Kvanttistatistiikka 1

Samankaltaiset tiedostot
Kvanttistatistiikka 1

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH ) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

Klassisen fysiikan ja kvanttimekaniikan yhteys

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx

S Laskennallinen systeemibiologia

Ehdollinen todennäköisyys

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

Aineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat

1 Eksponenttifunktion määritelmä

Tilastollinen todennäköisyys

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

Tehtäviä neliöiden ei-negatiivisuudesta

Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005

Tilat ja observaabelit

Markov-ketjun hetkittäinen käyttäytyminen

ν = S Fysiikka III (ES) Tentti Ratkaisut

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

5.3 Matriisin kääntäminen adjungaatilla

Aritmeettinen jono

1. Oletetaan, että protonin ja elektronin välinen vetovoima on verrannollinen suureeseen r eikä etäisyyden neliön käänteisarvoon

4.3 Signaalin autokorrelaatio

j = I A = 108 A m 2. (1) u kg m m 3, (2) v =

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

tilavuudessa dr dk hetkellä t olevien elektronien

Mat Lineaarinen ohjelmointi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

:n perustilaan energiasta. e) Elektronien ja ytimien välinen vuorovaikutusenergia H 2

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

HEIJASTUMINEN JA TAITTUMINEN

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

EX1 EX 2 EX =

****************************************************************** ****************************************************************** 7 Esim.

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

Matematiikan tukikurssi

Markov-ketjun hetkittäinen käyttäytyminen

9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä.

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Matematiikan tukikurssi

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Insinöörimatematiikka IA

Kompleksilukujen alkeet

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

BM20A Integraalimuunnokset Harjoitus 8

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Kvanttimekaniikan tulkinta

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Aikariippuva Schrödingerin yhtälö

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

Aineaaltodynamiikkaa

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

3 x < < 3 x < < x < < x < 9 2.

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Matematiikan tukikurssi

Paulin spinorit ja spinorioperaattorit

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

8. Klassinen ideaalikaasu

TILASTOT: johdantoa ja käsitteitä

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

3 x < < 3 x < < x < < x < 9 2.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

J 2 = J 2 x + J 2 y + J 2 z.

Tilastollinen päättömyys, kevät 2017 Harjoitus 6A

Kvanttifysiikan perusteet, harjoitus 5

Kertausta: avaruuden R n vektoreiden pistetulo

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Noora Nieminen. Hölderin epäyhtälö

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Suurkanoninen joukko

(1.1) Ae j = a k,j e k.

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

Kertausta: avaruuden R n vektoreiden pistetulo

2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.

MEI Kontinuumimekaniikka

Transkriptio:

Kvattistatistiikka 1 Kevät 2017 Lueoitsija Aleksi Vuorie (aleksi.vuorie@helsiki.fi, A322) Laskuharjoitusassistetti: Eemeli Aala (eemeli.aala@helsiki.fi, A313) Yleistä Lueot ma 14-16 ja ti 12-14 salissa E205; laskarit pe 14-16 E205 Kurssikirjaa Arpoe & Hokoe, Statistie fysiikka; lisäksi prujut ettii aia tiistai lueo jälkee Kurssi kotisivulta http://www.courses.physics.helsiki.fi/teor/stamec/ prujut, laskarit, ajakohtaista tietoa, je Laskareita yhteesä 6 kpl. Ilmestyvät ettii tiistaisi ja palautetaa seuraava viiko tiistaia lueolla tai lueoitsija postilaatikkoo (Physicumi 3. kerrokse A-siipi). Käydää läpi perjatai laskaritilaisuudessa. Laskarit eivät pakollisia mutta erittäi suositeltavia: iissä meää myös luetomateriaali ulkopuolelle ja tämä tulee olemaa osa koealuetta Lueto- ja laskaritauko pääsiäise ympärillä 13.-19.4.; lisäksi ei luetoa vapupäivää ma 1.5. Viimeie lueto ti 2.5. ja viimeiset laskarit pe 5.5. Loppukoe ma 8.5. alkavalla viikolla. Detaljit myöhemmi kurssi kotisivuilla. Suoritus: loppukoe 75% ja laskarit 25% 1 Tämä luetomoiste o kehittyyt vuosie varrella useide kurssi lueoitsijoide toimesta; erityisesti Ismo Napari ja Jooas Merikato ovat kirjoittaeet siitä suure osa. 1

Mitä kvattistatistiikka pitää sisällää? Statistise mekaiika jatkokurssi, jossa käytetää Kvattimekaiikka I: (ja pieeltä osi II:) koeistoa statististe (ts. moe hiukkase systeemie) kvatti-ilmiöide tutkimisee Kaksi tärkeää ja kurssilla usei toistuvaa peruskysymystä: o Millä tavoi moe hiukkase kvattisysteemejä tulee käsitellä? Erityisesti: mitkä ovat klassise faasiavaruude, esembleje, je. vastieet? o Missä kulkee kvattimekaaiste ja klassiste systeemie rajapita, ts. milloi kvatti-imiöt o otettava (isoissa systeemeissä) huomioo? Kurssia ilmiölähtöisempi kui Statistie mekaiikka: SM: ogelmaa eitriviaalie esimerkkisysteemie vähäie määrä; tällä kurssilla ei samaa haastetta Pohjatiedot: Statistie mekaiikka ja Kvatti I sekä äide kurssie (matemaattiset) esitiedot oleaisia: erityisesti kvattimekaiika perusformalismi sekä klassiste esembleje tutemus tärkeää. Puuttuvia taustatietoja mahdollista kerrata kurssi aikaa. Joki verra laskeallisesti haastavampi/työläämpi kui Statistie mekaiikka, mutta materiaalia ei silti 5 op: kurssiksi kohtuuttomasti. Ilmoittakaa jos/ku joki epäselvää tai vaikeaa! Kurssi alustava sisällys Viikot 1-2: kvattimekaiika kertausta, moihiukkassysteemit kvattimekaiikassa, kvattimekaaie esembleteoria Viikot 3-4: kvattimekaaie ideaalikaasu, bosoi- ja fermioistatistiikat, esimerkkejä bosoisysteemeistä Viikot 5-6: degeeroituut fermikaasu, esimerkkejä fermioisysteemeistä, erityisesti valkoiset kääpiöt ja eutroitähdet 2

3 TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvattimekaiika kurssilta) Kvattimekaiikassa yhde hiukkase systeemi täydellise kuvaukse ataa sitä vastaava tilavektori Ψ, joka o (yhde hiukkase) Hilberti avaruutee H kuuluva vektori. Hilberti avaruus o lieaarie, ts. kahde se vektori kompleksikertoimie summa kuuluu avaruutee. H:ssa o myös määritelty sisätulo a b, joka toteuttaa yleiset skalaaritulo aksioomat. Fysikaaliset tilat voidaa aia ormittaa ykköseksi, ja tästä lähtie oletammeki, että kvattitiloille Ψ Ψ Ψ 2 = 1. Observaabeleita (havaittavia suureita) vastaavat kvattimekaiikassa lieaariset hermiittiset operaattorit Â, jotka Schrödigeri kuvassa oletetaa ajasta riippumattomiksi. Observaabeli mahdollisia havaittavia arvoja ovat Â: omiaisarvot, jotka yhdessä vastaavie (ajasta riippumattomie) omiaistiloje kera saadaa selville omiaisarvoyhtälöstä  = A, joka ratkaisut o tässä yksikertaisuude vuoksi oletettu diskreetiksi. Kaikki alla johdettavat tulokset voidaa kuiteki helposti yleistää tapauksee, jossa hermiittise operaattori  omiaisspektri (eli -arvot ja -tilat) o jatkuva. Tällöi kaikki summat tiloje yli korvataa yksikertaisesti itegraaleilla. Operaattori oletetusta hermiittisyydestä seuraa, että se omiaisarvot ovat reaalisia ja omiaisvektorit muodostavat Hilberti avaruude täydellise ortoormittuva kaa. Voidaa siis olettaa, että omiaistilat toteuttavat relaatio m = δ m, mikä lisäksi ykkösoperaattori voidaa kirjoittaa muodossa 1 =. Observaabeli  odotusarvo kvattitilassa Ψ saadaa äi kirjoitettua muotoo  = Ψ Â Ψ = Ψ m m Â Ψ = A Ψ 2, m,

jossa tulkitsemme site, että tekijät Ψ 2 atavat todeäköisyyde sille, että tarkasteltavalle observaabelille saadaa mittauksessa diskreetti arvo A. Usei o kätevää kirjoittaa myös tilavektorit kompoettiesitykseä sopiva hermiittise operaattori ortoormitetussa kaassa Ψ = Ψ, missä olemme käyttäeet yllä johdettua yksikköoperaattori muotoa. Koordiaattikaassa x vastaavat kertoimet ovat tuttuja aaltofuktioita x Ψ = Ψ(x, t), joide itseisarvoje eliö kertoo todeäköisyyde löytää hiukkae koordiaattiavaruude pisteestä x ajahetkellä t. (Huomaa, että aikariippuvuus tulee tähä tila Ψ aikariippuvuudesta.) Hyvi oleaisia relaatioita ovat x p = h 3/2 e ix p, x x = δ(x x ), p p = δ(p p ) jotka tarjoavat mahdollisuude siirtyä koordiaatti- ja impulssikatoje välillä. Tällaie kaa muutos o esimerkki uitaarise operaaattori Û idusoimasta muuoksesta jossa siirrymme kaasta kataa = Û, Û = Û 1. Operaattori jälki Tr  määritellää sitä vastaava matriisi diagoaalielemettie summaa, Tr  = Â, joka o kuiteki selvästi kaasta riippumato suure. Se toteuttaa lisäksi ormaalit matriisilaskea jälje relaatiot, kute syklisyyde. Määrittelemällä yt systeemi ormitettua tilaa Ψ vastaava s. projektio-operaattori ρ Ψ Ψ Ψ, ähdää helposti, että observaabeleide odotusarvot o lausuttavissa muodossa  = Tr ρ Ψ ja kahde eri tila välise sisätulo ormi eliö puolestaa muodossa Ψ Φ 2 = Tr ρ Ψρ Φ. Kute tulemme myöhemmi moee kertaa toteamaa, jälje laskemie kvattimekaiikassa o ii 1- kui moihiukkassysteemie tapauksessa hyvi tarkkaa aalogie itegroiille klassisessa faasiavaruudessa. Tiloje ajallise kehitykse määrää Schrödigeri yhtälö 4

iħ Ψ(t) = Ĥ Ψ(t), t missä Ĥ o Hamiltoi operaattori. Ns. eergiaesityksessä tilat esitetää Ĥ: omiaistiloje kaassa, jossa pätee omiaisarvoyhtälö Ĥ = E, missä E ovat systeemi omiaiseergiat ja tilat määritelmällisesti ajasta riippumattomia. Schrödigeri yhtälöstä saamme helposti yleise tila Ψ(t) aikakehitykseksi johtue relaatiosta Ψ(t) = Ψ(t) = exp ( ie t) Ψ(0) ħ iħ t Ψ(t) = Ĥ Ψ(t) = E Ψ(t) Ψ(t) = exp ( ie t) Ψ(0). ħ Moihiukkassysteemit ja Focki avaruus Moihiukkassysteemi mahdolliset tilat kuuluvat kvattimekaiikassa N: hiukkase Hilberti avaruutee, joka o muodoltaa N: yksihiukkasavaruude suora tulo H (N) = H 1 H 1 H 1 H 1. Jos H 1 : katavektoreita o umeroituva määrä, voidaa iistä muodostaa H (N) : kata suora tulo avulla, ja mielivaltaie tila Ψ esittää muodossa Ψ = l 1 l N l 1,, l N Ψ, l 1 l N missä kuki ideksi l 1 käy läpi kaikki systeemi yksihiukkastilat ja käytämme otaatiota jossa l 1 l N l 1,, l N. Todelliset kvattimekaaiset systeemit eivät kuitekaa miehitä koko avaruutta H (N), vaa aioastaa aliavaruude, joka 5

o täysi symmetrie (bosoit) tai atisymmetrie (fermioit) kahde hiukkase vaihdossa, koska bosoit oudattavat s. Bose-Eisteii statistiikkaa ja fermioit Fermi-Diraci statistiikkaa. Oikeat N: hiukkase systeemi katafuktiot saadaaki ottamalla 1-hiukkastiloje suorista tuloista s. Slateri (ati)determiatteja. Käytäössä moihiukkaskvattimekaiikka formuloidaa kätevimmi Focki avaruudessa ja käyttämällä hyväksi hiukkaste luomis- ja tuhoamisoperaattoreita. Focki avaruus o kaikkie N: hiukkase (ati)symmetrisoituje Hilberti avaruuksie suora summa F = H (0) H (1) PH (N), jossa H (0) = C (eli kompleksilukuje joukko) ja P projektio-operaattori symmetrisee (bosoit) tai atisymmetrisee (fermioit) Hilberti moihiukkasavaruutee. Focki avaruude alkio voidaa yt esittää koordiaattiesityksessä rivivektoria Φ = (z, Ψ 1 (ξ 1 ), Ψ 2 (ξ 1, ξ 2 ),, Ψ N (ξ 1,, ξ N ) ), jossa z o puhdas kompleksiluku, Ψ k täysi (ati)symmetrie k: muuttuja fuktio ja ξ i = (x i, s i ), missä s i o hiukkase i spi. Focki avaruude katavektorit voidaa siis esittää muodossa (2) (1, Ψ 1 (ξ 1 ), Ψ 1, 2 (ξ 1, ξ 2 ),, Ψ (N) {} (ξ 1,, ξ N ), ) (N) missä ideksit i käyvät läpi kaikki 1-hiukkastilat, ja ormitetut katafuktiot Ψ {} ovat lausuttavissa yksihiukkaskatafuktioide Ψ i (ξ i ) avulla muodossa (N) 1 (ξ 1,, ξ N ) = N! 1! 2! ε P Ψ 1 [P(ξ 1 )] Ψ N [P(ξ N )]. P{ξ i } Ψ {} Tässä summaus suoritetaa kaikkie N: hiukkae permutaatioide yli (yht. N! kpl), ja i o puolestaa kvattitila i miehitysluku. Se kertoo, kuika mota (N) kyseistä kvattitilaa vastaavaa yksihiukkasaaltofuktiota katafuktio Ψ {} termeissä o, ts. kuika mota kertaa i esiityy ideksijoukossa {}. Käytäössä i o siis tilassa i olevie hiukkaste lukumäärä kyseisessä moihiukkastilassa. 6

Yo. summassa fuktio ε P riippuu puolestaa hiukkaste statistiikasta ja o bosoeilla ε P = 1 fermioeilla { ε P = +1 parillisella permutaatioilla ε P = 1 parittomalla permutaatioilla. Katafuktio ormitustekijä itegraali 1 N! 1! 2! o puolestaa helppo perustella laskemalla dx 1 dx N ε P P{ξ i } Ψ 1 [P(ξ 1 )] Ψ N [P(ξ N )] ε P = N! 1! 2! P {ξ i } Ψ 1 [P (ξ 1 )] Ψ N [P (ξ N )] missä o otettu huomioo se, että jokaista P: permutaatiota (N! kpl) kohti o täsmällee 1! 2! kpl P : permutaatiota, joille yo. itegraali ataa tulokse 1, muille 0. Näissä siis permutoidaa vai tiety kvattitila l aaltofuktioide ξ i - koordiaatteja. Huomaa, että ε P : merkitys häviää tässä tarkastelussa (miksi?). Esimerkki: Tarkastetaa yllä käytetty moihiukkasaaltofuktio ormitus kahde hiukkase tapauksessa 1) Kaksi bosoia: Ψ ij (1,2) = Φ i (1)Φ j (2) + Φ i (2)Φ j (1), jossa Φ i viittaa oikei ormitettuu tila i aaltofuktioo ja 1/2 puolestaa hiukkasee - oikeasti siis Φ i (1) = Φ i (ξ 1 ), je. Nyt saadaa kaksihiukkasaaltofuktio eliöksi Ψ ij Ψ ij = Φ i (1)Φ j (2)Φ i (1)Φ j (2) + Φ i (1)Φ j (2)Φ i (2)Φ j (1) +Φ i (2)Φ j (1)Φ i (1)Φ j (2) + Φ i (2)Φ j (1)Φ i (2)Φ j (1), jolloi läpikäytävää o kaksi eri mahdollisuutta: i) Hiukkaset ovat eri tiloissa (i j): Fuktioide Φ i ortoormaalisuude vuoksi 2. ja 3. termi yllä häviävät itegroitaessa, ja saamme Ψ Ψ = 2. Tässä tapauksessa o toisaalta N = 2, 1 = 1, 2 = 1, jote aiempi ormituskaava (N! 1! 2!) 1/2 = 1/ 2 ataa selvästi oikea tulokse. ii) Hiukkaset ovat samassa tilassa (i = j): Nyt kaikista yo. kaava termeistä tulee kotribuutio itegroitaessa, ja Ψ Ψ = 4. Koska N = 2, 1 = 2 ja 2 = 0, ii (N! 1! 2!) 1/2 = 1 = 1, eli ormituskaava toimii jällee. 4 2 7

2) Kaksi fermioia: Ψ 12 (1,2) = Φ 1 (1)Φ 2 (2) Φ 1 (2)Φ 2 (1), eli hiukkasilla o parito permutaatio. Nyt hiukkaste o oltava eri tiloissa (kute tässä oki idikoitu), ja ormitustekijä o (N! 1! 2!) 1/2 = 1/ 2, mikä selvästi o jällee oikea tulos (lasku vastaa täysi bosoie i) tapausta yllä). Yllä määriteltyjä katafuktioita Ψ (N) {} (ξ 1,, ξ N ) vastaavia tiloja o helpoita merkitä symbolilla { i }, jossa i vastaa kvattitila i miehityslukua. Tällöi voidaa määritellä yleistetyt luomis- ja tuhoamisoperaattorit a i ja a i, jotka lisäävät kvattitilaa (vähetävät tilasta) i yhde hiukkase. Bosoiset operaattorit toteuttavat silloi tutut kommutaatio- ja fermioiset atikommutaatiorelaatiot. Lyhyellä laskulla saadaa tällöi se ylläoleva tarkastelu kassa yhtäpitävä tulos, että kahta fermioia ei voi laittaa samaa kvattitilaa, ts. kuki tila miehitusluvut ovat joko 0 tai 1. Tätä säätöä kutsutaa Pauli kieltosääöksi. Maiittakoo vielä lopuksi, että vuorovaikuttamattoma moihiukkasjärjestelmä Hamiltoi fuktio o helpoita lausua määrittelemällä esi tuttu miehityslukuoperaattori i = a i a i, joka laskee tilassa i olevie hiukkaste lukumäärä, ja kirjoittamalla se avulla H = ε l l, missä ε l vastaa tila l yksihiukkaseergiaa. Focki avaruude katatilassa { i } Hamiltoi fuktio (eli eergia) omiaisarvo o tällöi yksikertaisesti l E = ε l l, missä l o operaattori l omiaisarvo ja kertoo vastaava tila miehitysluvu. Tällöi kostruktiossa o erityisesti huomattavaa, että systeemi hiukkaste kokoaismäärää ei tarvitse eksplisiittisesti spesifioida, mikä oki Focki avaruudessa toimimise hyödyllie piirre. l 8

9 Makrotilat ja tiheysoperaattori Aiva kute klassisessa mekaiikassa, myös kvattimekaiikassa esemble määritellää joukkoa mikrotiloja, jotka vastaavat samaa, yleesä termodyaamiste suureide avulla määriteltyä makrotilaa. Puhtaassa tilassa systeemi tila tuetaa maksimaalisella tarkkuudella, ts. sitä kuvaa joki vektori Ψ N: hiukkase (ati)symmetrisoidussa Hilberti avaruudessa. Tämä o kuiteki varsiki makroskooppiste systeemie tapauksessa äärimmäise harviaie tilae; yleesä systeemi oki s. sekatilassa, jossa hiukkaste lukumäärääkää ei usei tarkkaa tiedetä. Sekatila saadaa joukkoa mahdollisia tiloja Ψ, jotka esiityvät todeäköisyyksillä p. Mielivaltaise operaattori  esemblekeskiarvo lasketaa silloi odotusarvoa  = p Ψ Â Ψ = p Ψ m m  Ψ,m, = Ψ p Ψ m m Â,m, ϱ m m  = Tr(ϱ Â), m, missä summat m: ja : yli käyvät läpi relevati avaruude (Focki avaruude tai N: hiukkase (ati)symmetrisoidu Hilberti avaruude) joki täydellise kaa kaikki kvattitilat. Olemme määritelleet tässä tiheysoperaattori ϱ = p Ψ Ψ, missä summa käy läpi systeemissä esiityvät kvattitilat ja selvästi vaaditaa, että p = 1 (huomaa kuiteki, että tiloje Ψ ei vaadita muodostava täydellistä kataa). Tiheysoperaattori o suora kvattimekaaie vastie klassisesta statistisesta fysiikasta tutulle faasiavaruude tiheysjakaumalle. Puhtaassa tilassa ϱ = Ψ Ψ, mistä selvästi seuraa relaatio ϱ 2 = ϱ ; (helpoksi) harjoitustehtäväksi

jätetää se äyttämie, että implikaatio toimii myös toisee suutaa, ts. ϱ 2 = ϱ pätee vai puhtaille tiloille. Tiheysoperaattori tärkeimpiä omiaisuuksia ovat: 1. Automaattie ormitus: Tr ϱ = ϱ = p Ψ Ψ, = p Ψ Ψ = p = 1 2. Hermittiivisyys: ϱ = ( p Ψ Ψ ) = p Ψ Ψ = ϱ. 3. Positiivisuus: mielivaltaiselle tilalle Φ Φ ϱ Φ = p Φ Ψ Ψ Φ = p Φ Ψ 2 0., Tiheysoperaattori aikakehitys saadaa puolestaa suoraa Schrödigeri yhtälöstä: iħ t ϱ = iħ t p Ψ Ψ = iħ p ( t Ψ ) Ψ + p Ψ ( t Ψ ) = p Ĥ Ψ Ψ p Ψ Ψ Ĥ = [Ĥ, ϱ ] iħ ϱ = [Ĥ, ϱ ]. t Tämä o vo Neumai yhtälö, joka vastaa klassise mekaiika Liouville yhtälöä. Se pätee systeemeille, jotka eivät vuorovaikuta ympäristösä kassa, ts. joissa Ĥ ei riipu mahdollisista ulkoisista koordiaateista. O mielekiitoista huomata, kuika paljo kivuttomampaa liikeyhtälö johto oli kvattimekaaisessa tapauksessa kui Liouville yhtälö johto klassisessa faasiavaruudessa. 10

Statioaarisessa tilassa o selvästi oltava ϱ = 0 eli [Ĥ, ϱ ] = 0. Aiva kute t klassise mekaiika tapauksessa aiemmi, tämä o mahdollista, jos tiheysoperaattori riippuu vai säilyvistä (Ĥ: kassa kommutoivista) suureista. Huom 1 Puhtaa tila ja sekatila ero odotusarvoja laskettaessa: Sekatilassa saatii yllä  = p Â. Jos kyseie kata oletetaa täydelliseksi, mielivaltaie puhdas tila Ψ voidaa puolestaa kirjoittaa muodossa Ψ = Ψ = a, missä a 2 o todeäköisyys havaita systeemi tilassa. Puhtaassa tilassa operaattori  odotusarvo o siis  = Ψ Â Ψ = a 2  + m a m a m Â, jossa jälkimmäie summa häviää vai tarkasteltava operaattori omiaistiloje kaassa. Sekatilassa jälkimmäisiä iterferessitermejä ei ole. Huom 2 Statioaarise tila ehdosta [Ĥ, ϱ ] = 0 seuraa suoraa mielekiitoie tulos eergia omiaistiloille: Ĥ = E ; Ĥ β = E β β [Ĥ, ϱ ] = 0 E ϱ β = E β ϱ β ϱ β = 0 ellei E = E β, eli ϱ o diagoaalie eergiakaassa. Mielivaltaisessa kaassa ϱ : ei tietekää tarvitse olla diagoaalie; se elemettie fysikaalie merkitys (todeäköisyystulkita) o kuiteki selkei diagoaalisessa tapauksessa. Huom 3 Statistiselle eli Gibbsi etropialle voidaa määritellä kvattimek. vastie S = Tr ϱ l ϱ, joka diagoaalisessa kaassa saa muodo S = p l p. Tämä fuktio o selvästi positiividefiiitti ja häviää (miimoituu) puhtaassa tilassa. 11

Tilatiheys Tutkitaa jällee yksikertaisuude vuoksi systeemiä, jolla o diskreetti eergiaspektri, ja määritellää tilakertymäfuktio J(E) = θ(e E ). Se selvästiki kertoo tiloje lukumäärä, joide eergialle E pätee E E. Tilatiheys ω(e) määritellää yt derivaattaa ω(e) = dj(e) de = δ(e E ), jolloi kombiaatio ω(e)de kertoo eergiavälillä (E, E + de) olevie tiloje lukumääärä. Kaasta riippumattomasti voidaa selvästi kirjoittaa ja J(E) = Tr θ(e Ĥ) ω(e) = Tr δ(e Ĥ). Tilatiheys voidaa ajatella kvattimekaiika vastieea klassise faasiavaruude eergiapia tilavuudelle Σ E. Termodyaamisella rajalla (iso N, V), jossa tiloje spektristä tulee jatkuva, se saa tyypillisesti deltafuktioesitystä sileämmä muodo (ks. esimerkit alla). Esimerkki 1: Vapaa hiukkase tilatiheys Hiukkase Hamiltoi fuktio o H = p 2 /2m. Ku tarkastellaa hiukkasta laatikossa V = L 3, ovat ormitetut eergia omiaisfuktiot tuetusti missä k = 2π L ( x, y, z ) ja p 2 = ħ 2 k 2. Tilakertymäfuktio o yt Ψ k (r ) = 1 V eik r 12

J(E) = θ (E ħ2 k 2 2m ) jatkumo gv (2π) 3 d3 k θ (E ħ2 k 2 2m ) x, y, z = gv (2π) 3 4π 1 (2mE) 3/2 3 (ħ) 3 = 4π 3 gv (2mE)3/2 h 3 missä g o esim. spiistä johtuva mahdollie degeeraatiotekijä. Tilatiheys saa puolestaa arvo ω 1 (E) = dj(e) de gv = 2π h 3 (2m)3/2 E 1/2 C 1 VE 1/2, Esimerkki 2: N: vapaa hiukkase tilatiheys. C 1 = 2πg( 2m h 2 )3/2. Nyt H = ħ2 2 N k i i=1 ja 2m J(E) = θ (E ħ2k i ) 2m x, y, z i=1 x, y, z N 2 g N V N (2π) 3N d 3 k 1 d 3 k N θ (E ħ2 2 N k i i=1 ) 2m Itegraali vastaa selvästi 2mE/ħ -säteise 3N -ulotteise pallo tilavuutta, joka yleie kaava o tuetusti V d = πd/2 r d Γ ( d. 2 + 1) Tästä saadaa ottamalla huomioo N: idettise hiukkase permutaatioista klassisesti tuleva N! ja edellee J N (E) = g N V N π 3N/2 ( 2mE 3N ħ ) (2π) 3N Γ ( 3N 2 ω N (E) = dj N(E) de + 1) N! = 3N gnvn π 2 (2mE) 3N/2 h 3N Γ ( 3N + 1) N! 2 = gn V N π 3N 2 (2m) 3N/2 E 3N 2 1 N! h 3N Γ ( 3N 2 ) 13

= (C 2V) N E 3N 2 1 N! Γ ( 3N, jossa C 2 = g(2πm)3/2 2 ) h 3. O hyvä huomata, että tässä johdettu tulos o oikea aioastaa klassisella rajalla, jossa yksikää kvattitila ei ole moikertaisesti miehitetty. Oikeisii bose- ja fermikaasuje kvattistatistiikkoihi palaamme myöhemmi. 14