MATEMATIIKAN JA TILASTOTIETEEN LAITOS
|
|
- Otto Kinnunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 f ( ) JYVÄSKYLÄN YLIOPISTO Harjoituste 3 ratkaisut MATEMATIIKAN JA TILASTOTIETEEN LAITOS Topologiset vektoriavaruudet 3.1. Jokaie kompakti joukko K R määrää fuktioavaruudessa E = C(R ) = {f : R R f o jatkuva} semiormi pk (f) = sup f(k) (= max f(k)). Nämä semiormit määräävät avaruutee E lokaalikoveksi topologia T. a) Oko T Hausdorff-topologia? b) Suppeeeko fuktiojoo f (x) = 1 ex topologiassa T? c) Oko olemassa E: ormi, joka ataisi topologia T, eli oko E ormeerautuva? (vihje: ei) a) O T 2. Riittää, että jokaie f E \ {0} voidaa erottaa origosta erillisi ympäristöi. Olkoo f 0. Jatkuvuude ojalla o olemassa luku ɛ > 0 ja kompakti väli K R, jolla f(x) > 3ɛ. Nyt B pk,0,ɛ B pk,f,ɛ =. b) Suppeee ollaa. Huomataa heti, että semipallot B = B pk,0,ɛ muodostavat origo ympäristökaa. Olkoo B = B pk,0,ɛ. Nyt p K (f ) = sup f(k) = sup K (ex ) 0, jote o olemassa 0 N site, että f B, ku 0. c) Ei ormeeraudu. Vastaoletus: Joki ormi ataa sama toplogia T. Silloi erityisesti ormi o jatkuva kuvaus, jote olla ympäristö alkukuvaa ormi yksikköpallo sisältää origo T ympäristö, joka puolestaa sisältää joki semipallo B = B pk,0,ɛ, koska semipallot B = B pk,0,ɛ muodostavat origo ympäristökaa. Silloi p K (f) < ɛ = f 1 ja siis p K (f) < ɛ = f 1, jote p K (f ) 0 = f 0 = f 0, mikä ei pidä paikkaasa Semiormit p (f) = sup 0 t 1 f () (t) ( = 0, 1, 2,... ) määräävät avaruutee E = C ([0, 1]) = {f : [0, 1] R f o äärettömä mota kertaa derivoituva} lokaalikoveksi topologia T. Ku f E, merkitää T f(x) = x 0 f(t) dt. T o siis lieaarikuvaus (eli operaattori eli trasformaatio) E E. a) Oko T jatkuva? b) Oko topologia T ormeerautuva? a) T o jatkuva. Kuvafuktio g = T f derivaatat ovat tieteki g = f, g = f,..., g () = f ( 1). Site kaikilla > 1 pätee p (T f) = p g = p 1 f, jote täytyy eää tutkia p 0. p 0 (T f) = sup x 0 f(t) dt sup f = p 0 (f). OK! b) Ei ormeeraudu. Idea o sama kui edellisessä tehtävässä. Vastaoletus: Joki ormi ataa sama toplogia T. Silloi erityisesti ormi o jatkuva kuvaus, jote olla ympäristö alkukuvaa ormi yksikköpallo B. sisältää origo T ympäristö, joka puolestaa sisältää joki semipalloje leikkaukse ja siis B. λ m i=1 B p i, ( 1 < 2 < < m ( N)). Toisi saoe jollaki µ > 0 pätee µ max 1 i m p i.
2 Toisaalta vastaoletettii, että yksiää virittää topologia, jolloi { } o jatkuvie semiormie kata ja o siis olemassa luku λ > 0 site, että p m+1 < λ. Yhdistämällä arviot saadaa p m+1 < λ λµ max 1 i m p i. Tämä huomaa mahdottomaksi keksimällä joo (f α ) α N, jolla p i (f α ) 0 kaikilla i = 1,..., m, ku α, mutta ei p m+1(f α ) 0. Sellaiseksi kelpaa esimerkiksi f α (x) = α m 1 si(αx), sillä f α () (x) = α m 1 r(x), missä r(x) o rajoitettu fuktio, jote p (f α ) = sup [0,1] f α () (x) 0, ku m ja α, mutta ei lähee ollaa, ku > m. Erityisesti p i (f α ) 0 kaikille i = 1,... m mutta ei p m+1(f α ) Olkoo E reaalikertoimie lokaalikoveksi avaruus ja A se koveksi osajoukko. Osoita, että A o suljettu, jos ja vai jos A joideki E: suljettuje puoliavaruuksie leikkaus. Koska suljettuje joukkoje leikkaus o koveksi, riittää tarkastaa ehdo välttämättömyys. Olkoo siis A koveksi ja suljettu. Komplemetti C = \A o avoi. Olkoo x C. O olemassa pistee x avoi ympäristö U, jolla U C. Koska E o lokaalikoveksi voidaa U valita koveksiksi. Koska E o reaalikertoimie, o Baachi erottelulausee ojalla olemassa jatkuva lieaarimuoto f ja luku α > 0 (Voidaa muute aia valita α = 1) site, että A H = {x E f(x) α} ja U H =, erityisesti x / H. Tästä väite seuraa a) Olkoo E bf ääretöulotteie ormiavaruus. Näytä, että ormikuvaus x x ei ole jatkuva E: heiko topologia suhtee eli heikosti jatkuva. (Heiko topologia määrääviä semiormeia ovat jatkuvie lieaarimuotoje itseisarvot eli kuvaukset x x, x, missä x E.) b) Etä oko ormi tässä topologiassa alhaalta puolijatkuva? Alhaalta puolijatkuvuudelle o riittävää olla jatkuvie kuvauste pisteittäie supremum. a) Jos ormi olisi jatkuva, ii olisi jatkuvie semiormie karakterisoii mukaa olemassa luku N ja jatkuvat semiormit, x i, (i=1,... ), joilla, x i. Tällöi i=1 x i=1 ker x i = x = 0 = x = 0, jote lieaarikuvaus T : E K : x ( x, x 1,..., x, x ) o ijektio, jote dim E dim R = <. b) Hahi ja Baachi lausee tuetu seuraukse mukaa x = siis supremum jatkuvista kuvauksista x, x sup x E \{0} x, x x, x x. 2
3 3.5. Olkoo (E, P ) lokaalikoveksi avaruus. Osoita, että E: joo (x ) N o Cauchyjoo, jos ja vai jos p P ja ɛ > 0 0 N s.e. q, r 0 = p(x q x r ) ɛ. Määritelmä mukaa joo (x ) o Cauchy topologisessa vektoriavaruudessa E, T jos ja vai jos vastaava alkeisfiltteri o Cauchy-filtteri, mikä puolestaa tarkoittaa, että kaikilla 0: ympäristöillä U U o olemassa luku 0 N site, että x x m U kaikilla, m 0. Tehtävä tilateessa (E, P ) o lokaalikoveksi avaruus, jote voi olettaa, että U o katajoukko ja muotoa U = λ p H U p, missä H P o äärellie joukko katasemiormeja. Yllä esitetty Cauchy-joo määritelmä kohta x x m U saa muodo x x m λ p H U p, eli p(x x m ) λ p H. 1) (vai jos) Jos joo o Cauchy ja p P ja ɛ > 0, ii valitaa H = {p} ja λ = ɛ, jolloi määritelmä ataa väittee. 2) (jos) Jos joo toteuttaa tehtävä ehdo ja U o muotoa U = λ p H U p, missä H P o äärellie, ii valitaa kulleki p H luku p site, että p(x x m ) λ, m p. Ku, m 0 = max{ p p H}, ii siis p(x x m ) λ, m p eli x λ p H U p Olkoo E = i I E i topologiste vektoriavaruuksie tuloavaruus (tulotopologia!) ja π i : E E i siihe liityvä projektio (i I). Osoita, a) että F o Cauchy filtteri E:ssä tasa silloi, ku jokaie π(f) E i o Cauchy filtteri E i :ssä ja b) että E o täydellie aia ja vai, ku jokaie E i o täydellie. Jos äärettömä moe avaruude tulotopologia ei ole tuttu, voit olettaa, että I = {1, 2} eli tarkastella kahde avaruude tuloa. a) Tulotopologia o hieoi topologia, jossa kaikki projektiokuvaukset π i : E = i I E i E i : x x i ovat jatkuvia. Tieteki e ovat lieaarisia surjektioita, jote kaattaaki todistaa hiema yleisempi tulos, joka mukaa topologise vektoriavaruude E Cauchy-filtteri F kuva jatkuvassa lieaarisessa kuvauksessa T : E F o Cauchy-filtteri. Muistetaa, että missä tahasa kuvauksessa filtterii kuuluvie joukkoje kuvat muodostavat filtterikaa, joka virittämää filtteriä saotaa alkuiperäise kuvafiltteriksi. Surjektio ataa suoraa kuvafiltteri. Tarkastamme sille Cauchy-ehdo. Olkoo siis U U F. Koska T 1 U U E, o olemassa M F, jolla M M T 1 U, jolloi T (M) kuuluu filtteri kuvaa ja T (M) T (M) = T (M M) T (T 1 U) U. Oletetaa seuraavaksi, että jokaie π i (F) o Cauchy. Olkoo U U E tulotopologiassa. Voimme olettaa, että U o katajoukko eli muotoa U = U j E i, j J missä J o äärellie ja U j U Ei. Valitaa kullaki j J joukko M j π j (F), jolla M j M j U j. Kuvafiltteri määritelmä mukaa M j π j (N j ) jolleki N j F. (Surjektiivisuude vuoksi voisi vaatia jopa M j = π j (N j ).) Valitaa N = N j E i. j J i I\J i I\J 3
4 Tällöi tieteki N +N U, jote o eää äytettävä, että N F. Huomataa, että N = j J π 1 (M j ) = j J π 1 (π(n j )) = N j J N j ja muisteaa, että N j F ja että filtteri sisältää joukkojesa äärelliset leikkaukset ja ylijoukot. Selvä! b) Avaruude E täydellisyys tarkoittaa, että jokaie se Cauchy-filtteri F suppeee eli että sille o olemassa x E, jolle F U x (= x + U 0 ). Olkoo esi jokaie E i täydellie ja F Cauchy filtteri tuloavaruudessa E. a) kohda mukaa kuvafiltterit F i = π i (F) ovat Cauchy-filttereitä, siis oletukse mukaa suppeevia: F i U xi joilleki x i E i. Verifioidaa, että F x eli F U x = x+u 0,E, missä x = (x i ) i I E : Olkoo U U x E = E = i I E i. Voimme olettaa, että U o katajoukko eli muotoa U = x + U j E i = x + π 1 U j, j J i I\J j J missä J o äärellie ja U j U 0,Ei. Kullaki j J o U j F j = π j (F), jote π 1 U j F ja siis j J π 1 U j F, jote U x + F. Olkoo sitte tuloavaruus E = i I E i täydellie, ja F j Cauchy filtteri avaruudessa E j jollai j I. Olkoo kaikilla i j F i = U Ei ja olkoo F avaruude E filtteri, joka kataa ovat joukot N i = π 1 M i, i I, M i F i. (Tätä voisi varmaa saoa filtterie tuloksi.) Tämä o a) kohda perusteella Cauchy, sillä π i (F) = F i kaikilla i I ja sekä tutkittava F j että jokaie ympäristöfiltteri U Ei ovat suppeevia, siis Cauchy. Oletukse mukaa siis F suppeee eli F x+u E jolleki x = (x i) i I E. Osoitetaa lopuksi, että F j x j eli F j x j + U Ej. Olkoo x j + U j x j + U ej. Nyt x + π 1 j (U) x + U E F. Siis x j + U Ej jote x j + U Ej F j, ja siis x j + U Ej F j Olkoo π j (x + π 1 j (U)) π j (F) = F j, E = {f C[0, 1] ɛ f > 0 site, että f(t) = 0 0 t ɛ(f)} varustettua ormilla f = sup f. a) Oko joukko {T = f E f( 1 ) 1 N } tyyri? b) Etä oko se origo ympäristö? a) Joukko o mitä absorboiva, sillä jos f E, ii valitaa ɛ = max{ N 1 ɛ}, jolloi λf T aiaki silloi, ku λ 1 ɛ ( max 1 ɛ f( 1 ) ) 1. Joukko T o selvästiki balasoitu ja koveksi. Se o myös suljettu (ja siis tyyri), koska se komplemetti o avoi; olkoo imittäi f E \ T. Silloi o olemassa N, jolla f() > 1. Valitaa r = ( f() 1 ). Silloi avoi pallo B(f, r) = {g E f g < r sisältyy komplemettii ET. Joukko T ei ole origo ympäristö. Muute se sisältäisi joki pallo B(0, 1 ), mutta eipä sisällä. Vastaesimerkiksi kelpaa mikä tahasa sellaie jatkuva, kasvava fuktio, joka o vakio 0 välillä [0, 1 ] ja vakio 1 välillä [ 1, 1]
5 Olemme siis huomaeet, että tutkittava ormiavaruus E ei ole tyyriavaruus. Koska ormiavaruus o merisoitruva ja lokaalikoveksi, seuraa tyyrilauseesta, että E ei voi olla täydellie Esimekki lokaalikoveksi avaruude osajoukosta, joka o jootäydellie, mutta ei täydellie: E = F([0, 1], R) = R [0,1] = {kaikki fuktiot [0, 1] R. Pistesuppeemise topologis, eli semiormit p x = f(x). M = {f E f(x) 0 vai eitää umeroituva moella x [0, 1]. Ratkaisu esi viikolla 3.9. Lisätehtävä jos ehditääja halutaa. Olkoo K R kompakti joukko. Avaruudessa otetaa käyttöö semiormit E = C c (K) = {f : R R f C, supp f K} q α (f) = sup x K ( ) α f(x) x, missä ( x) α f(x) o multi-ideksiä α N vastaava (korkeammaasteie) osittaisderivaatta. Merkitää Q = {q α α N }. Osoita, että (E, Q) o Fréchet avaruus. Ohjeita: Tyydy tilateesee R = R, jos et halua käsitellä moiulotteista tapausta multi-idekseiee. Asiaa ei tule oleellisia eroja. Voit joko osoittaa suoraa, että E o lokaalikoveksi, metrisoituva ja (joo(!)-)täydellie tai sitte tarkastaa, että E o tuetu avaruude C (R ) = {f : R R f C, supp f K} suljettu aliavaruus. Avaruude C (R ) stadarditopologia eli derivaattoje kompakti kovergessi topologia määräävät semiormit p,k (f) = sup x K f(x) tai yhtä lailla ormit f m,k = sup m sup x K f(x), missä K käy läpi kompaktit reaalilukujoukot ja m luoolliset luvut. Tässä topologiassa C o metrisoituva ja täydellie tämä voi olla tuttua aalyysistä.) Ratkaistaa aikaisitaa esi vikolla. 5
Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010
f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna
LisätiedotAnalyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
Lisätiedot=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin
FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)
LisätiedotKompaktissa joukossa jatkuva funktio K on rajoitettu, joten M =sup{ K(s, t) (s, t) [0, 1] 2 } <. Siksi jokaisella Af Hja t [0, 1] pätee
18. YHTÄJATKUVAT JA PREKOMPAKTIT KUVAUSPERHEET 151 Kompaktissa joukossa jatkuva fuktio K o rajoitettu, jote M =sup{ K(s, t) (s, t) [0, 1] 2 }
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...
Lisätiedot8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
LisätiedotTopologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,
Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause
LisätiedotJYVÄSKYLÄN YLIOPISTO. Funktionaalianalyysi Harjoitukset 1,
f ( ) Fuktioaaliaalyysi Harjoitukset 1, 19.1.2005 Jatkuu... Tähdellä merkityt tehtävät ovat ylimääräisiä. 1. Olkoot X epätyhjä joukko, F b (X, R) := {f : X R f o rajoitettu}, f := sup x X f(x) ja d(f,
LisätiedotMATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!
MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R
LisätiedotMATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
LisätiedotÄärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims
75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi
LisätiedotTehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
LisätiedotKompaktisuus ja filtterit
Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
Lisätiedot7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
LisätiedotMatematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
Lisätiedot= {x E x 1} {z K. z x } K = K E. B K (0, x )
23. HEIKOT TOPOLOGIAT 201 Seuraus 23.18. Olkoo E ormiavaruus ja E se duaali. Tällöi E o vektoriavaruude K E vektorialiavaruus. Lisäksi heikko topologia σ(e,e ) tekee siitä tulotopologialla varustetu topologise
LisätiedotMatematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät
Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
LisätiedotTehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
Lisätiedot8. Avoimen kuvauksen lause
FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
LisätiedotKertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
LisätiedotJoukot metrisissä avaruuksissa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia
Lisätiedote int) dt = 1 ( 2π 1 ) (0 ein0 ein2π
Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet
Lisätiedot1 Eksponenttifunktion määritelmä
Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella
LisätiedotKompaktisuus ja kompaktisointi
Kompaktisuus ja kompaktisointi Mikko Salo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2017 Tiivistelmä: Mikko Salo, Kompaktisuus ja kompaktisointi matematiikan
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Lisätiedot9. ORTOGONAALIPROJEKTIOT JA KANNAT HILBERTIN AVARUUDESSA 51
9. ORTOGONAALIPROJEKTIOT JA KANNAT HILBERTIN AVARUUDESSA 5 Lause 8.4 (Pythagoras) 26. Sisätuloavaruude keskeää ortogoaalisille vektoreille x,...,x pätee x j 2 = x j 2. j= j= Todistus. Ku = 2, lasketaa
LisätiedotTopologia Syksy 2010 Harjoitus 11
Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle
LisätiedotMääritelmä 2.5. Lause 2.6.
Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan
Lisätiedot3 x < < 3 x < < x < < x < 9 2.
Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x
LisätiedotDiskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =
Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotTehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
LisätiedotSolmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
LisätiedotTAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA
TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA Arttu Ojanperä (Eero Hyryn luentojen mukaan) 2013 Sisältö 1 Johdanto 4 1 Jatkuvat kuvaukset........................ 4 2 Avoimet joukot..........................
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0402 Diskreeti matematiika perusteet Yhteeveto, osa I 1 Joukko-oppi ja logiikka Iduktioperiaate G. Gripeberg 2 Relaatiot ja fuktiot Aalto-yliopisto 3. huhtikuuta 2014 3 Kombiatoriikka ym. G. Gripeberg
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
LisätiedotRatkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.
Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotEX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
LisätiedotSelvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
LisätiedotNoora Nieminen. Hölderin epäyhtälö
Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise
LisätiedotSeuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi
Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotSeuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1
FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
LisätiedotTopologian demotehtäviä
Topologian demotehtäviä 31.10.2012 1.1 Olkoon X joukko ja {T α } α I epätyhjä (eli I ) perhe X:n topologioita. Ovatko joukot T α P(X) ja/tai T α P(X) α I välttämättä X:n topologioita? Tässä on ehkä syytä
LisätiedotRyhmän osajoukon generoima aliryhmä ja vapaat ryhmät
Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0402 Diskreeti matematiika perusteet Yhteeveto, osa I G. Gripeberg Aalto-yliopisto 12. maaliskuuta 2015 G. Gripeberg (Aalto-yliopisto) MS-A0402 Diskreeti matematiika perusteet Yhteeveto, 12. osa maaliskuuta
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotMetriset avaruudet 2017
Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen
LisätiedotMetristyvät topologiset avaruudet
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Arttu Ojanperä Metristyvät topologiset avaruudet Informaatiotieteiden yksikkö Matematiikka Tammikuu 2016 Tampereen Yliopisto Informaatiotieteiden yksikkö OJANPERÄ,
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotTopologisten avaruuksien metristyvyys. Toni Annala
Topologisten avaruuksien metristyvyys Toni Annala Sisältö 1 Johdanto 2 2 Topologiset avaruudet 3 3 Erotteluaksioomat 8 4 Metristyvät avaruudet 13 5 Metristyvyys 17 1 Luku 1 Johdanto Topologia on matematiikan
LisätiedotDerivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Lisätiedot3 x < < 3 x < < x < < x < 9 2.
Matematiika johdatokurssi Kertaustehtävie ratkaisuja. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x +. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x < 9. Itse
Lisätiedot1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1
Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
LisätiedotMitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille
Harjoitus 1, 30.10.2015 1. Olkoon f : A! [0, 1] mitallinen ja ma) < 1. Näytä, että josonp>1javakio Mt} apple M 2. Olkoon f 2 L 1 A). Näytä, että 2 kaikilla
Lisätiedot(ω, t) W t (ω) 1 2π(t s) exp x2
11. HILBERTIN AVARUUKSIEN SOVELLUKSIA 11 (5) Satuaismuuttujat f i :Ω R, (i I) ovatriippumattomat, mikäli iide virittämät σ -algebrat ovat riippumattomat, eli mikäli kaikille i 1,...,i I, B i1,...,b i Bpätee
LisätiedotInsinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LisätiedotEpäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
LisätiedotLaaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005
7303045 Laaja matematiikka Kertaustehtäviä Viikko 7/ 005 Tehtävät ovat Laaja matematiikka : ja : alueelta olevia etisiä välikoe- ja tettitehtäviä. Alkupää tehtävät liittyvät yleesä kurssii ja loppupää
LisätiedotFourier n sarjan suppeneminen
Fourier sarja suppeemie Leevi Aala Matematiika pro gradu -tutkielma Jyväskylä yliopisto Matematiika ja tilastotietee laitos 7 Tiivistelmä: Leevi Aala, Fourier sarja suppeemie, matematiika pro gradu -tutkielma,
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotMatematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotMetriset avaruudet ja Topologia
Metriset avaruudet ja Topologia 1.0 0.5 0.2 0.4 0.6 0.8 1.0-0.5-1.0 Jouni Parkkonen Luentoja Jyväskylän yliopistossa syksyllä 2017 Sisältö I Metriset avaruudet 5 1 Metriset avaruudet 7 1.1 Määritelmä ja
LisätiedotMathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely
f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into
Lisätiedot1 Supremum ja infimum
Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,
LisätiedotAnalyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
LisätiedotU β T. (1) U β T. (2) {,X} T. (3)
1.1 a) Joukkoperhe T = α I T α P(X) on topologia. Todistus. Osoitetaan, että topologian määritelmän 1.1 ehdot (1), (2) ja (3) toteutuvat. Ehtoa (1) varten olkoon {U β β J} T. Pitää osoittaa, että U β T.
Lisätiedot3 10 ei ole rationaaliluku.
Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain
LisätiedotStokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015
Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,
Lisätiedot