Nykyarvo ja investoinnit, L9
|
|
- Niilo Saarnio
- 10 vuotta sitten
- Katselukertoja:
Transkriptio
1 Nykyarvo ja investoinnit, L9 netto netto netto netto
2 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n n j netto netto Tulovirran saadaan diskonttaamalla jokainen tuloerä nykyhetkeen ja laskemalla näin saadut yksittäiset t yhteen n k j NA = (1 + i) j j=1
3 2 Tulovirran riippuu käytetystä laskentakorosta. Esimerkki 1. Tarkastellaan kahta kassavirtaa, A ja B, joiden nettokassaerät ovat kuukausittain seuraavan taulukon mukaiset: jakso A 1000e 1000e 1000e B 1000e 1000e e netto netto 10% todellisella vuosikorolla tulovirtojen t ovat NA A = 1000e 1000e 1000e + + = e 1.11/ / /12 NA B = 1000e 1000e 1050e + + = e 1.11/ / /12
4 3 Esimerkki 1 jatkuu Jos laskentakorko nostetaan 15%:iin (tod. vuosikorko), niin t muuttuvat: jakso A 1000e 1000e 1000e B 1000e 1000e e netto netto 15% todellisella vuosikorolla tulovirtojen t ovat NA A = 1000e 1000e 1000e + + = e 1.151/ / /12 NA B = 1000e 1000e 1050e + + = e 1.151/ / /12
5 4 Esimerkki 1 jatkuu Laskentakorko vaikuttaa on! Mitä isompi laskentakorko, sitä pienempi. Laskentakorolla on myös merkitystä eri kassavirtojen vertailussa. Kun i tod = 0.10, niin B-kassavirta on arvokkaampi. Ero selittyy tietenkin sillä, että B:n kassakertymä on isompi. netto netto Kun i tod = 0.15, niin A-kassavirta on arvokkaampi. Ero selittyy sillä, että B:n kolmas erä, joka saadaan 8:nnen jakson lopussa, pienenee diskonttauksessa enemmän kuin A:n kolmas erä, joka saadaan kolmannen jakson lopussa.
6 5 Laskentakorko Mikä määrää laskentakoron? Laskentakorko valitaan siten, että Laskentakorko kuvastaa pääoman kustannuksia. (1) Vieras pääoma: Millä korolla on mahdollista saada lainaa? (2) Oma pääoma: Miten suuret korkotulot menetämme, jos käytämme omaa rahaa? netto netto Laskentakorko kuvastaa toiminnalle asetettua tuottovaatimusta. Laskentakorko voi sisältää riskipremion.
7 6 Esimerkki 1 Tarkastellaan vakiotulovirtaa, jossa kassaan tulee n = 36 kuukauden ajan k = 800e joka jakson lopussa. Kuukausijaksoon liittyvä laskentakorkokanta on i = on: NA = = = n j=1 k (1 + i) j k (1 + i) + k (1 + i) + k 2 (1 + i) + + k 3 (1 + i) ( ( ) n n ) k (1 + i) i ( i = k ((1 + i)n 1) i (1 + i) n ) = k i ( 1 1 (1 + i) n ) netto netto
8 7 Sijoitetaan arvot lausekkeeseen (n = 36, k = 800e, ja i = 0.005) NA = k ((1 + i)n 1) i (1 + i) ( n (1.005) 36 ) 1 = 800e = e (1.005) 36 netto netto Kun a verrataan kirjanpidolliseen kertymään e = e, niin huomataan pienemmäksi. Tämä ei ole tietenkään yllätys.
9 8 Esimerkki 2 Lasketaan edellinen esimerkki vielä uudelleen niin, että lähdemme liikkeelle todellisesta vuosikorosta. Olkoon n = 36 (kuukautta), k = 800e (per kuukausi) ja i tod = (todellinen vuosikorko on 6.0%). on NA = k ((1 + i)n 1) i (1 + i) n ( (1 + itod ) n/12 ) 1 = k [ (1 + itod ) 1/12 ] 1 (1 + i tod ) n/12 ( (1.06) 36/12 ) 1 = 800e = [1.06 1/ e 1] (1.06) 36/12 netto netto
10 netto 9 Tyypilli projektin nettokassavirta sisältää kolme osaa: Perusinvestointi H hetkellä t = 0. Tyypillinen perusinvestointi syntyy siitä, että yrittäjä hankkii projektissa tarvittavat koneet, laitteet ja luvat. Myös rekrytointi voi aiheuttaa perusinvestointiin kuuluvia kustannuksia. Nettokassavirta k t jaksojen t = 1, 2,..., n lopussa. Kassavirtaerä k t realisoituu siis jakson t lopussa. Jos tämä tuntuu väärältä tulkinnalta, niin sitten siirrymme lyhyempiin jaksoihin. n on investoinnin pitoaika jaksoissa. Jäännösarvo JA joka saadaan jakson n lopussa. Jäännösarvo tyypillisesti syntyy siitä, kun projektin lopuksi käytetyt koneet myydään. Jäännösarvo voi olla myös negatiivinen. netto netto
11 netto 10 Kuvana H k 1 k 2 k 3 k k 5 k 6 4 k JA n n j netto netto NNA = H + n j=1 k j (1 + i) j + JA (1 + i) n Suomeksi: NNA = NettoNykyArvo Englanniksi : NPV = Net Pret Value
12 netto 11 Jos projektin NNA > 0e, niin sanomme, että projekti on kannattava käytetyllä laskentakorolla. Esimerkki 1. Tarkastellaan projektia, jonka perusinvestointi on H = e. Projekti tuottaa kaksi vuotta kestävän vakiokassavirran 1 000e/kk. Jäännösarvo on JA = 0e. Käytetään laskelmassa laskentakorkoa 10% (p.a.) netto netto NNA = H + n j=1 k j (1 + i) j ( /12 1) = e e (1.10 1/12 1) /12 = e e = e > 0e
13 netto 12 Excelin kaavat solu D2: = D1^(1/12) solu D3: netto netto = D2 1 solu D4: = B4 + NPV(D3 ; B5 : B28 )
14 netto 13 Esimerkki 1 jatkuu Laskentakorko 10% merkitsee nyt tuottovaatimusta. Kun tulkitsemme edellä saatua tulosta, vertaamme projektia nanssitalletukseen, joka antaa talletetulle pääomalle 10% koron (p.a.). Nykyarvolausekkeen netto netto NNA = H + n j=1 k j (1 + i) j = e e kassavirtaosa ekertoo miten suuren talletuk joudumme tekemään, jos haluamme nostaa nanssitalletuk korkoineen erinä (k 1, k 2, k 3,..., k 24 ).
15 netto 14 Esimerkki 1 jatkuu Voimme siis sanoa, että edellä kuvattu nanssitalletus tuottaa saman kassavirran kuin projekti. Ero on siinä, että projekti synnytti saman kassavirran pienemmällä alkupanoksella, joten se maksaa korkoa alkupanokselle paremmin kuin 10% korolla (p.a.). netto netto Jos NNA = 0, niin projektin kyky maksaa korkoa alkupanokselle on yhtäsuuri kuin laskentakorko.
16 netto 15 Esimerkki: Investointiprojektin perusinvestointi on 8 250eja kuukausittainen nettotulovirta alkaa heti investoinnin jälkeen ja kestää 5 vuotta. Miten suuri tulee kuukausittai nettotulovirran olla (xe/kk) jotta investoinnin netto olisi positiivinen, kun laskentakorko on 8% (todellinen vuosikorko). 60 x e NNA e j/12 0 j=1 a xe 8 250e xe e = c 8 250e a netto netto xe [1.081/12 1] /12 ( /12 1) 8 250e = e/kk
17 netto 16 Johtopäätös: Rahoitetaan perusinvestointi tasaerälainalla, jolle Lainan määrä on perusinvestointi K 0 = H Lainakorko on laskentakorko Laina-aika on projektin kesto netto netto NNA 0 nettokassavirta riittää lainan hoitamiseen.
Nykyarvo ja investoinnit, L14
Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...
Nykyarvo ja investoinnit, L7
Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto
Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10
Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 5. harjoitus, viikko 7 11.02. 15.02.2019 R01 Ma 12 14 F453 R08 Ke 10 12 F453 R02 Ma 16 18 F453 L To 08 10 A202 R03 Ti 08 10 F425 R06 To 12 14 F140 R04
Talousmatematiikan perusteet
kevät 219 / orms.1 Talousmatematiikan perusteet 1. Laske integraalit a 6x 2 + 4x + dx, b 5. harjoitus, viikko 6 x + 1x 1dx, c xx 2 1 2 dx a termi kerrallaan kaavalla ax n dx a n+1 xn+1 +C. 6x 2 + 4x +
Osamaksukauppa, vakiotulovirran diskonttaus, L8
Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin
10 Liiketaloudellisia algoritmeja
218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden
Talousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08
Korkolasku ja diskonttaus, L6
Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti
Investointilaskentamenetelmiä
Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä
Kertausta Talousmatematiikan perusteista
Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =
Kertausta Talousmatematiikan perusteista
Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 p% = b
Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa
Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.
10.8 Investoinnin sisäinen korkokanta
154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta
Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)
Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään
Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat
Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100
diskonttaus ja summamerkintä, L6
diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson
Talousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kevät 20 Talousmatematiikan perusteet, ORMS030 4. harjoitus, viikko 6 6.2. 0.2.20) R ma 2 4 F249 R5 ti 4 6 F453 R2 ma 4 6 F453 R6 to 2 4 F40 R3 ti 08 0 F425 R to 08 0 F425 R4 ti 2 4 F453
Tasaerälaina ja osamaksukauppa
Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan
Tasaerälaina ja osamaksukauppa
Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä
JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )
Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän
Jaksolliset suoritukset, L13
, L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan
Talousmatematiikan perusteet, ORMS1030
Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455
Investointipäätöksenteko
Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista
INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous)
INVESTOINTIEN EDULLISUUSVERTAILU Tero Tyni Erityisasiantuntija (kuntatalous) 25.5.2007 Mitä tietoja laskentaan tarvitaan Investoinnista aiheutuneet investointikustannukset Investoinnin pitoaika Investoinnin
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 1. välikoe tiistaina 29.1.2019 MALLIRATKAISUT Ratkaise 3 tehtävää. Kokeessa saa olla mukana laskin ja taulukkokirja (MAOL tai vastaava). Kun teet tehtävän,
Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran / m kertaa vuodessa / jatkuvasti Diskonttaus
Tehtävä 1: Maakunta-arkisto
Tehtävä 1: Maakunta-arkisto Maakunta-arkisto aikoo ostaa uuden laitteen avustamaan ja nopeuttamaan henkilöstönsä työskentelyä. Laitteen hinta on 36 000 ja sen arvioitu taloudellinen pitoaika on 5 vuotta.
Mat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut
Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)
(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka
Tehdasprojekti (Kon-15.4197) Investointien suunnittelu ja rahoitus Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) KURSSIN LUENNOT 11.09.2015 Johdanto (Kalevi Aaltonen) 18.09.2015
Verkkokurssin tuotantoprosessi
Verkkokurssin tuotantoprosessi Tietotekniikan perusteet Excel-osion sisältökäsikirjoitus Heini Puuska Sisältö 1 Aiheen esittely... 3 2 Aiheeseen liittyvien käsitteiden esittely... 3 2.1 Lainapääoma...
Talousmatematiikan perusteet, ORMS1030
Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske
Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy
Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika
BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta
BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle
a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on
Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)
Investoinnin takaisinmaksuaika
Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika
RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma
151 RAHOITUSOSA 152 153 RAHOITUSOSA Talousarvion rahoitusosaan kootaan käyttötalous-, tuloslaskelma - ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien
Tehtävä 1: Maakunta-arkisto
Tehtävä 1: Maakunta-arkisto Maakunta-arkisto aikoo ostaa uuden laitteen avustamaan ja nopeuttamaan henkilöstönsä työskentelyä. Laitteen hinta on 36 000 ja sen arvioitu taloudellinen pitoaika on 5 vuotta.
Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia
Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.
Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun
Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä
Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson
Rahavirtojen diskonttaamisen periaate
Rahavirtojen diskonttaamisen periaate TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 14.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta
Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.
Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa
Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008
Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot
Talousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran
Aki Taanila EXCELIN RAHOITUSFUNKTIOITA
Aki Taanila EXCELIN RAHOITUSFUNKTIOITA 4.12.2012 Sisällys Johdanto... 1 Aikaan liittyviä laskelmia... 1 Excelin rahoitusfunktioita... 2 Koronkorkolaskenta... 2 Jaksolliset suoritukset... 4 Luotot... 7
INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO
INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Investoinnin käsite Investointeina pidetään menoja, jotka ovat rahamäärältään suuria ja joissa tulon kertymisaika on pitkä (> 1 vuosi) Vaikutukset ulottuvat pitkälle
Talousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
TULOSLASKELMAN RAKENNE
TULOSLASKELMAN RAKENNE Liiketoiminnan tuotot Toiminnan kulut Liikevoitto VÄHENNETÄÄN Liikevaihdon ansaintaan liittyvät kulut Rahoituserät Satunnaiset erät Tilinpäätösjärjestelyt Tilikauden voitto Verot
Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä.
Tämä Tili-ja kulutusluotot -aineisto on tarkoitettu täydentämään Liiketalouden matematiikka 2 kirjan sisältöä. 1 Sisällysluettelo TILI- JA KULUTUSLUOTOT...3 Esim. 1... 4 Esim. 2... 6 Esim. 3... 7 Esim.
Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen
Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa
7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa
1 7. KUSTANNUS-HYÖTYANALYYSI 7.1 Johdantoa Kustannus-hyötyanalyysiä, KHA, sovelletaan yleensä - minkä tahansa investointihankkeen esimerkiksi moottoritien tai sataman - reformin, esimerkiksi sosiaaliturva-,
Laskentatoimen perusteet Tilinpäätöksen laadinta Jaksottaminen
Laskentatoimen perusteet Tilinpäätöksen laadinta Jaksottaminen Seppo Ikäheimo Tehtävä 1 Marraskuu Oy:n tilinpäätöksen laadinta Laadi seuraavista 1.-31.11 välillä toteutuneista liiketapahtumista tuloslaskelma
Talousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Lukujonot Sarjat Sovelluksia korkolaskentaan Lukujonoista Miten jatkaisit seuraavia lukujonoja? 1, 3, 5, 7, 1, 2, 4, 8, 1, 3, 9, 27, 1, 1, 2, 3, 5, 8, 8.1.2018 2
Arvonlaskennan toiminta sijoitusten osalta
Sivu 1/5 HEDGEHOG OY Arvonlaskennan toiminta sijoitusten osalta 6.10.2014 Tässä on kuvailtu Hedgehog Oy:n käyttämän arvonlaskentajärjestelmän toimintaa sijoitusten merkinnän, tuottosidonnaisten palkkioiden,
Invest for Excel 3.5 uudet ominaisuudet
Invest for Excel 3.5 uudet ominaisuudet Excel 2007 -valikkorivi...2 Venäjän kieli...3 Lisää rivejä tunnuslukutaulukkoon...3 Suhteellisen nykyarvon määritelmä muuttunut...3 Kannattavuuslaskelma, joka perustuu
RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat
RAHOITUSOSA RAHOITUSOSA n rahoitusosaan kootaan käyttötalous-tuloslaskelma- ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien kassavirta). Lisäksi rahoitusosaan
Uudet ominaisuudet: Invest for Excel 3.6
Uudet ominaisuudet: Invest for Excel 3.6 Microsoft Excel versiot... 2 Käyttöoppaat... 2 Sähköinen allekirjoitus... 2 Mallikansiot... 2 Liikearvon poisto ja tuloverotus... 4 Sisäinen korkokanta ennen veroja...
MIKKO JÄÄSKELÄINEN Yrityksen arvo. Tuotantotalous 1 /
MIKKO JÄÄSKELÄINEN Yrityksen arvo Tuotantotalous 1 / 28.2.2017 Luennot AIEMMAT þ MITÄ ON TUOTANTOTALOUS? þ YRITTÄJYYS þ TUOTTEET JA TUOTANTO þ YRITTÄJÄPANEELI þ YRITYKSEN PROSESSIT þ MYYNTI JA MARKKINOINTI
Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010
» Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon hankkimiseksi 26.11.2010 Lähtökohdat selvitystyölle 1/3 2 Hallitus esittää yhdistyksen
Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta
Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Myynnin tila Prof. Jaakko ASPARA Aalto-yliopiston Kauppakorkeakoulu TOP MANAGEMENT FORUM/080214/PP/AMS Miksi selvittää muotoiluinvestointien
Lainaosuusarviolaskurin Esimerkki 5 Arvio huoneistojen lainaosuuksista taloyhtiön tasalyhennyslainalle
Lainaosuusarviolaskurin Esimerkki 5 Arvio huoneistojen lainaosuuksista taloyhtiön tasalyhennyslainalle versio 17.1.2019 Sisällysluettelo 1 Johdanto...2 2 Lähtöarvot laskurissa...3 3 Lainan lyhennyksen
9 VEROTUS, TALLETUKSET JA LAINAT
9 VEROTUS, TALLETUKSET JA LAINAT ALOITA PERUSTEISTA 370A. Kunnallisveroprosentti oli 19,5, joten 31 200 tuloista oli maksettava kunnallisveroa 0,195 31 200 = 6084. Vastaus: 6084 euroa 371A. a) Hajuveden
Kannattavuus tasaikäis- ja eriikäismetsätaloudessa
Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Paula Horne ja Jyri Hietala Pellervon taloustutkimus PTT Metsäpäivät 2015 5.11.2015 Metsänomistajien tyytyväisyys hakkuu- ja hoitotapoihin Uudessa metsälaissa
Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot)
Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot) 2,5 2,5 1,5 1,5 1,0 1,0 0,5 0,5 Tammi Helmi Maalis Huhti
Tietoja koron-ja valuutanvaihtosopimuksista
Tietoja koron-ja valuutanvaihtosopimuksista Tämä esite sisältää tietoja Danske ankin kautta tehtävistä koron- ja valuutanvaihtosopimuksista. Koron- ja valuutanvaihtosopimuksilla voidaan käydä Danske ankin
Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa
Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia
(EUR) 800 000 800 000 -400 000-400 000 -800 000-800 000 -1 200 000-1 200 000. Pylväs = kuluva tilikausi; viiva = edellinen tilikausi TALGRAF
YHD - Tuloslaskelma, 4.2.2013 8000 8000 4000 4000 01121314151617181910 1010 1110 1210 KUM KUM KUM KUM KUM KUM KUM KUM Ennu Ennu Ennu Ennu -4000-4000 -8000-8000 -1 2000-1 2000 VARSINAISEN TOIMINNAN TUOTTO-/KULUJÄÄMÄ
Toimenpiteen taloudellinen kannattavuus Laskentatyökalu ohje työkalun käyttöön
Toimenpiteen taloudellinen kannattavuus Laskentatyökalu ohje työkalun käyttöön Motiva Oy Copyright Motiva Oy, Helsinki, toukokuu 2018 2 1 Esipuhe Toimenpiteen taloudellinen kannattavuus laskentatyökalun
Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta
Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia
YHTEISTOIMINTASELVITYS TERVA-JUNKO-KEILA
YHTEISTOIMINTASELVITYS TERVA-JUNKO-KEILA 1. YLEISTÄ Laskelmat on tehty kassavirtalaskelma perusteisesti. Tarkoituksena selvittää onko mahdollisella yhtiöllä edellytyksiä selvitä investoinneista ja nykyisistä
Talousmatematiikan perusteet
kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7
KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN
00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien
Taloudelliset laskelmat
Taloudelliset laskelmat Pielisen Tietoverkko Juuka 31.3.214 LUONNOS LASKENTAOLETUKSET 31.3.214 2 Laskentaoletukset Investoinnit Ominaisuus Kuvaus Rakentamisaikataulu Runkoverkon rakentaminen tapahtuu vuonna
Kannattavuuslaskennan ja elinkaarilaskennan. Matematiikkaa
Jouko.teeriaho@lapinamk.fi Kannattavuuslaskennan ja elinkaarilaskennan Matematiikkaa Sisältö Perusteita Tulevien rahavirtojen nykyarvon määrääminen ( diskonttaus ) Annuiteetit (mm. taserälainan erän suuruuden
Talousmatematiikka (4 op)
Talousmatematiikka (4 op) M. Nuortio, T. Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Talousmatematiikka 2012 Yhteystiedot: Matti Nuortio mnuortio@paju.oulu.fi Työhuone M225 Kurssin
BL20A0500 Sähkönjakelutekniikka
BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti
VENLA. Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille
VENLA Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille 1 VENLA Nurmijärven Sähkön pienkuluttajapalvelu VENLA PALVELUSTA SAAT Kulutustiedot nykyisistä käyttöpaikoistasi Sähkö (Energia)
INVESTOINNIN KANNATTAVUUS. Yritys X
INVESTOINNIN KANNATTAVUUS Yritys X Jaana Haavisto Opinnäytetyö Helmikuu 2015 Liiketalous Taloushallinto TIIVISTELMÄ Tampereen ammattikorkeakoulu Liiketalouden koulutusohjelma Taloushallinnon suuntautumisvaihtoehto
ARVOMETSÄ METSÄN ARVO 15.3.2016
SISÄLTÖ MAA JA PUUSTO NETTONYKYARVO NETTOTULOT JA HAKKUUKERTYMÄT ARVOMETSÄ METSÄN ARVO 15.3.2016 KUNTA TILA REK.NRO 1234567892 LAATIJA: Antti Ahokas, Metsäasiantuntija 2 KASVUPAIKKOJEN PINTAALA JA PUUSTO
EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE
EUROOPAN UNIONIN NEUVOSTO Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE Lähettäjä: Euroopan komissio Saapunut: 25. heinäkuuta 2011 Vastaanottaja: Neuvoston pääsihteeristö Kom:n
Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset
Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.
Solvenssi II:n markkinaehtoinen vastuuvelka
Solvenssi II:n markkinaehtoinen vastuuvelka Mikä on riskitön korko ja pääoman tuottovaatimus Suomen Aktuaariyhdistys 13.10.2008 Pasi Laaksonen Yleistä Mikäli vastuuvelka on ei-suojattavissa (non-hedgeable)
1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11.
Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11.2015 1. Luotonantajan nimi ja yhteystiedot Luotonantaja: Yhteisötunnus: Osoite: Puhelin: Sähköpostiosoite: Faksinumero: Internetosoite: Lainasto
Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin. Reijo Käki www.reijokaki.com
Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin Reijo Käki www.reijokaki.com 1. PÄIVÄ I Voitto ja arvopohjainen päätöksenteko? II Kassavirta ja katetuotto III Heikot lenkit IV Marginaalituottavuus
Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta
Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Matti Hyppönen Tuotantotalouden koulutusohjelman opinnäytetyö Konetekniikka Insinööri (AMK) KEMI 2012 TIIVISTELMÄ KEMI-TORNION
Todellinen prosentti
Todellinen prosentti Kaksi ajankohtaista esimerkkiä talousmatematiikasta ja todellisuudesta Tommi Sottinen Vaasan yliopisto 9. lokakuuta 2010 MAOL ry:n syyspäivät 8.-10.10.2010, Vantaa 1 / 16 Tiivistelmä
HKL-Metroliikenne OSAVUOSIKATSAUS
HKL-Metroliikenne OSAVUOSIKATSAUS 1.1. 30.9.2015 HKLjk 10.11.2015 Osavuosikatsaus 1 (9) Yhteisön nimi: HKL-Metroliikenne Ajalta: 1.1. 30.9.2015 Toimintaympäristö ja toiminta Kuluneen neljänneksen aikana
BBS-Bioactive Bone Substitutes Oyj Tuloslaskelma ja tase
Tuloslaskelma ja tase 30.6.2018 BBS-Bioactive Bone Substitutes Oyj KONSERNITULOSLASKELMA 1.1.-30.6.2018 1.1.-30.6.2017 1.1.-31.12.2017 Liiketoiminnan muut tuotot * 2 237 121,94 13 879,38 20 466,26 Materiaalit
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivastaukset A5-kurssin laskareihin, kevät 009 Harjoitukset (viikko 5) Tehtävä Asia selittyy tulonsiirroilla. Tulonsiirrot B lasketaan mukaan kotitalouksien käytettävissä oleviin tuloihin Y d. Tässä
KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
Rahoitusinnovaatiot kuntien teknisellä sektorilla
Rahoitusinnovaatiot kuntien teknisellä sektorilla Oma ja vieras pääoma infrastruktuuri-investoinneissa 12.5.2010 Tampereen yliopisto Jari Kankaanpää 6/4/2010 Jari Kankaanpää 1 Mitä tiedetään investoinnin
Kentän perusparannus - rahoitusjärjestelyt. j Esittely yhtiökokoukselle
Kentän perusparannus - rahoitusjärjestelyt j Esittely yhtiökokoukselle 30.11.2011 Peruskorjausohjelma lyhyt esittely Yhtiöllä on suunnitelmat joiden mukaan perusparannus- ohjelma käynnistetään syksyllä
Maitoyrittäjät ry Miten pankki arvioi erilaisia rahoitusriskejä. Timo Kalliomäki
Maitoyrittäjät ry Miten pankki arvioi erilaisia rahoitusriskejä Timo Kalliomäki 22.3.2018 Maitotilan vs. metalliyrityksen rahoitus Maitotila Laina-aika tyypillisesti pitkä ( 15 vuotta) Kassavirran ennustettavuus
Ohje yrityksen taloudenohjausjärjestelmään ver3,0
Ohje yrityksen taloudenohjausjärjestelmään ver3,0 Tässä työkalussa liikutaan välilehdillä täyttäen niitä järjestyksessä vain harmaisiin laatikoihin voi laitta lukuja, muut solut ovat suojattuja Ota muokkaus
Mat-2.3114 Investointiteoria - Kotitehtävät
Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea
Riski ja velkaantuminen
Riski ja velkaantuminen TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 28.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta (FCF) 2. Rahavirtojen
Henri Mulari. Investointityökalu Finndomo Oy:lle
Henri Mulari Investointityökalu Finndomo Oy:lle Opinnäytetyö Kajaanin ammattikorkeakoulu Tradenomikoulutus Liiketalouden koulutusohjelma Syksy 2011 OPINNÄYTETYÖ TIIVISTELMÄ Koulutusala Yhteiskuntatieteiden,