Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006
Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3 H-yhdistetyt transversaalit 7 4 Luuppien kertolaskuryhmien rakenteesta 9 1
1 Luupeista 1.1 Luupit ja niiden kertolaskuryhmät Määritelmä 1. Olkoon Q ei-tyhjä joukko. Luuppi on pari (Q, ), missä on joukon Q inäärinen operaatio, joka toteuttaa seuraavat ehdot: (i) on olemassa sellainen alkio 1 Q, että 1 x = x 1 = x kaikilla x Q (neutraalialkio) ja (ii) kaikilla annetuilla a Q ja Q yhtälöille a x = y a = on olemassa yksikäsitteiset ratkaisut x Q ja y Q. Jatkossa jatkaen ryhmistä tuttua perinnettä luuppiin (Q, ) viitataan vain joukolla Q ja inäärinen operaatio jätetään merkitsemättä luupin laskutoimituksissa. Täten luuppi on inäärinen rakenne, jolla on yksikäsitteinen neutraalialkio ja yksikäsitteinen jakolasku. Määritelmä 2. Luuppi Q on assosiatiivinen, mikäli (a)c = a(c) kaikilla a,, c Q. Luuppi Q on kommutatiivinen, mikäli a = a kaikilla a, Q. Assosiatiivinen luuppi Q on ryhmä. Jos a Q, niin yhtälöillä ax = 1 ja ya = 1 on yksikäsitteiset ratkaisut x, y Q. Tällöin a1 = 1a = (ax)a. Kertomalla vasemmalta alkiolla y saadaan y(a1) = y((ax)a) eli assosiatiivisuuden nojalla 1 = xa eli x = a 1. Siis assosiatiivisen luupin Q jokaisella alkiolla on käänteisalkio eli Q on ryhmä. Olkoon a Q mielivaltainen. Määritellään nyt kuvaukset L a : Q Q, L a (x) = ax ja R a : Q Q, R a (x) = xa. Koska Q on luuppi, niin kuvaukset ovat hyvin määriteltyjä ja ne ovat joukon Q permutaatiota. Määritelmä 3. Luupin Q permutaatioiden aliryhmää L a, R a a Q kutsutaan luupin Q kertolaskuryhmäksi ja merkitään M(Q). Luupin Q sisäinen kertolaskuryhmä on ryhmä eli kaikki neutraalialkion 1 stailisoijat. I(Q) = {I M(Q) I(1) = 1} Määritellään nyt avuksi kuvaukset L a, = L 1 a L L a ja N a, = L 1 a R L a, missä a, Q. Nyt on selvää, että L a, (1) = L 1 a (a) = 1 ja N a,(1) = L 1 a (a) = 1 eli L a, I(Q) ja N a, I(Q). 2
Lemma 1. Olkoon Q luuppi ja a, Q. Tällöin (i) L L a = L a L a,, (ii) L 1 L a = L x L 1 x, (iii) R L a = L a N a, ja (iv) R 1 L a = L x N 1 x, Todistus. [1], 3.7 (s. 23), missä x = L 1 (a),, missä x = R 1 (a). (i) Nyt L L a = L a L 1 a L L a = L a L a,. (ii) Määritelmän nojalla L 1 x, = L 1 x L 1 L x eli L 1 L x = L x L 1 x,. Valitaan a = x eli L (x) = a. Koska Q on luuppi ja x Q mielivaltainen, niin a voi käydä läpi kaikki luupin Q alkiot. Siis L 1 (a) = x. Väite seuraa tästä. (iii) Selvästi R L a = L a L 1 a R L a = L a N a,. (iv) Määritelmän nojalla N 1 x, = L 1 x R 1 L x eli R 1 L x = L x N 1 x,. Valitaan a = x eli R (x) = a. Kuten aiemmin alkio a Q voidaan ajatella mielivaltaiseksi. Nyt R 1 (a) = x ja väite seuraa tästä. Valitaan lemmassa 1 a = 1, jolloin saadaan seuraava tulos. Lemma 2. Olkoon Q luuppi ja Q. Tällöin (i) L = L I, missä I = (1), (ii) L 1 = L x L 1 x,, missä x = L 1 (1), (iii) R = L N 1, ja (iv) R 1 = L x N 1 x,, missä x = R 1 (1). Lemma 3. Olkoon Q luuppi. Jos X M(Q), niin se on esitettävissä yksikäsitteisesti muodossa X = L x I, missä I I(Q) ja x = X(1) Lisäksi I(Q) = A, B, missä A = {L a, a, Q} ja B = {N a, a, Q}. 3
Todistus. [1], 3.7 (s. 23) Ryhmän M(Q) määritelmän perusteella X = X r X r 1 X 1, missä r Z + ja X i on jokin permutaatioista L a, R, L 1 a tai R 1, missä a, Q. Osoitetetaan induktiolla luvun r suhteen, että X = L x I, missä I A, B. Huomioidaan, että L 1,1 = N 1,1 on identiteettikuvaus. Jos r = 1, niin X = X 1 ja lemman 2 nojalla X 1 on haluttua muotoa. Oletetaan nyt, että väite on tosi kaikilla r > 1 pienimmillä kokonaisluvuilla ja X = X r X r 1 X 1. Tällöin X r 1 X 1 = L a V, missä a Q ja V A, B. Siis lemman 1 nojalla X = X r L a V = L x UV, missä x Q ja U A, B. Nyt UV A, B, joten induktiotodistus menee läpi. Selvästi X(1) = L x I(1) = L x (1) = x, joten alkio x Q on yksikäsitteinen. Siis kuvaus L x on myös yksikäsitteinen. Nyt I = XL 1 x, joten myös kuvaus I A, B on yksikäsitteinen. Jos U I(Q), niin aiemman nojalla U = L 1 I = I, missä I A, B. Täten I(Q) A, B. Selvästi A, B I(Q), joten väite on todistettu. 4
2 Transversaalit Määritelmä 4. Olkoon G ryhmä ja H G. Joukkoa T sanotaan aliryhmän H oikeaksi transversaaliksi ryhmässä G, mikäli se sisältää täsmälleen yhden alkion jokaisesta ryhmän G oikeasta sivuluokasta Ha. Vastaavasti määritellään aliryhmän H vasen transversaali ryhmässä G. Jos H G, niin tällöin joukko T on aliryhmän H oikea transversaali ryhmässä G jos ja vain jos joukko T on aliryhmän H vasen transversaali ryhmässä G. Tämä koska T Hg = T gh kaikilla g G. Tällöin voidaan puhua vain aliryhmän H transversaaleista ryhmässä G. Jatkossa toispuoleisia transversaaleja voidaan tekstin lyhentämiseksi kutsua vain transversaaleiksi, jolloin puoleisuuden oletetaan olevan asiayhteydestä selvää. Seuraavaksi todistetaan muutama ominaisuus oikeille transversaaleille, mutta todistukset voidaan helposti muuntaa myös vasemmanpuoleisiin tapauksiin. Lemma 4. Olkoon G ryhmä, H G ja T aliryhmän H oikea transversaali ryhmässä G. Tällöin G = HT ja T = [G : H]. Lisäksi T g ja ht ovat aliryhmän H oikeita transversaaleja ryhmässä G kaikilla g G ja h H. Todistus. Koska HT G, niin riittää osoittaa, että mielivaltainen g G kuuluu myös kompleksiin HT. Transversaalin määritelmän nojalla on olemassa sellainen t T, että t = hg eräällä h H. Nyt g = h 1 t HT. Transversaalin alkioiden lukumäärää on [G : H], koska se sisältää täsmälleen yhden alkion jokaisesta aliryhmän H sivuluokasta. Olkoon Ha mielivaltainen aliryhmän H määräämä oikea sivuluokka. Koska ryhmä G voidaan esittää sivuluokkien unionina, on g = h g eräillä h H ja g G. Lisäksi on olemassa t T H(ag 1 h 1 ) eli t = hag 1 h 1 eräällä h H. Täten Täten T g Ha. tg = hag 1 h 1 h g = ha Ha. Nyt voidaan olettaa, että x, y T g Ha. Tällöin xg 1, yg 1 T Hag 1, joten transversaalin määritelmän nojalla xg 1 = yg 1 eli x = y. Siis T g Ha = 1 mielivaltaisella sivuluokalla Ha. Täten myös joukko T g on aliryhmän H oikea transversaali ryhmässä G. Jos h H, niin t T Ha jos ja vain jos ht ht hha = ht Ha. Siis myös ht on aliryhmän H oikea transversaali ryhmässä G. Lemma 5. Olkoon G ryhmä ja H G. Tällöin joukko T G on aliryhmän H oikea transversaali ryhmässä G jos ja vain jos jokainen ryhmän G alkio voidaan esittää yksikäsitteisesti muodossa ht, missä h H ja t T. Erityisesti jos T G on aliryhmän H oikea transversaali, niin jokaista g G kohti on olemassa sellainen yksikäsitteinen t T, että gt 1 H. 5
Todistus. Oletetaan, että ryhmän G jokainen alkio voidaan esittää yksikäsitteisesti muodossa ht, missä h H, t T ja olkoon Ha mielivaltainen sivuluokka. Oletuksen nojalla a = ht, missä h H ja t T ovat yksikäsitteisiä. Nyt t = h 1 a Ha T. Olkoon lisäksi t Ha T. Siis 1t = t = h a = h ht eräällä h H. Koska 1, h h H ja oletuksen perusteella tämä esitys on yksikäsitteinen, niin 1 = h h ja t = t. Siis T Ha = 1 ja T on aliryhmän H oikea transversaali ryhmässä G. Oletetaan, että joukko T G on aliryhmän H oikea transversaali ryhmässä G. Lemman 4 nojalla riittää osoittaa vain yksikäsitteisyys eli jos g = ht = h t, missä h, h H ja t, t T, niin h = h ja t = t. Nyt t = h 1 h t Ht ja koska 1 H, niin myös t Ht. Siis t, t T Ht eli t = t transversaalin alkioiden valinnan perusteella. Täten myös h = h. Jos joukko T G on aliryhmän H oikea transversaali ryhmässä G, niin todistuksen alun perusteella jokaisella g G pätee, että g = ht, missä h H ja t T ovat yksikäsitteisiä. Siis gt 1 H. Jos gt 1 H, niin g Ht eli g = h t eräällä h H. Yksikäsitteisyyden nojalla t = t, josta viimeinen väite seuraa. 6
3 H-yhdistetyt transversaalit Määritelmä 5. Aliryhmän H oikea transversaali T ryhmässä G on vakaa, mikäli joukko gt on aliryhmän H oikea transversaali ryhmässä G kaikilla g G. Vastaavasti määritellään vakaat vasemmat transversaalit. Lemma 6. Olkoon G ryhmä, H G ja T G. Tällöin seuraavat ehdot ovat yhtäpitävät (i) joukko T on aliryhmän H vakaa oikea transversaali ryhmässä G, (ii) joukko T g on aliryhmän H oikea transversaali ryhmässä G kaikilla g G, (iii) joukko T g on aliryhmän H vasen transversaali ryhmässä G kaikilla g G ja (iv) joukko T on aliryhmän H vakaa vasen transversaali ryhmässä G. Todistus. [1], 2.1 (s. 14-15) Osoitetaan ensiksi, että väitteet (i) ja (ii) ovat yhtäpitävät. Jos T on aliryhmän H vakaa oikea transversaali ryhmässä G, niin g 1 T on myös oikea transversaali mielivaltaisella g G. Lemman 4 nojalla g 1 T g = T g on oikea transversaali. Toiseen suuntaan oletetaan, että T g on aliryhmän H oikea transversaali ryhmässä G kaikilla g G. Nyt erityisesti T 1 = T on oikea transversaali. Lemman 5 nojalla jokaisella x G alkio xg 1 voidaan esittää yksikäsitteisesti muodossa xg 1 = ht g 1, missä h H ja t T. Täten esitys x = hgt on yksikäsitteinen ja gt on oikea transversaali saman lemman nojalla. Siis oikea transversaali T on vakaa. Osoitetaan sitten, että väitteet (i) ja (iii) ovat yhtäpitävät. Jos väite (i) pätee ja x G on kiinnitetty, niin x 1 g 1 T Hg 1 = 1 eli g 1 T g xh = 1 kaikilla g G. Siis joukko T g on aliryhmän H vasen transversaali kaikilla g G. Jos väite (iii) pätee ja g G mielivaltainen, niin gt g 1 Hx = 1 eli gt Hxg = 1 kaikilla x G. Siis T on vakaa oikea transversaali. Väitteiden (iii) ja (iv) yhtäpitävyys on helppo todistaa muuntamalla jompaa kumpaa edellä esitetyistä tavoista. Tämän lemman nojalla joukko T on vakaa oikea transversaali jos ja vain jos T on myös vakaa vasen transversaali. Täten puhutaan vain vakaista transversaaleista välittämättä transversaalin puolesta. Määritelmä 6. Olkoon A ja B kaksi aliryhmän H vasenta transversaalia ryhmässä G. Jos [A, B] H, niin sanotaan, että A ja B ovat H-yhdistettyjä ryhmässä G. Jos [A, A] H, niin sanotaan, että A on H-itseyhdistetty. Lemma 7. Olkoon G ryhmä ja H G. Jos A ja B ovat aliryhmän H oikeita transversaaleja ryhmässä G ja A, B ovat H-yhdistettyjä, niin A ja B ovat vakaita. Todistus. [2], 2.2 (s. 113) Olkoon x G mielivaltainen ja osoitetaan, että xa on aliryhmän H oikea transversaali ryhmässä G. Lemman 5 nojalla x = h, 7
missä h H ja B. Olkoon a, c A mielivaltaisia, jolloin xa, xc xa. Jos Hxa = Hxc, niin xa(xc) 1 H eli ac 1 1 H. Nyt ac 1 = (aa 1 1 )(ac 1 1 )(c 1 c 1 ) H koska [A, B] H ja siten myös [B, A] H. Siis Ha = Hc ja transversaalin määritelmän nojalla a = c. Täten jokaisessa sivuluokassa Hxa on korkeintaan yksi alkio joukosta xa. Olkoon Hy mielivaltainen oikea sivuluokka, missä y G. Nyt y 1 = kd, missä k H ja d A. Täten xdy 1 = h(d 1 d 1 )k 1 H eli xd Hy. Siis jokainen oikea sivuluokka sisältää täsmälleen yhden alkion joukosta xa, josta väite seuraa. Samalla tavalla voidaan osoittaa vastaava väite myös aliryhmän vasemmille transversaaleille. Lemman 6 jälkeisen huomatuksen nojalla jatkossa H-yhdistetyistä transversaaleista puhuttaessa transversaalin puolesta ei tarvitse huolehtia. Määritelmä 7. Olkoon G ryhmä ja H G. Tällöin L G (H) = H g. Määritelmän perusteella on selvää, että L G (H) H ja L G (H) G. Lisäksi jos K H ja K G, niin jokaisella k K pätee k H g kaikilla g G. Siis K L G (H) eli L G (H) on aliryhmään H sisältyvistä ryhmän G normaalista aliryhmistä laajin. Lemma 8. Olkoon G ryhmä ja H G. Jos A on aliryhmän H vasen transversaali ryhmässä G ja x H a 1 g G kaikilla a A, niin x L G (H). Todistus. Olkoon g G mielivaltainen. Tällöin lemman 5 nojalla g = ah, missä a A ja h H. Siis g 1 = h 1 a 1. Nyt x H a 1 = H h 1 a 1 = H g 1, ja koska g G oli mielivaltainen, niin x L G (H). Lemma 9. Olkoon G ryhmä ja H G. Jos A ja B ovat H-yhdistettyjä transversaaleja ja L G (H) = {1}, niin 1 A ja 1 B. Todistus. [2] (s. 113) Olkoon x A H ja B mielivaltainen. Nyt x = xx 1 1 x = x [x, ] H, koska [A, B] H. Siis x H 1 mielivaltaisella B. Lemman 8 nojalla x L G (H) = {1}. Siis 1 A. Vastaavasti väite voidaan osoittaa transversaalille B. 8
4 Luuppien kertolaskuryhmien rakenteesta Lemma 10. Jos Q on luuppi, H I(Q) ja H on ryhmän M(Q) normaali aliryhmä, niin H = {1}. Todistus. [1], 3.23 (s. 34) Oletetaan, että H I(Q) ja H M(Q). Tällöin L 1 a HL a = H kaikilla a Q. Olkoon U H mielivaltainen ja merkitään V = L 1 a UL a. Koska H I(Q), niin U(1) = 1 ja V (1) = 1. Nyt (L 1 a UL a )(1) = 1 eli (L 1 a U)(a) = 1 kaikilla a Q. Tämä on mahdollista vain, kun U(a) = a kaikilla a Q eli H = {1}. Täten aliryhmän I(Q) ydin ryhmässä M(Q) sisältää vain neutraalialkion. Lemma 11. Olkoon Q luuppi. Tällöin joukot A = {L a a Q} ja B = {R a a Q} ovat I(Q)-yhdistettyjä transversaaleja ryhmässä M(Q). Lisäksi L M(Q) (I(Q)) = {1} ja M(Q) = A, B. Todistus. [1], 3.22 (s. 33) ja 3.24 (s. 35) Olkoon Q luuppi. Jos X M(Q) on mielivaltainen, niin lemman 3 nojalla X = L x U, missä x Q ja U I(Q). Nyt L x XI(Q). Jos eräällä y Q pätee L y XI(Q), niin X = L y V, missä V I(Q) ja esityksen yksikäsitteisyyden nojalla L x = L y. Täten jokainen aliryhmän I(Q) vasen sivuluokka sisältää täsmälleen yhden joukon A alkion. Vastaava päättely voidaan tehdä joukolla B. Siis joukot A ja B ovat aliryhmän I(Q) vasempia transversaaleja ryhmässä M(Q). Jos a, Q, niin [L a, R ] (1) = L 1 a R 1 (a) = L 1 a (a) = 1 eli [B, A] I(Q), joten transversaalit ovat I(Q)-yhdistettyjä. Lisäksi määritelmän nojalla M(Q) = A, B. Koska L M(Q) (I(Q)) I(Q) ja se on normaali aliryhmä ryhmässä M(Q), niin lemman 10 nojalla L M(Q) (I(Q)) = {1}. Lemma 12. Olkoon Q kommutatiivinen luuppi. Tällöin joukko A = {L a a Q} on I(Q)-itseyhdistetty transversaali ryhmässä M(Q). Lisäksi L M(Q) (I(Q)) = {1} ja M(Q) = A. Todistus. Koska Q on kommutatiivinen luuppi, niin L a (x) = ax = xa = R a (x) kaikilla a, x Q. Todistus hoituu nyt lemman 11 argumentoinnilla. Lause 1. Ryhmä G on isomornen jonkun luupin kertolaskuryhmän kanssa jos ja vain jos ryhmällä G on olemassa sellainen H G, että L G (H) = {1} ja sellaiset H-yhdistetyt transversaalit A ja B, että G = A, B. Todistus. [2], 4.1 (s. 118) Oletetaan, että ryhmällä G on sellainen aliryhmä H G, että L G (H) = {1} ja sellaiset H-yhdistetyt transversaalit A ja B, että G = A, B. Transversaalin määritelmän nojalla voidaan muodostaa sellainen funktio f : G A, että xh = f(x)h kaikilla x G. Tällöin jos x xh, niin 9
f(x ) = f(x). Olkoon K = {ah a G} ja määritellään joukon K inäärinen operaatio seuraavasti (xh) (yh) = f(x)yh. Olkoon x xh ja y yh. Tällöin y = yh eräällä h H eli (x H) (y H) = f(x )y H = f(x)yhh = f(x)yh = (xh) (yh). Siis inäärinen operaatio on hyvin määritelty sivuluokkien edustajan valinnasta huolimatta. Osoitetaan nyt, että (K, ) on luuppi. Ensinnäkin lemman 9 nojalla 1 A eli jos h H, niin f(h) = f(1) = 1. Täten H xh = f(1)xh = xh ja (xh) H = f(x)h = xh eli H on inäärisen operaation neutraalialkio. Koska (xh) (zh) = f(x)zh, niin kiinnittämällä xh ja yh saadaan, että alkio zh on yhtälön (xh) (zh) = yh ratkaisu jos ja vain jos zh = (f(x)) 1 yh. Siis kyseisellä yhtälöllä on yksikäsitteinen ratkaisu. Määritellään sellainen funktio g : G B, että xh = g(x)h kaikilla x G. Tällöin (zh) (xh) = f(z)xh = f(z)g(x)h = g(x)f(z)h, koska transversaalit A ja B olivat H-yhdistettyjä. Täten alkio zh = f(z)h on yhtälön (zh) (xh) = (yh) ratkaisu jos ja vain jos zh = (g(x)) 1 yh. Siis tarkasteltavalla yhtälöllä on yksikäsitteinen ratkaisu aina, kun alkiot xh ja yh ovat kiinnitetyt. Täten on näytetty, että (K, ) on luuppi. Olkoon λ : G S K, λ(g) = λ g, missä λ g (xk) = gxk on joukon K permutaatio. Selvästi λ on ryhmähomomorsmi (joillain merkinnöillä täytyy valita λ(g) = λ g 1). Jos g Ker(λ), niin gxh = xh kaikilla x H. Täten g H x 1 kaikilla x G. Siis Ker(λ) L G (H) = {1}. Täten homomorsmien peruslauseiden nojalla G = G/Ker(λ) = Im(λ) S K. Koska B oli transversaali, niin voidaan määritellä kuvaus g : G B, että g(y)h = yh kaikilla y G. Tällöin jos x, y G ja y = h eräillä h H ja B, niin (xh) (yh) = f(x)yh = f(x)hh = f(x)g(y)h. Koska A ja B ovat H-yhdistettyjä, niin [f(x), g(y)] H eli f(x)g(y)h = g(y)f(x)h kaikilla x, y G. Täten L ah (xh) = (ah) (xh) = f(a)xh kaikilla a G eli kerrottaessa joukon K alkioita vasemmalta joukon A alkioilla saadaan permutaatioita, jotka muodostavat joukon {L x x K}. Vastaavasti R H (xh) = (xh) (H) = f(x)g()h = g()f(x)h = g()xh. 10
kaikilla G eli kerrottaessa joukon K alkioita vasemmalta joukon B alkioilla saadaan permutaatioita, jotka muodostavat joukon {R x x K}. Koska G = A, B ja M(K) = L a, R a, K, niin saadaan, että G = Im(λ) = M(K). Toiseen suuntaan väite seuraa lemmasta 11. Lause 2. Ryhmä G on isomornen jonkun kommutatiivisen luupin kertolaskuryhmän kanssa jos ja vain jos ryhmällä G on olemassa sellainen H G, että L G (H) = {1} ja sellainen H-itseyhdistetty transversaali A, että G = A. Todistus. Lauseen 1 merkinnöillä ja argumentoinnilla saadaan, että (K, ) on luuppi. Koska A on H-itseyhdistetty, niin [f(x), a] H eli f(x)ah = af(x)h kaikilla a A ja x G. Olkoon x, y G mielivaltaisia. Valitaan sellainen a A, että ah = yh eli a = f(y). Nyt (xh) (yh) = f(x)yh = f(x)ah = af(x)h = f(y)xh = (yh) (xh) eli Q on kommutatiivinen luuppi. Täten L a = R a ja loppu todistuksesta hoituu lauseen 1 argumentilla ja lemmalla 12. 11
Viitteet [1] K. Myllylä: On the solvaility of groups and loops, Acta Univ. Oul., A 396, 2002. [2] M. Niemenmaa & T. Kepka: On multiplication groups of loops, J. Algera 135: 112-122, 1990. [3] J. S. Rose: A course on group theory, Dover Pulications, Inc., 1994. 12