Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko. Sisäisen/efektiivisen korkokannan menetelmä on tarkempi menetelmä todellisen korkokannan löytämiseksi. Sisäisen korkokannan menetelmä on melko haastava käyttää eikä ole täysin ongelmaton. Sisäisen korkokannan menetelmä on erittäin yleisesti käytetty menetelmä investointilaskelmissa. Efektiivinen/sisäinen korkokanta 89 / 117 Idea Sijoitetaan lainapääoma L jollakin tuntemattomalla korolla i e Tehdään annetut vähennykset (kuoletukset) M i ajanhetkillä t i Pyritään siihen, että vähennyksistä huolimatta sijoitus ei tuota tappiota. Etsitään siis korkokanta i e siten, että sijoituksen arvo tehtävät vähennykset huomioonottaen menee nollaan (eli pienempi korko toisi tappiota). 90 / 117
Efektiivinen/sisäinen korkokanta Siis... 1 Diskontataan maksuerät M i alkuhetkeen t = 0käyttäen koronkorko-korkolaskun mukaisesti tuntemattomalla korkokannannalla i e (=efektiivinen korkokanta valittua korkojaksoa kohti). 2 Asetetaan diskontattujen arvojen summa samaksi kuin lainan nimellisarvo L (tai asiakkaan saama summa=nimellisarvo-kulut). 3 Ratkaistaan yhtälöstä L = i=1 M i (1 + i e ) t i (20) korkokanta i e.(huom.tarvittaessahaarukoimallariittävän tarkasti.) Efektiivinen/sisäinen korkokanta 91 / 117 Esimerkki 33 10000 e laina kuoletetaan kahdessa vuodessa vuosiannuiteetein 5600 e. Laske efektiivinen korkokanta. Nyt K 0 =10000 e ja lyhennetään laina vuosiannuiteetein 5600 e kahdessa vuodessa. 10000 = 5600 1 + i e + 5600 (1 + i e ) 2 10000 = x 5600 + x 2 5600 (missä x = 1 1 + i e ) Ratkaistaan siis yo. toisen asteen yhtälö, jolloin saamme efektiivisen koron kaavasta i e = 1 x 1 x = 0, 9268 i e = 0, 08 = 8% pa. 92 / 117
Investoinneista Investointeihin liittyviä käsitteitä: M n 1 J =jäännösarvo (aika) M 1 M 2 M 3 M4... k 1 k2 k3 k4... investointiaika M n k n 1 kn (tuotot) (kustannukset) H =investointikustannukset (Yo. kuvassa M i : t ovat investointituottoja (esim. vuosituotto) ja k i : t investoinnin käyttökustannukset (esim. koneen käyttö-ja huoltokustannukset).) Investointilaskelmia 93 / 117 Nykyarvomenetelmä (Nykyarvo = alkuhetkeen diskontattu arvo.) Muutetaan tuotot ja kustannukset nykyarvoiksi TNA ja KNA ja todetaan investointi kannattavaksi jos TNA KNA. Annuiteettimenetelmä Muutetaan tuotot ja kustannukset vuosiannuiteeteiksi TA ja KA ja todetaan investointi kannattavaksi jos TA KA. 94 / 117
Investointilaskelmia Sisäisenkorkokannan menetelmä Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla. Investointi on kannattava, jos sen sisäinen korkokanta on riittävän suuri. Usein asetetaan kriteeri, jonka mukaan investointiprojekteilta vaaditaan tietyn arvon ylittävä sisäinen korkokanta. Esimerkki 34 Koneen hankintahinta on 400 000 e ja arvioitu käyttöikä 5 vuotta. Vuosittainen investointituotto on 270 000 e ja käyttökustannukset 180 000 e.jäännösarvoon200000e ja laskentakorkokanta 15 % pa. Tutki onko investointi kannattava. (Ratkaisu luennolla) Haarukointimenetelmästä 95 / 117 Funktion nollakohtien (yhtälön ratkaisu) etsiminen saattaa olla usein hankalaa. Usein kuitenkin riittää löytää riittävän tarkka likimääräisratkaisu nollakohdan määräämiseksi. Tähän helppo menetelmä on ns. haarukointimenetelmä, missä käytetään hyväksu jatkuvien funktioiden ominaisuutta. Idea on seuraava: Haarukointimenetelmä 1 Ratkaistavana yhtälö f (x) =0(esim. x 2 1 3x = 0). 2 Etsitään kaksi pistettä x 1 ja x 2, missä funktio f (x) saa erimerkkiset arvot (esim. f (x 1 ) < 0jaf (x 2 ) > 0). 3 Kun pisteet löydetään, niin tiedetään, että eräs nollakohta löytyy näiden välistä. 4 Pienennetään väliä [x 1, x 2 ] esim. testaamalla minkä arvon f (x) saa kun valitaan piste välin [x 1, x 2 ] puolesta välistä. Palataan kohtaan 2 ja toistetaan välivaiheita 2-4 kunnes ollaan löydetty riittävä tarkkuus nollakohdalle. 96 / 117
Haarukointiesimerkki Esimerkki 35 Ratkaise yhtälö ln x + x 2 = 0 kahden desimaalin tarkkuudella. Ratkaisu. Merkitään f (x) = ln x + x 2. Kokeilemalla huomataan, että f (1, 5) < 0jaf (2) > 0, joten funktion f (x) eräs nollakohta on välillä 1, 5 < x < 2. x f(x) 1,5-0,094535 <0 2,0 0,693147 >0 ( nollakohta välissä 1, 5 < x < 2, 0) 1,6 0,070004 >0 ( nollakohta välissä 1, 5 < x < 1, 6) 1,55-0,011745 <0 ( nollakohta välissä 1, 55 < x < 1, 6) 1,56 0,004686 >0 ( nollakohta välissä 1, 55 < x < 1, 56) 1,555-0,003524 <0 ( nollakohta välissä 1, 555 < x < 1, 56) 1,558 0,001403 >0 ( nollakohta välissä 1, 555 < x < 1, 558) Siis nähdään, että nollakohta kahden desimaalin tarkkuudella on x 1, 56 (f (1, 56) =ln(1, 56)+1, 56 2 = 0, 004686). Indeksiteoriaa 97 / 117 Indeksin avulla kuvataan jonkin ryhmän yhteisen suureen kehitystä tilanteesta toiseen ilman, että tutkitaan jokaisen ryhmän jäsenen ko. suureen kehittymistä Erilaisia indeksejä: Hintaideksi mittaa hinnan muutoksia Volyymi-indeksi mittaa määrän muutoksia Arvoindeksi mittaa arvonmuutoksia (esim. tuonti ja vienti eri vuosina) Indeksi kuvaa aina suhteellista muutosta johonkin peruskohtaan nähden. Indeksi on aina prosenttiluku vaikka sitä ei merkitä. 98 / 117