Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005
|
|
- Jorma Tikkanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Laaja matematiikka Kertaustehtäviä Viikko 7/ 005 Tehtävät ovat Laaja matematiikka : ja : alueelta olevia etisiä välikoe- ja tettitehtäviä. Alkupää tehtävät liittyvät yleesä kurssii ja loppupää kurssii. Täsmällistä jakoa ei voi esittää, koska kurssie sisällöissä o päällekkäisyyksiä ja raja kurssie välillä o vaihdellut.. Oko xy-taso viiva { (x,y) (0 x < ) (y = 0) } taso pistejoukkoa avoi, suljettu vai ei kumpaakaa? -Perustele väitteesi.. Etsi muodossa a + ib kaikki yhtälö x + x + i + = 0 kompleksiset ratkaisut. 3. Osoita "epsilo-tekiikkaa" käyttäe, että lim l(x) =. x >0+ 4. Etsi muodossa a + ib kaikki e kompleksiluvut z, jotka toteuttavat z 4 =. 5. Oletamme, että fuktio f : D R R : x f(x) o jatkuva aluee D sisäpisteessä x 0, ja että f(x 0 ) > 0. Osoita, että o olemassa luku δ > 0 ja säde r > 0 site, että koko pallo B(x 0, r) sisällä f(x) δ, ts että x B(x 0, r) : f(x) δ. 6. Osoita, että mielivaltaisessa ormiavaruudessa V pitää paikkasa mielivaltaisille x,h V : x + h x h. Huomaa itseisarvomerkit vasemmalla puolella! 7. Oko piste x R jouko N'(x;r) R reuapiste vai ei? Oletamme, että r > 0.
2 8. Tarkastelemme reaalialkioista jooa a, a,..., a,..., missä a = + ( ) Osoita ("ε -tekiikalla"), että lim -> a =.. 9. Fuktio f : R R : x x, ku x 0 x, ku x > 0 origossa?. Oko fuktio f jatkuva 0. Oko avaruude R 3 pisteistö { (x,y,z) R 3 x + y + z = z > 0 } suljettu, avoi vai ei kumpaakaa. Perustele!. Muodosta fuktiolle f : R R : x x Taylori kaava mukaie esitys origossa site, että mukaa ovat vielä 3. astee termit. -Voit halutessasi käyttää Peao-tyyppistä jääöstermiä.. Aalysoi, milloi o mahdollista (ja oko koskaa), että kompleksiluvut z, z toteuttavat z z < z z. si( 3. Tarkastellaa fuktiota f : R R : x x ), ku x 0 0, ku x = 0 kyseie fuktio ei ole jatkuva origossa.. Osoita, että 4. Fuktio x : R R : t x(t). Tiedetää, että fuktio x o derivoituva kaikilla argumeti t arvoilla, ja että lisäksi x(t) =, samoi kaikilla argumeti t arvoilla. Osoita, että tällöi x(t) T x'(t) = 0 muuttuja t suhtee idettisesti, eli vektorit x ja x' ovat aia ortogoaaliset. si (x) 5. lim x -> 0 cos(3x) o todella olemassa? =? Perustele tuloksesi: mistä tiedät, että kyseie raja-arvo
3 6. Oko loogie lause ( A B) B tautologia, ts oko se aia tosi riippumatta propositioide A ja B totuusarvoista. Perustele tuloksesi. 7. Todista tarkasti oikeaksi tai osoita vastaesimerkillä vääräksi: Jos reaalilukujoolle ( a k ) pätee lim( ak ) k =, ii lim a =. k k 8. Taso T kulkee kolme erillise pistee x, x, x 3 kautta. Pisteet eivät sijaitse samalla suoralla. Suora S kulkee puolestaa kahde erillise pistee x 4, x 5 kautta. Oletamme, että suora leikkaa taso täsmällee yhdessä pisteessä. Johda lauseke suora ja taso leikkauspisteelle. Saat max kaksi ylimääräistä pistettä, jos perustelet saamasi tulokse avulla a) välttämättömä ehdo sille, että suora ei leikkaa tasoa täsmällee yhdessä pisteessä b) välttämättömä ja riittävä ehdo sille, että suora yhtyy tasoo äärettömä moessa pisteessä. 9. Suora kulkee euklidisessa avaruudessa ("kotiavaruudessa") R 3 erilliste pisteide x ja x kautta. Määrää suora se piste, joka o lähiä origoa. 0. Taso T = { x R 3 a (x x 0 ) = 0 }, missä vektorit a,x 0 R 3, a 0. Oletamme, että erilliset pisteet x, x T. Osoita, että pisteide x, x kautta kulkeva suora kuuluu kokoaisuudessaa tasoo T.. Avaruudessa R 3 o määritelty taso T = { x R 3 a (x x 0 ) = 0 }, missä a,x 0 R 3, a 0. Oletamme, että pisteet x ja x kuuluvat tasoo T. Osoita taso yhtälö perusteella, että tällöi a (x x ) = 0.. Kotiavaruudessamme R 3 suora S kulkee aettuje pisteide x ja x kautta; taso T kulkee puolestaa aettuje pisteide x 3, x 4 ja x 5 kautta. Kaikki maiitut pisteet ovat erillisiä; pisteet x 3, x 4 ja x 5 eivät sijaitse samalla suoralla. Kuika kaukaa piste x o suoraa S pitki mitattua tasosta T?
4 3. "Kotiavaruudessamme" R 3 o aettu taso T = {x R 3 a (x x 0 ) = 0}, missä vektori a R 3, a 0. Avaruudessa R 3 tuetaa myös pisteet x ja x, jotka taso yhtälöö sijoitettuia tuottavat a (x x 0 ) = t > 0 ja a (x x 0 ) = t < 0. Osoita, että pisteet x ja x sijaitsevat "eri puolilla tasoa" siiä mielessä, että iide välie yhdysjaa leikkaa taso. 4. Matriisi A R x, vektori b R, b 0. Tiedetää, että Ax = b ; Ax = b ; x x. Rak(A) = -. Kostruoi yhtälöryhmä Ax = b kaikki ratkaisut. Osoita, että olet todellaki löytäyt kaikki ratkaisut. 5. Neliömatriisi jälki (trace) määritellää tuetusti seuraavasti: Jos A R x, (A) ij = a ij, ii trace(a) = a ii. Oletamme, että B R mx, C R xm, i= 0 < m <. Pitääkö paikkasa, että tällöi aia trace(ab) = trace(ba)? - Todista väitteesi. 6. T Olkoo pystyvektori a,. Osoita, että eliömatriisi A = aa o sigulaarie. 7. Oletamme, että matriisi A R x o ivertoituva. Oko matriisi A T A välttämättä ivertoituva? -Perustele väitteesi. (Oletamme, että.) 8. Matriisi A R x, A T = A (s. atisymmetrie matriisi). Osoita, että mielivaltaie vektori x R toteuttaa tällöi yhtälö x T Ax = Eräässä sisätuloavaruudessa V vektorit a ja b ovat keskeää ortogoaaliset, samoi keskeää vektorit b ja c. Vektorit ovat ollasta poikkeavia: a,b,c 0. -Ovatko vektorit a ja c välttämättä ortogoaaliset? Todista väitteesi!
5 30. Matriisi A R x. Tiedetää, että o olemassa vektori a R, a 0, site, että a T A = 0 T. Oko matriisi A välttämättä sigulaarie? Perustele väitteesi! 3. Matriisi A R mx, > m, rak(a) = m. Oko yhtälöllä Ax = b, b R m, aia ratkaisu? Oko mahdollie ratkaisu aia yksikäsitteie? Perustele väitteesi! 3. Oletamme, että matriisi A R x o ivertoituva. Osoita (sopivii lauseisii vetoamalla), että yhtälöllä A T x = b (b R ) o aia yksikäsitteie ratkaisu. 33. Tarkastellaa koordiaattifuktiota [ ] i : R R : (x,x,...,x i,...,x ) T x i = [x] i. Osoita, että fuktio [ ] i o lieaarikuvaus. 34. Lieaarikuvaus L : R R m : x L (x), lieaarikuvaus L : R m R p : y L (y). Osoita, että yhdistetty kuvaus L L o lieaarikuvaus. x 35. Oko kuvaus f : R 3 R 3 : y z väitteesi. z x y lieaarikuvaus vai ei? Todista 36. Fuktio f : R 3 > R : x > x (a x). Oko kuvaus f lieaarie? Perustele! 37. a Fuktio f : R 3 R 3 : x (a x) b, missä a,b R 3 ; a = a a 3, b b = b, b 3 o aiva ilmeisesti lieaarikuvaus (ei tarvitse todistaa). Muodosta kuvaukse matriisiesitys (luoollisessa kaassa, ts. mahdollisimma yksikertaisesti).
6 38. Fuktio f : R R : x a T Ax, missä a R p, A R px ovat vakioita muuttuja x suhtee. Osoita, että fuktio f o derivoituva origossa, ja muodosta kyseie derivaatta. 39. Fuktio f : R R : x e xt a, missä a R o vakiovektori. Määrää fuktio f derivaatta pisteessä x. 40. Lieaarikuvaus (fuktio) L : R --> R m : x --> L(x). Osoita, että kyseise kuvaukse derivaatta o samaie lieaarikuvaus L. 4. Muuttuja x R, vakio a R. Johda lauseke fuktio e at x gradietille. 4. Fuktio f : R R : x f(x) = si(a x ), missä a R, a 0. Muodosta kyseise fuktio f derivaatta pisteessä x 0. (Normi oletetaa euklidiseksi.) 43. Muodosta fuktio f : R R : x [ (a x) T (a x) x T x ] derivaatta pisteessä x 0 R. Tässä a R o vakiovektori. 44. grad( x a 3 ) =? a,x R 3 ; a x tarkastelupisteessä. 45. Kuvaus f : R R : x x... x x x... x (alkioide järjestys muuttuu kääteiseksi). a) Osoita, että f o lieaarikuvaus b) Määrää tämä lieaarikuvaukse matriisi. 46. Oletamme, että fuktiolla f : R R m : x f(x) o derivaatta pisteessä x 0 R, arvoltaa 0 R mx (0 -matriisi). Osoita, että fuktio f o jatkuva tässä pisteessä.
7 47. Fuktio f : R R : x cos(3x i ), missä x i = [x] i, vektori x i:s kompoetti; i o kiiteästi valittu. Muodosta fuktio f derivaatta mielivaltaisessa pisteessä x R. 48. a) Olkoo f(x,y,z) = [x, y,z, 36 9x y z ] T. Muodosta f: derivaatta f ' eli Jacobi matriisi J f (x,y,z) kohdassa x = -, y = 5, z =. b) Laske yhdistety kuvaukse g f derivaatta ( Jacobi matriisi ) pisteessä (,-), ku f (x,y)=(x 3, y 3 ) ja 3 3 g ( uv, ) = ( u + v, u v). 49. Millä reaaliparametri p arvoilla itegraali x p l(x) dx o olemassa 0 (tavallisea tai epäoleellisea)? Laske vastaavat itegraali arvot. 50. Alue A o xy-taso puoliympyrä {(x, y) x + y R y 0 }. Laske itegraali A yda. 5. Oletamme, että jatkuva fuktio f : R R o parito : x : f( x) = f(x). Osoita muodollisesti, itegraali yleisiä omiaisuuksia hyödytämällä, että mielivaltaiselle vakiolle a a R pätee: f(s)ds = 0. a 0 5. Laske arvo itegraalille x a x dx. Vakio a > 0. a
8 53. Laske itegraali yda, ku Ω o suorie y = x ja x+y = sekä x-akseli rajaama kolmio. Ω 54. Oko seuraava oikei: dx = 3/? Ellei, korjaa ja selvitä tilae. x 55. Laske se avaruude R 3 ei-egatiivisessa oktatissa 3 {( xyz,, ) R xyz,, 0} oleva kappalee tilavuus, jota rajoittavat koordiaattitasot, taso x + y = ja pita z= 4 x. 56. Olkoo S paraabeli y = x, suora x = ja x-akseli rajaama alue. Mitä ovat itegroimisrajat itegraaleissa S S f(x,y)dxdy ja f(x,y)dydx joissa o itegroitu S: yli eri järjestyksissä? 57. Projisioi vektori y=[,, 3] T tasolle T: x x + x3 = a) Määrittele, mitä o aliavaruude H ortogoaalie komplemetti. b) Osoita, että avaruude R kaikki aliavaruudet H ovat muotoa { x R Ax = 0}, missä A o joki m -matriisi, m = dim H. 59. Projisioi vektori y=[,, 3] T aliavaruudelle 3 H = { x x x + x = 0, x + x + x = 0} Jos vektorit a, b ja c ovat avaruudessa R lieaarisesti riippumattomia, ii ovatko sitä myös "keskiarvovektorit" u=½(a+b), v=½(a+c) ja w=½(b+c)? (Perustelu!)
9 6. Sieveä lauseke A(B+A) T B-A(B T A) T missä A ja B ovat ortogoaalisia matriiseja. 6. Etsi kaikki matriisi M = omiaisarvot ja vastaavat omiaisvektorit (omiaisavaruuksie kaat). Mitä ovat omiaisarvoje algebralliset ja geometriset kertaluvut? Oko matriisi M diagoalisoituva? 63. Etsi kaikki matriisi M = omiaisarvot ja vastaavat omiaisvektorit (omiaisavaruuksie kaat). Mitä ovat omiaisarvoje algebralliset ja geometriset kertaluvut? Oko matriisi M diagoalisoituva? 64. Diagoalisoi ortogoaalisesti matriisi 0 B = a) Olkoo Q ortogoaalie -matriisi. Mitä ovat Q: determiatti det(q) ja ragi eli aste rak(q)? b) Olkoot B ja C -matriiseja ja B ei-sigulaarie. Osoita, että tällöi matriiseilla BC ja CB o samat omiaisarvot.
10 66. a) Neliömatriisi A o ilpotetti, jos A k = O, jollaki k N. Osoita, että 0 kuuluu aia ilpoteti matriisi omiaisarvoihi. b) Osoita, että ortogoaalise eliömatriisi determiatti o tai a) Määrittele eliömuodo positiividefiiittisyys. Mikä yhteys positiividefiiittisyydellä o eliömuotoa vastaava matriisi omiaisarvoihi? b) Määritä fuktio iide laatu. 3 3 f :, f( x, y) = x + 6xy y + lokaalit ääriarvot ja 68. Tutki, suppeeeko sarja a) 4 k = k k b) 5 = ( ). cos( ) 69. a) Suppeeeko sarja? = b) Pitääkö paikkasa (perustele tai aa vastaesimerkki): jos ak b k kaikilla k ja sarja b suppeee, ii myös sarja k = k k = a k suppeee? 70. Osoita, että sarja k si( kx) suppeee tasaisesti välillä [0,]. k = x 7. Millä x: arvoilla potessisarja suppeee? =
11 7. a) Laske π x π si(/ x) dx. b) Suppeeeko itegraali 3 ( x ) dx? 73. Laske tasoitegraali x da, ku S o suorie y=x, S e x= ja x-akseli rajaama kolmio. 74. a) Ratkaise differetiaaliyhtälö y' = -y/x. b) Ratkaise alkuarvoprobleema y'' - y' -y = 0, y(0) = -, y'(0) = 0. c) Etsi differetiaaliyhtälöryhmä x' = Ax 4 6 yleie ratkaisu, ku A = Tarkastellaa differetiaaliyhtälösysteemiä x' = Ax, ku A =. 3 a) Muodosta yhtälö yleie ratkaisu. b) Hae alkuehdo x(0)=[0 ] T toteuttava ratkaisu. c) Tutki, oko 0 stabiili tasapaiopiste. 76. Ratkaise alkuarvotehtävä x = 5x 6x x = 4x 5x, x (0) =, x (0) = 0.
12 77. Etsi differetiaaliyhtälöryhmälle x' = Ax alkuarvo x(0)=[ 0] T toteuttava ratkaisu, ku A = a) Ratkaise alkuarvotehtävä x y' + y =0, y()=3. b) Etsi differetiaaliyhtälöryhmä x'( t) = Ax ( t) yleie ratkaisu, ku 3 4 A= (Voit käyttää seuraavia tietoja matriisista A: omiaisarvot ovat λ = 8, λ = λ 3 = - ja omiaisarvoa λ vastaava omiaisvektori o v =[ ] T. Laske loput tarvittavat.)
Insinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mat Lineaarinen ohjelmointi
Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi
Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims
75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva
Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan
RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa
3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Matematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi
Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on
4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.
12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1
Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +
Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
Matematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
Matematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)
BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia
10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45
Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
Tehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
Mat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
Luku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Matriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
1 Eksponenttifunktion määritelmä
Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella
MATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( ) JYVÄSKYLÄN YLIOPISTO Harjoituste 3 ratkaisut MATEMATIIKAN JA TILASTOTIETEEN LAITOS Topologiset vektoriavaruudet 3.1. Jokaie kompakti joukko K R määrää fuktioavaruudessa E = C(R ) = {f : R R f o jatkuva}
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
S Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
SARJAT JA DIFFERENTIAALIYHTÄLÖT
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3
. Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat
ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)
Derivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
Matematiikan tukikurssi
Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.
2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.
0. Maksimiperiaate Laplace-yhtälölle 0.. Maksimiperiaate. Alueessa Ω R määritelty kaksi kertaa erivoituva fuktio u o harmoie, jos u = j= = 0. 2 u x 2 j Lause 0.. Olkoot Ω R rajoitettu alue ja u C(Ω) C
Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
Vektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!
MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R
a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )
Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät
Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että
ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä.
Vaasa yliopisto julkaisuja 225 U = 0.1213-0.9359-0.3307-0.1005-0.3430 0.9339 0.9875 0.0801 0.1357 S = V = >> 4.5221 0 0 0 2.2793 0 0 0 1.1642 0.0537-0.8212-0.5681 0.4414-0.4908 0.7512 0.8957 0.2911-0.3361
Johdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
Matematiikka B1 - TUDI
Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Taustatietoja ja perusteita
Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
f(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
Tarkastelemme sitten epähomogeenista toisen kertaluvun yhtälöä
45. Epähomogeeiset yhtälöt Tarkastelemme sitte epähomogeeista toise kertaluvu yhtälöä (8) Ly= y + ay + ay= b. Kute edellä olevasta teoriasta o selviyt, riittää yleise ratkaisu löytämiseksi tutea vastaava
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3
2. Reaaliarvoiset funktiot 2.1. Jatkuvuus 23. Tutki funktion f (x,y) = xy x 2 + y 2 raja-arvoa, kun piste (x,y) lähestyy origoa pitkin seuraavia xy-tason käyriä: a) y = ax, b) y = ax 2, c) y 2 = ax. Onko
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Differentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Analyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
Alkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Ratkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
Epäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden