8. Klassinen ideaalikaasu

Koko: px
Aloita esitys sivulta:

Download "8. Klassinen ideaalikaasu"

Transkriptio

1 Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl Klassinen ideaalikaasu 1

2 Fysikaalinen tilanne Muistetaan: kokeellisesti havaittu klassinen ideaalikaasu PV = Nk B T Pätee kun Lämpötila korkea (T 0 ongelma TD3:n kanssa) Kaasu on harva: hiukkasten etäisyys hiukkasen koko Huoneilmassa esim. (V /N) 1/3 ( (1, J/K) 300K/100000Pa ) 1/ m, vrt. tyypillinen molekyylin koko m Klassinen =? (Selviää pikku hiljaa: itse asiassa mikään SM systeemi ei ole täysin klassinen, vaan tässä efektiivisesti klassinen =kuuma) Tavoite: Mikroskooppinen malli klassiselle ideaalikaasulle Halutaan johtaa tilanyhtälö, yksiatomisen kaasun energia E = 3 2 Nk BT Mitä kuuma, harva, klassinen tarkoittavat mikroskooppisesti? 2

3 Kineettinen kaasuteoria Molekyylien liike-energia ( tr = translaatio) E tr = N i=1 1 2 mv2 1 2 Nmv2 rms Paine = törmäily astian seiniin P = F/A = = 1 N 3 V mv2 rms = 2 3 Etr/V Jos PV = Nk B T, niin E tr = 3 Nk 2 BT Tulkinta: lämpötila liike-energia atomia kohti (mutta yhteys vain kokeellisesti määritetyn tilanyhtälön kautta, koska ei ole käytetty SM lämpötilan määritelmää) Molekyylien törmäykset = muita kaasun ominaisuuksia (ei tällä kurssilla) 3

4 Riippumattomat osasysteemit Oletetaan: järjestelmä koostuu kahdesta riippumattomasta osasta a ja b. Osat toisistaan riippumatta tiloissa s a, s b. Kokonaisenergia E = E a + E b = E a(s a) + E b (s b ) Systeemin kokonaistila: pitää tietää molempien osien tilat s = (s a,s b ) Partitiofunktio Z = e βe = e βea(sa) βeb(sb) s s a s b = s a e βea(sa) s b e βe b (s b ) = Z az b Energian odotusarvo E = d dβ ln Z = d dβ (ln Za + ln Z b) = E a + E b a,b = N samanlaista osasysteemiä: Z N = Z N 1 Energia summa partitiofunktio tulo 4

5 Identtiset hiukkaset Esim. paramagneettinen kide, 5 spiniä Spinit ± 1 = 2 25 tilaa Z N = Z N 1 Vaihdetaan kahden spinin tilat: eri tila Kaasu Tilat liikemäärän ominaistiloja Hiukkaset identtisiä a Vaihdetaan kaksi hiukkasta = tulos sama p 1 Identtisiä hiukkasia ei oikeasti voi nimetä/numeroida = Partitiofunktio laskettava eri tavalla N hidun tilat < hidun 1 tilat a b c d e b p 2 c 3 & e 5 hidun N tilat e p 3 d p 4 c p 5 sama tila kuin c 5 & e 3 5

6 Harva miehitysluku kuuma kaasu T 0: kaikki hiukkaset muutamalla alimman energian tilalla Kuuma kaasu : käytössä myös korkeamman energian tilat: N tilat N Kuinka monta tilaa sitten laskettiin liikaa? Oletetaan, mitkään kaksi hiukkasta eivät ole samalla p-tilalla N hiukkasta voidaan vaihtaa keskenään N! tavalla Saadaan N hidun tilat = 1 N! hidun 1 tilat hidun N tilat Klassisen ideaalikaasun partitiofunktio Z N = 1 N! [Z 1] N, missä Z 1 on yhden hiukkasen partitiofunktio Pätee tarpeeksi korkeassa lämpötilassa (Paljonko on tarpeeksi : hetken päästä) 6

7 Yhden hiukkasen partitiofunktio Nyt kvanttimekaniikasta p = k: tilatiheys f (k) dk = V 2π k 2 dk = f (p) dp = V 2 2π 2 3 p2 dp Hiukkasen energia E = 1 2m p2 saadaan partitiofunktio Z 1 = tilat Tarvitaan integraali exp { βe(tila)} = dpf (p) exp { p2 2mk B T = V 2π 2 3 } dpp 2 exp } { p2 2mk B T 0 dxe ax2 = π 2 a 1/2 = 0 dxx 2 e ax2 = d π π da 2 a 1/2 = 4 a 3/2 Z 1 = V ( ) 3/2 mkb T 2π 2 7

8 Terminen de Broglie-aallonpituus Z 1 on summa tilojen yli tekijästä e βε, e βε 1, kun ε k B T = tilalla on hiukkasia e βε 1, kun ε k B T = tilalla ei hiukkasia = Z 1 on lämpötilassa T käytössä olevien tilojen lukumäärä Z N Z N 1 /N! päti, kun tiloja hiukkasia, eli: Z 1 = V ( ) 3/2 mkb T N 2π 2 Ekvivalentisti ehto kaasun klassisuudelle : kuuma harva klassinen V N 2π λ3 D, λ D = 2 = terminen de Broglie -aallonpituuus mk B T Tulkinta: energia k B T = liikemäärä = aallonpituus (QM) E = p2 2m = πk BT = λ = 2π p = λ D Kaasu on klassinen kun hiukkasten etäisyys aallonpituus 8

9 Energia ja vapaa energia Klassisen ideaalikaasun partitiofunktio Z N = 1 ( ) 3N/2 N! V N mkb T 2π 2 Tästä energia E = d dβ ln Z N = d [ 3N2 ] dβ ln β +... = 3N 2β = 3 2 Nk BT Vapaa energia (Käyttäen Stirlingiä ln N! N(ln N 1) = N ln(n/e) { F = k B T ln Z N = Nk B T ln e V ( ) } 3/2 mkb T N 2π 2 Huom! ilman N!:aa F ei olisi ekstensiivinen! Tunnettuja tuloksia ideaalikaasulle. 9

10 Paine, entropia Vapaa energia oli F = k B T ln Z N = Nk B T ln df = S dt P dv µ dn, joten paine ( ) F(T,V,N) P = V Entropia ( ) F(T,V,N) S = T V,N = Nk B ln { { e V N T,N e V N ( ) } 3/2 mkb T 2π 2 = Nk BT V ( e mk ) } 3/2 BT 2π 2 = Nk B [ ln V N ln T + vakio ] Edelleen tunnettuja ideaalikaasutuloksia, tosin entropialle vakiotermin arvo on nyt uusi 10

11 Maxwellin nopeusjakauma Tilatiheys Boltzmannin tekijä = todennäköisyysjakauma liikemäärille/nopeuksille/energioille e βe(p) f (p) dp P(v) dv Normalisaatio: 0 dvp(v) = 1 = P(v) dv = Tästä on helppo johtaa vaikka Yleisin nopeus v max v rms (tiedetään jo) Keskimääräinen nopeus v ( ) 3/2 2 m v 2 exp { mv } 2 dv π k B T 2k B T 11

12 Rotaatio, vibraatio, eksitaatio Lisäksi kaasumolekyyleillä on sisäisiä vapausasteita: Rotaatiot: 3 pyörimismäärän komponenttia L Tyypillinen energia 10 2 ev 100k B K = merkittävä huoneenlämmössä Vibraatiot: 2-atominen: yksiulotteinen harmoninen oskillaattori Monimutkaisempi molekyyli: useita värähtelytaajuuksia Tyypillinen energia: 10 1 ev 1000k B K = voi olla merkittävä huoneenlämmössä Eksitaatiot: Elektronit viritystiloille Tyypillinen energia: 1eV 10000k B K = Merkittävä vasta yli huoneenlämmön Käsittely: faktorisoidaan E = N i=1 [ ] p 2 i 2m + E i rot + Ei vib + Ei ex = Z = Z tr Z rot Z vib Z ex = ln Z = ln Z tr + ln Z rot + ln Z vib + ln Z ex (Muistetaan E = d ln Z dβ ja F = k BT ln Z ) 12

13 Rotaation vaikutus lämpökapasiteettiin Kvanttimekaaninen pyörivä kappale, hitausmomentti I: E = L2 2I, L2 = 2 l(l+1), degeneraatio 2l+1 { } Z 1 = (2l + 1) exp 2 l(l + 1) 2k B T I l=0 Matala lämpötila: 2 termiä summasta riittää } Z exp { 2 = ln Z 1 3 exp k B T I E = d ln Z 1 dβ = 3 2 I exp CV /(NkB) 2k B T I Rotaatioiden lämpökapasiteetti } { 2 k B T I } { 2, C V (T ) = 3 4 k B T I I 2 k B T exp 2 Korkea lämpötila: korvataan summa integraalilla: { } Z 1 dl(2l + 1) exp 2 l(l + 1) = 2Ik BT 2k B T I 2 0 } { 2 k B T I E = k B T, C V = k B (yhdelle molekyylille) 13

14 Kaasujen lämpökapasiteetteja Klassiselle ideaalikaasulle Yksiatominen/vain translaatio C V = 3 2 Nk B Kaksiatominen, rotaatioliike mukaan T 100K: C V = ( 3 + 1) Nk 2 B Vielä korkeammalla lämpötilalla vibraatiotilat mukaan. Energiaskaalat Sisäisillä vapausasteilla on tyypilliset enegiaskaalansa. Kun k B T E rot, vib,..., ne alkavat näkyä lämpökapasiteetissa. Kaksiatomisten kaasujen ominasilämpökapasiteetteja C V /(k B N) Lähde: Wikipedia 14

15 Hilakaasu M hilapistettä, V = Ma 3. N atomia, M N 1 ( ) M Ω = = N Entropia M! N!(M N)! mikrotilaa S = k B ln Ω =... M N 1 k B N (ln MN ) + 1 Paine P = T ( ) S = k BT N V E,V a 3 M = k BTN/V = tuttu ideaalikaasu Huom! Missään ei spesifioitu energiaa, vain entropia! Lämpökapasiteetti? 15

16 Laimea liuos, osmoottinen paine Ideaalikaasun tilanyhtälö pätee myös nesteeseen liuonneelle aineelle (Perustelu sama kuin hilakaasulle) h PV = Nk B T V,T : koko liuos P: liuennut aine Liuoksen paine korkeampi kuin puhtaan liuottimen samassa lämpötilassa: Puoliläpäisevä kalvo: paine-ero P = ρgh P = N V k BT 16

17 Sackur-Tetrode-yhtälö Saimme ideaalikaasun entropiaksi S = Nk B ln { V N ( mkb T 2π 2 Nesteen l ja kaasun g koeksistenssikäyrällä ) } 3/ L = T (S g S l )= S g = L/T + S l V N = k BT P Näistä saadaan Sackur-Tetrode-yhtälö ln P = 5 2 ln k BT ln m 2π S l Nk B T L Nk B T Kun S l tarpeeksi pieni 0, voidaan höyrynpainekäyrästä mitata! 17

18 Klassinen faasiavaruus Kertausta: klassinen aikakehitys on käyrä D+D-ulotteisessa faasiavaruudessa: Yleistetyt koordinaatit: q i (t), i = 1,2,... D Yleistetyt liikemäärät: p i (t), i = 1,2,... D Hamiltonin liikeyhtälöt: q i = δh δp i ṗ i = δh δq i Esimerkkejä: N hiukkasen kaasu 3d avaruudessa: Koordinaatit x 1,... x N,y i,... y N, z 1,... z N, Liikemäärät p1 x,... px N,py,... p y i N, pz 1,... pz N D = 3N, 6N-ulotteinen faasiavaruus Pyörivä kappale Koordinaatit Eulerin kulmat ϕ,θ,ψ, Liikemäärät: vektorin L 3 komponenttia Harmoninen oskillaattori ja vapaa hiukkanen 1+1d faasiavaruudessa. p x 18

19 Faasiavaruusintegraali E=vakio = 2D 1-ulotteinen pinta faasiavaruudessa Ergodisuushypoteesi: pitkän ajan kuluessa järjestelmä on samalla todennäköisyydellä kaikkialla E-pinnalla Järjestelmä lämpökylvyssä: integraali faasiavaruuden yli Z = dγ exp { βh} Vakio E p p q Mikä on mitta dγ? Tässä klassinen SM:kin tarvitsee Planckin vakion h Oikean Boltzmannin laskennan [ ] 1 N dq i dp i dγ = [permutaatiot] h i=1 q Lämpökylpy 19

20 Energian ekvipartitio Klassisen mekaniikan systeemejä: Hiukkaset E = p2 2m Harmoninen oskillaattori: E = p m 2 mω2 x 2 Pyörivä kappale E = L2 2I = Energia verrannollinen faasiavaruusmuuttujan neliöön Klassisesti: Z = dqe aq2 /(k B T ) T = E = d ln Z dβ Klassisen SM:n ekvipartitioteoreema Järjestelmän energia = 1 2 k BT per vapausaste = 1 2 k BT Vapausasteet: kanoniset koordinaatit tai liikemäärät, joita vastaa Hamiltonin funktiossa neliötermi Klassinen raja: integroidaan faasiavaruuden yli (ei diskreettejä kvanttitiloja) 20

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Statistinen fysiikka, osa B (FYSA242)

Statistinen fysiikka, osa B (FYSA242) Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi kl 26 Ajat, paikat, käytännöt Ajan tasalla olevat tiedot kurssin kotisivulta http://users.jyu.fi/ tulappi/fysa242kl6/. Luennot:

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

kertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on

kertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on tavoitteet kertausta Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä Ymmärrät miten päädytään kaasumolekyylien nopeusjakaumaan Ymmärrät kuinka voidaan arvioida hiukkasen vapaa matka Kaikki mikrotilat,

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Statistinen fysiikka, osa B (FYSA2042)

Statistinen fysiikka, osa B (FYSA2042) Käytännön asioita Statistinen fysiikka, osa B (FYSA2042) Kimmo Kainulainen kimmo.kainulainen@jyu.fi Huone: FL220. Ei kiinteitä vastaanottoaikoja. kl 2018 Käytännön asioita 1 Käytännön asioita Ajat, paikat,

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa

Lisätiedot

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014) 7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko 1 TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä

Lisätiedot

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin

Lisätiedot

KLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista

KLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista KLASSISET TASAPAINOJOUKOT (AH 4.3, 6.1-6.7, 7.2) 1 Yleisesti joukoista Seuraavaksi tarkastelemme konkreettisella tasolla erilaisia termodynaamisia ensemblejä eli joukkoja, millä tarkoitamme tiettyä makrotilaa

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

Statistinen fysiikka, osa B (FYSA242)

Statistinen fysiikka, osa B (FYSA242) Käytännön asioita Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 Käytännön asioita 1 Käytännön asioita Ajat, paikat, käytännöt

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 0. Käytännön asioita 1 Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta

Lisätiedot

Miksi tarvitaan tilastollista fysiikkaa?

Miksi tarvitaan tilastollista fysiikkaa? Miksi tarvitaan tilastollista fysiikkaa? cm 3 kaasua NTP ssä ~ 3 9 molekyyliä P, T? (paine ja lämpötila?) tarvitaan joitakin estimaatteja jokaisen hiukkasen dynaamisesta tilasta, todennäköisyysjakaumia

Lisätiedot

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja. FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit FYSA241, kevät 2012 uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty järjestelmä

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

S , Fysiikka III (S) I välikoe Malliratkaisut

S , Fysiikka III (S) I välikoe Malliratkaisut S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli

Lisätiedot

Hamiltonin formalismia

Hamiltonin formalismia Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska

Lisätiedot

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi

( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi S-4.35, FYSIIKKA III, Syksy 00, LH, Loppuiikko 38 LH-* Laske happimolekyylin keskimääräinen apaa matka 300 K lämpötilassa ja,0 baarin paineessa. Voit olettaa, että molekyyli on pallon muotoinen ja pallon

Lisätiedot

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia. Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden. . Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

2. Termodynamiikan perusteet

2. Termodynamiikan perusteet Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely

Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ekvipartitioteoreema

Ekvipartitioteoreema Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2 infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

10. Kvanttikaasu. Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi kl Huone: FL240. Ei kiinteitä vastaanottoaikoja.

10. Kvanttikaasu. Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi kl Huone: FL240. Ei kiinteitä vastaanottoaikoja. Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL24. Ei kiinteitä vastaanottoaikoja. kl 26. Kvanttikaasu Aaltofunktio ja hiukkasten vaihto Tunnettua kvanttimekaniikasta

Lisätiedot

6. Entropia, lämpötila ja vapaa energia

6. Entropia, lämpötila ja vapaa energia 6. Entropia, lämpötila a vapaa energia 1 Luento 6 24.2.2017: Shannonin entropia M I NK P ln P 1 Boltzmannin entropia S k B ln Lämpötila Vapaa energia 2 Probleemoita: Miten DNA-sekvenssistä määräytyvän

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 1 Ajat, paikat 0. Käytännön asioita Ajan tasalla olevat tiedot kurssin kotisivulta

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

9 Klassinen ideaalikaasu

9 Klassinen ideaalikaasu 111 9 Klassinen ideaalikaasu 9-1 Klassisen ideaalikaasun patitiofunktio Ideaalikaasu on eaalikaasun idealisaatio, jossa molekyylien väliset keskimäääiset etäisyydet oletetaan hyvin suuiksi molekyylien

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

Klassisen mekaniikan muotoilu symplektisen geometrian avulla

Klassisen mekaniikan muotoilu symplektisen geometrian avulla Klassisen mekaniikan muotoilu symplektisen geometrian avulla Ville Kivioja 21. kesäkuuta 2017 Tämän lyhyen artikkelin tarkoituksena on muotoilla klassinen mekaniikka mahdollisimman yleisesti ja käyttäen

Lisätiedot

Suurkanoninen joukko

Suurkanoninen joukko Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia

Lisätiedot

Statistinen fysiikka I

Statistinen fysiikka I Statistinen fysiikka I Kevät 2014 Luennoitsija Aleksi Vuorinen (aleksi.vuorinen@helsinki.fi, A322) Laskuharjoitusassitentti Lasse Franti (lasse.franti@helsinki.fi, A312) Yleistä Luennot salissa CK111 aina

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta S-11435, Fysiikka III (ES) entti 4113 entti / välikoeuusinta I Välikokeen alue 1 Viiden tunnistettavissa olevan identtisen hiukkasen mikrokanonisen joukon käytettävissä on neljä tasavälistä energiatasoa,

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Ideaalikaasulaki johdettuna mikroskooppisen tarkastelun perusteella! Lämpötila vaikuttaa / johtuu molekyylien kineettisestä energiasta

Ideaalikaasulaki johdettuna mikroskooppisen tarkastelun perusteella! Lämpötila vaikuttaa / johtuu molekyylien kineettisestä energiasta HYS-A00 Termodynamiikka (TFM), Luentomuistiinpanot Luennot 7-8, kertaus, mitkä olivat oppimistavoitteet? Kineettinen kaasuteoria Oletukset: - kaasun tiheys on riittävän suuri - molekyylin koko on paljon

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

Luento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria

Luento 7: Atomien ja molekyylien väliset voimat ja kineettinen kaasuteoria Luento 7: Atomien ja molekyylien äliset oimat ja kineettinen kaasuteoria kirjan kappaleet.,.,. ja.. Osan pohjana on käytetty luentomonistetta Termofysiikan perusteet, I. apari ja H. Vehkamäki (http://www.courses.physics.helsinki.fi/fys/termo/termofysiikka_h.pdf)

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Kertausta: Vapausasteet

Kertausta: Vapausasteet Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti

Lisätiedot

KLASSISISTA REAALIKAASUISTA (AH 10.1)

KLASSISISTA REAALIKAASUISTA (AH 10.1) KLASSISISTA REAALIKAASUISTA (AH 10.1) Palaamme kurssin lopuksi vielä hetkeksi tasapainosysteemien pariin, mutta tarkastelemme nyt todellisten systeemien kannalta realistisempaa tilannetta, jossa hiukkasten

Lisätiedot

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään: Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen

Lisätiedot

Suurkanoninen joukko

Suurkanoninen joukko Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot