoutuvat ytimeksi ydinvoiman takia. Toisaalta erittäin lähellä ydinvoima on hylkivä. Vahvan vuorovaikutuksen kantama on lyhyt eli se heikkenee nopeasti etäisyyden kasvaessa. Heikko vuorovaikutus kvarkkien välillä aiheuttaa kvarkin muutoksen toiseksi kvarkiksi (u d tai d u).silloinhan protoni muuttuu neutroniksi tai päinvastoin, ja samalla ydin säteilee beetahiukkasen eli elektronin tai positronin. Tätä sanotaan beetahajoamiseksi Makrokosmos ja maailmankaikkeuden synty. Lue näistä itsenäisesti oppikirjasta. 6. Energia Energiaa ei synny eikä häviä se vain muuttaa muotoaan. Energian muuttuminen muodosta toiseen perustuu voiman tekemään työhön. Esim. Käsi tekee palloon nostotyön, joka varastoituu pallon potentiaalienergiaksi. Kun pallo pudotetaan, potentiaalienergia muuttuu pallon liike-energiaksi. Energian SI-yksikkö on joule J, myös kaloria cal käytetään. (1 cal = 4,1868 J) Energia luokitellaan vapaisiin ja sidottuihin energialajeihin. Selvitä kirjan kappaleesta tehtävän 6 1 mukaisesti, miten energialajit poikkeavat toisistaan ja luettele muutamia energialajeja. Etsi sitten vastaus tehtävän 6 8 mukaisesti, mihin perustuu auringon energiantuotto. Massaan sisältyy energiaa E = mc 2, missä c = valonnopeus. Lue kasvihuoneilmiöstä s Säteily 2 teoriaa: sähkömagneettinen säteily on aaltoliikettä, joka koostuu sähkö- ja magneettikenttien etenemisestä valonnopeudella.

14 13 fotoneja (hiukkasia) eli kvantteja, sähkömagneettisen säteilyn energiapaketteja. Luokitellaan ionisoimattomiin ja ionisoiviin säteilylajeihin: 7.1. Ionisoimaton säteily. Radioaallot. (viestintään ym.) Mikroaallot. (mikroaaltouunit, tutkat, WLAN...) Infrapunasäteily, lämpösäteily. (lämpö; lämpökamerat, kaukosäätimet...) Näkyvä valo. Violetti 400 nm Punainen 700 nm. Aurinko tärkein lähde Välttämätöntä kasvien fotosynteesille Ultraviolettisäteily <400 nm Otsonikerros suodattaa Auringon UV-säteilyä Hyötyjä: rusketus, D-vitamiini Haittoja: syöpäriski, ihon palaminen 7.2. Ionisoiva säteily. Irrottaa atomeista elektroneja. Tästä seuraa esimerkiksi solujen mutatoitumista ja tuhoutumista. Röntgensäteily (läpivalaisu, sädehoito) lyhytaaltoista sähkömagneettista säteilyä läpäisee kevyistä alkuaineista koostuvaa ainetta, pysähtyy esim. lyijyyn Gammasäteily lyhytaaltoisinta sähkömagneettista säteilyä, röntgensäteilyäkin läpitunkevampaa Hiukkassäteilyä syntyy radioaktiivisten aineiden epästabiilien ydinten hajotessa radioaktiivisen aineen aktiivisuus A on sen hajoamisnopeus (hajoamista sekunnissa) [A] = 1Bq (becquerel). Puoliintumisaika T 1/2 on se aika, jossa radioaktiivisten ydinten määrä puolittuu. Alfasäteily on heliumatomien ( 4 2He ytimiä. Se ionisoi voimakkaasti. ei läpäise paperia tai vaatteita. etenee ilmassa vain n. 10 cm matkan. on elimistössä vaarallinen! Radon-kaasu on alfa-aktiivista ja sitä tulee maaperästä rakennusten sisäilmaan aiheuttaen keuhkosyövän riskiä. Beetasäteily koostuu elektroneista tai positroneista. Se

15 14 syntyy beetahajoamisessa. läpäisee ihon ja ionisoi atomeja. Positroni antihiukkasena annihiloi elektronin, jolloin syntyy gammasäteilyä. Neutronisäteily ei itsessään ionisoi, mutta sen seurauksena voi syntyä ionisoivaa säteilyä. on käytössä syöpähoidoissa. Lue säteilyltä suojautumisesta ja säteilyn hyötykäytöstä kirjasta s

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Alkeishiukkaset. Standarimalliin pohjautuen:

Alkeishiukkaset. Standarimalliin pohjautuen: Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Perusvuorovaikutukset

Perusvuorovaikutukset Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

4.1 Vuorovaikutuksia Jokainen kappale on aina vuorovaikutuksessa useiden muiden kappaleiden kanssa. Kahden kappaleen vuorovaikutus aiheuttaa

4.1 Vuorovaikutuksia Jokainen kappale on aina vuorovaikutuksessa useiden muiden kappaleiden kanssa. Kahden kappaleen vuorovaikutus aiheuttaa 2.1 Fysiikan suurejärjestelmä Suure on ilmiön, kappaleen tai aineen mitattavissa oleva ominaisuus. Vektorisuureella on suuruus ja suunta, esim. nopeus, voima. Skalaarisuureella on vain suuruus, esim. massa,

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

1. (d) Aineet asettuvat tiheyksien mukaiseen järjestykseen, aineen A tiheys on suurin ja aineen C pienin. Näin ollen järjestys on C,B ja A.

1. (d) Aineet asettuvat tiheyksien mukaiseen järjestykseen, aineen A tiheys on suurin ja aineen C pienin. Näin ollen järjestys on C,B ja A. Kertaustehtäviä 1. d. b 3. b, d 4. c 5. a, c 6. b 7. a 8. b 9. a 10. b 1. (d) Aineet asettuvat tiheyksien mukaiseen järjestykseen, aineen A tiheys on suurin ja aineen C pienin. Näin ollen järjestys on

Lisätiedot

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14 Massa ja paino Pohdi Miten pallon heittäminen poikkeaa kuulan heittämisestä? Auto lähtee liikkeelle rajusti kiihdyttäen. Mitä tapahtuu peilistä roikkuvalle koristeelle? Pohdi Miten pallon heittäminen poikkeaa

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

FY1 Fysiikka luonnontieteenä

FY1 Fysiikka luonnontieteenä Ismo Koponen 10.12.2014 FY1 Fysiikka luonnontieteenä saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

1.3 Kappaleen tasaisesta liikkeestä

1.3 Kappaleen tasaisesta liikkeestä Arkikielen sana vauhti (speed) tarkoittaa fysiikassa nopeuden (velocity) suuruutta (magnitude of velocity). Kun nopeus on fysiikassa vektorisuure, niin vauhti taas on vain luku skalaari johon liittyy yksikkö.

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set

STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set STANDARDIMALLI Fysiikan standardimalli on hiukkasmaailman malli, joka liittää yhteen alkeishiukkaset ja niiden vuorovaikutukset gravitaatiota lukuun ottamatta. Standardimallin mukaan kaikki aine koostuu

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Fysiikka 9. luokan kurssi

Fysiikka 9. luokan kurssi Nimi: Fysiikka 9. luokan kurssi Kurssilla käytettävät suureet ja kaavat Täydennä taulukkoa kurssin edetessä: Suure Kirjaintunnus Yksikkö Yksikön lyhenne Jännite Sähkövirta Resistanssi Aika Sähköteho Sähköenergia

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Tehtävän eri osat arvostellaan 1/3 pisteen tarkkuudella, ja loppusumma pyöristetään kokonaisiksi

Tehtävän eri osat arvostellaan 1/3 pisteen tarkkuudella, ja loppusumma pyöristetään kokonaisiksi FYSIIKAN KOE 11.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa arvostelussa käytettävistä

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

5.9 Fysiikka. Opetuksen tavoitteet. Fysiikan opetuksen tavoitteena on, että opiskelija

5.9 Fysiikka. Opetuksen tavoitteet. Fysiikan opetuksen tavoitteena on, että opiskelija 5.9 Fysiikka Fysiikan opetus tukee opiskelijoiden luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä osana monipuolista yleissivistystä. Opetus ohjaa opiskelijaa ymmärtämään fysiikan merkitystä

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

4.1 Vuorovaikutuksen käsite mekaniikan perustana

4.1 Vuorovaikutuksen käsite mekaniikan perustana 91 4 NEWTONIN KOLMS LKI Dynamiikan perusprobleema on kappaleen liikkeen ennustaminen siihen kohdistuvien vuorovaikutusten perusteella. Tämä on mahdollista, jos pystytään määrittämään kuhunkin vuorovaikutukseen

Lisätiedot

1. Fysiikka ja mittaaminen

1. Fysiikka ja mittaaminen 1. Fysiikka ja mittaaminen 1.1 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles

Lisätiedot

Heikki Saari - Jarmo Sirviö - Jouni Viiri. Physica 1. Tehtävien ratkaisut. Sanoma Pro Oy. Helsinki

Heikki Saari - Jarmo Sirviö - Jouni Viiri. Physica 1. Tehtävien ratkaisut. Sanoma Pro Oy. Helsinki Heikki Saari - Jarmo Sirviö - Jouni Viiri Physica 1 Tehtävien ratkaisut Sanoma Pro Oy Helsinki 1(3) 2 Mittaaminen ja SI-järjestelmä 2 Mittaaminen ja SI-järjestelmä Perustehtävät 1. a) Mitattiin massaa.

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) 1 b) Lasketaan 180 N:n voimaa vastaava kuorma. G = mg : g m = G/g (1) m = 180 N/9,81 m/s 2 m = 18,348... kg Luetaan kuvaajista laudan ja lankun taipumat

Lisätiedot

Tutkimusten mukaan opiskelijoilla on monia

Tutkimusten mukaan opiskelijoilla on monia Vuorovaikutuskaavion käyttö voimakäsitteen opetuksessa Asko Mäkynen, FT, matematiikan ja fysiikan lehtori, apulaisrehtori, Kurikan lukio Kirjoittaja väitteli 25.4.2014 Jyväskylän yliopistolla vuorovaikutuskaavion

Lisätiedot

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 1. Fysiikka luonnontieteenä. Sanoma Pro Oy Helsinki

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 1. Fysiikka luonnontieteenä. Sanoma Pro Oy Helsinki Tehtävien ratkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 1 Fysiikka luonnontieteenä Sanoma Pro Oy Helsinki 1 Johdanto fysiikan maailmaan 1-1. Uudempaa näkemystä edustavat

Lisätiedot