Johdatus matemaattiseen päättelyyn

Koko: px
Aloita esitys sivulta:

Download "Johdatus matemaattiseen päättelyyn"

Transkriptio

1 Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015

2 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Tässä luvussa tarkastellaan fuktioita ja todistetaan niiden ominaisuuksia. 4.1 Määritelmä Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden joukon B alkion f(a) B, jota kutsutaan funktion f arvoksi pisteessä a tai a:n kuvaksi tai kuvapisteeksi kuvauksessa f. Joukkoa A kutsutaan funktion f määrittely- tai lähtöjoukoksi ja joukkoa B maalijoukoksi. 4.2 Huomautus Kuvaus muodostuu kolmikosta (f, A, B). Kaksi kuvausta f : A B ja g : C D ovat samat, jos A = C, B = D ja f(x) = g(x) kaikilla x A = C. 4.3 Esimerkkejä (1) Olkoot A = {a, b, c} ja B = {0, 2, 4, 6, 8}. Määritellään f : A B seuraavasti f(a) = 0, f(b) = 4, f(c) = 0. Tällöin f on kuvaus. Sekä a:n että c:n kuva on 0. (2) Olkoon f sääntö, joka liittää jokaiseen kuukauteen sen päivien lukumäärän. Tällöin f on kuvaus A N, missä A = {tammi-, helmi-, maalis-, huhti-, touko-, kesä-, heinä-, elo-, syys-, loka-, marras-, joulukuu}. Nyt f(tammikuu) = 31, f(helmikuu) = 28, f(huhtikuu) = 30 = f(syyskuu). (3) Olkoon P = {toisen asteen polynomit}. Määritellään kuvaus f : P R, f(p ) = 1 0 P (x) dx. 2

3 Esimerkiksi, jos P (x) = x P, niin f(p ) = 1 0 (x 2 + 1) dx = / 1 0 ( 1 3 x3 + x) = 4 3. (4) Määritellään kuvaus f : R 2 R 2 f(x, y) = (2x y, x + y). Tällöin f(0, 1) = (2 0 1, 0 + 1) = ( 1, 1) ja f(0, 0) = (2 0 0, 0 + 0) = (0, 0). Määritellään seuraavaksi kuvajoukko ja alkukuva. 4.4 Määritelmä Olkoon f : A B kuvaus. Joukon U A kuvajoukko f(u) on joukon U alkioiden kuvapisteiden muodostama joukko: f(u) = {f(a) a U} = {b B on olemassa sellainen a U että b = f(a)} B. Joukon V B alkukuva f 1 (V ) on niiden joukon A alkioiden joukko, jotka kuvautuvat joukkoon V : f 1 (V ) = {a A f(a) V } A. 4.5 Huomautus Määritelmän perusteella f(a) B, mutta yleensä f(a) B. 4.6 Esimerkkejä (1) Olkoot A = {a, b, c} ja B = {0, 2, 4, 6, 8}. Määritellään f : A B kuten esimerkissä 4.3 (1): f(a) = 0, f(b) = 4, f(c) = 0. Tällöin f({a, b}) = {0, 4}, f({a, c}) = {0}, f 1 ({6, 8}) =, f 1 ({0}) = {a, c} ja f 1 ({0, 4}) = {a, b, c} = A. Lisäksi f 1 (f({a})) = f 1 ({0}) = {a, c}, f(f 1 ({0, 4, 6})) = f({a, b, c}) = {0, 4}, f(a\f 1 ({0})) = f(a\{a, c}) = f({b}) = {4} ja f 1 (B f({a, c}) = f 1 (B {0}) = f 1 ({0}) = {a, c}. 3

4 (2) Olkoon A kuukausien muodostama joukko ja olkoon f : A N kuten esimerkissä 4.3 (2), ts. f liittää jokaiseen kuukauteen sen päivien lukumäärän. Tällöin f(a) = {28, 30, 31}, f 1 ({29}) =, f 1 ({28}) = {helmikuu}, f 1 ({30}) = {huhti-, kesä-, syys-, marraskuu} ja f(a\f 1 ({30})) = {28, 31}. (3) Tarkastellaan kuvausta f : R R, f(x) = x 2 2. Olkoot U = [0, 2[ ja V =] 1, 1]. Mitä ovat f(u) ja f 1 (V )? Ratkaisu. ja f(u) = {f(x) x U} = {x 2 2 x [0, 2[} = [ 2, 2[ f 1 (V ) = {x R f(x) V } = {x R x 2 2 ] 1, 1]} = {x R 1 < x 2 2 1} = {x R 1 < x 2 3} = [ 3, 1[ ]1, 3]. (4) Olkoon A X. Kuvausta χ A : X [0, 1], { 1, jos x A, χ A (x) = 0, jos x / A, kutsutaan joukon A karakteristiseksi funktioksi. Nyt χ 1 A ({0}) = X\A, χ 1 A ({1}) = A ja χ 1 A ({y}) = kaikilla 0 < y < 1. (5) Olkoon f : A B kuvaus. Oletetaan, että V 1 V 2 B. Osoita, että f 1 (V 1 ) f 1 (V 2 ). Oletus: f : A B on kuvaus ja V 1 V 2 B. Väite: f 1 (V 1 ) f 1 (V 2 ). Todistus. Olkoon x f 1 (V 1 ). Määritelmän perusteella f(x) V 1. Koska V 1 V 2, niin f(x) V 2. Siis määritelmän nojalla x f 1 (V 2 ). Näin ollen väite on totta. 4

5 (6) Olkoon f : A B kuvaus. Oletetaan, että V 1, V 2 B. Osoita, että f 1 (V 1 V 2 ) = f 1 (V 1 ) f 1 (V 2 ). Todistus. (i) Väite 1: f 1 (V 1 V 2 ) f 1 (V 1 ) f 1 (V 2 ), ts. jos x f 1 (V 1 V 2 ), niin x f 1 (V 1 ) f 1 (V 2 ). Todistus. Olkoon x f 1 (V 1 V 2 ). Tällöin f(x) V 1 V 2, ts. f(x) V 1 ja f(x) V 2. Määritelmän nojalla x f 1 (V 1 ) ja x f 1 (V 2 ). Siis x f 1 (V 1 ) f 1 (V 2 ). Näin ollen väite 1 on totta. (ii) Väite 2: f 1 (V 1 ) f 1 (V 2 ) f 1 (V 1 V 2 ), ts. jos x f 1 (V 1 ) f 1 (V 2 ), niin x f 1 (V 1 V 2 ). Todistus. Olkoon x f 1 (V 1 ) f 1 (V 2 ), ts. x f 1 (V 1 ) ja x f 1 (V 2 ). Määritelmän perusteella f(x) V 1 ja f(x) V 2, joten f(x) V 1 V 2. Siis x f 1 (V 1 V 2 ). Näin ollen väite 2 on totta. Kohdista (i) ja (ii) seuraa, että f 1 (V 1 V 2 ) = f 1 (V 1 ) f 1 (V 2 ). 4.7 Määritelmä Olkoot g : A B ja f : B C kuvauksia. Yhdistetty kuvaus f g : A C määritellään seuraavasti: (f g)(a) = f(g(a)) kaikilla a A. 4.8 Esimerkkejä (1) Olkoot f : R R, f(x) = 2x + 3 ja g : R R, g(x) = cos x. Tällöin f g : R R, (f g)(x) = f(g(x)) = f(cos x) = 2 cos x + 3, g f : R R, (g f)(x) = g(f(x)) = g(2x + 3) = cos(2x + 3). Erityisesti f g g f. (2) Olkoot f : R 2 R, f(x, y) = x + y ja g : R R 2, g(t) = (2 + t, t 2 ). Tällöin f g : R R, (f g)(t) = f(g(t)) = f(2 + t, t 2 ) = 2 + t + t 2 = t 2 + t + 2, g f : R 2 R 2, (g f)(x, y) = g(f(x, y)) = g(x + y) = (2 + x + y, (x + y) 2 ) = (x + y + 2, x 2 + 2xy + y 2 ). 5

6 (3) Olkoot f : R 2 R, f(x, y) = x + y ja g : R R, g(t) = sin t. Tällöin g f : R 2 R, (g f)(x, y) = g(f(x, y)) = g(x + y) = sin(x + y). Yhdistettyä kuvausta f g ei ole olemassa, koska kuvauksen g maalijoukko R ei ole yhtä suuri kuin kuvauksen f lähtöjoukko R 2. Injektiivisyys ja surjektiivisuus ovat tärkeitä kuvauksiin liittyviä käsitteitä. Tarkastellaan niitä seuraavaksi: 4.9 Määritelmä Kuvaus f : A B on injektio, jos lähtöjoukon erisuurten alkioiden kuvapisteet ovat erisuuret, ts. jos a 1, a 2 A ovat sellaisia, että a 1 a 2, niin f(a 1 ) f(a 2 ) Esimerkkejä (1) Kuvausta f : R R, f(x) = x kutsutaan identtiseksi kuvaukseksi. Se on injektio. Perustelu: Jos x 1 x 2, niin f(x 1 ) = x 1 x 2 = f(x 2 ). (2) Kuvaus f : R R, f(x) = sin x, ei ole injektio, sillä f(0) = 0 = f(2π). (3) Esimerkin 4.3 (2) kuvaus f, joka liittää jokaiseen kuukauteen sen päivien lukumäärän, ei ole injektio, sillä f(tammikuu) = 31 = f(maaliskuu) Huomautuksia (1) Kuvaus f : A B on injektio, jos jokaiseen pisteeseen b B kuvautuu korkeintaan yksi (siis tasan yksi tai ei yhtään) joukon A alkio. (2) Osoita, että kuvaus f : A B on injektio, jos ja vain jos ehdosta f(a 1 ) = f(a 2 ) seuraa, että a 1 = a 2, kun a 1, a 2 A. Todistus. Väite koostuu kahdesta väitelauseesta. Todistetaan ne erikseen. Oletus 1: f : A B on injektio. Väite 1: jos a 1, a 2 A ovat sellaisia, että f(a 1 ) = f(a 2 ), niin a 1 = a 2. Todistus. Antiteesi: löydetään sellaiset a 1, a 2 A, että f(a 1 ) = f(a 2 ), mutta a 1 a 2. Tällöin f ei ole injektio, sillä erisuurilla alkioilla a 1 ja a 2 on sama kuvapiste. Tämä on ristiriita oletuksen 1 kanssa. Siis antiteesi on väärä ja väite 1 pätee. 6

7 Oletus 2: ehdosta f(a 1 ) = f(a 2 ) seuraa, että a 1 = a 2. Väite 2: f on injektio. Todistus. Olkoot x 1, x 2 A sellaisia, että x 1 x 2. Jos f(x 1 ) = f(x 2 ), niin oletuksen 2 perusteella x 1 = x 2, mikä on ristiriita. Siis on oltava f(x 1 ) f(x 2 ). Koska f kuvaa eri pisteet x 1 x 2 eri pisteiksi, on se injektio. Näin olle väite 2 on totta. Kohdista ja seuraa, että f : A B on injektio, jos ja vain jos ehdosta f(a 1 ) = f(a 2 ) seuraa, että a 1 = a 2, kun a 1, a 2 A. Huomautus 4.11 (2) on hyödyllinen kuvauksen injektiivisyyttä todistettaessa Esimerkkejä (1) Onko kuvaus f : R 2 R, f(x, y) = x y, injektio? Ratkaisu. Kuvaus f ei ole injektio, sillä f(1, 2) = 1 = f(3, 4). (2) Onko kuvaus f : R R, f(x) = 3 2 x + 1 4, injektio? Ratkaisu. Kuvaus f on injektio. Perustellaan tämä: Olkoot x 1, x 2 R sellaisia, että f(x 1 ) = f(x 2 ). Tällöin 3 2 x = 3 2 x , joten 3 2 x 1 = 3 2 x 2, mistä saadaan x 1 = x 2. Huomautuksen 4.11 (2) perusteella f on siis injektio. (3) Onko kuvaus g : R R 2, g(t) = (2t, t 3 ), injektio? Ratkaisu: Osoitetaan, että kuvaus g on injektio. Olkoot t, s R sellaisia, että g(t) = g(s) eli (2t, t 3 ) = (2s, s 3 ). Tällöin 2t = 2s ja t 3 = s 3. Ensimmäistetä yhtälöstä saadaan t = s. Huomautuksen 4.11 (2) perusteella g on injektio. (4) Onko kuvaus h : R 2 R 2, h(x, y) = (2x, x + y), injektio? Ratkaisu: Kuvaus h on injektio. Perustellaan tämä: Olkoot (x 1, y 1 ), (x 2, y 2 ) R 2 sellaisia, että h(x 1, y 1 ) = h(x 2, y 2 ), ts. (2x 1, x 1 + y 1 ) = (2x 2, x 2 + y 2 ). Tällöin 2x 1 = 2x 2 ja x 1 + y 1 = x 2 + y 2. Ensimmäisestä yhtälöstä nähdään, että x 1 = x 2. Sijoittamalla tämä toiseen yhtälöön saadaan x 1 + y 1 = x 1 + y 2, josta nähdään, että y 1 = y 2. Näin ollen (x 1, y 1 ) = (x 2, y 2 ). Huomautuksen 4.11 (2) perusteella h on injektio. 7

8 4.13 Määritelmä Kuvaus f : A B on surjektio, jos f(a) = B eli jos jokaisella b B on olemassa ainakin yksi sellainen a A, että f(a) = b Esimerkkejä (1) Esimerkin 4.3 (2) kuvaus f : A N, joka liittää jokaiseen kuukauteen sen päivien lukumäärän, ei ole surjektio, sillä 100 N, mutta missään kuukaudessa ei ole sataa päivää. (2) Onko kuvaus f : N N, f(n) = 2n, surjektio? Ratkaisu. Kuvaus f ei ole surjektio. Perustellaan tämä osoittamalla, että 1 ei ole minkään luonnollisen luvun kuva kuvauksessa f, ts. 1 / f(n). Antiteesi: 1 f(n), ts. 1 = f(n) jollakin n N eli 1 = 2n jollakin n N. Ratkaisemalla tästä n saadaan n = 1, mikä on ristiriita, sillä n N. 2 Näin ollen antiteesi ei ole totta ja siis 1 / f(n) eli f ei ole surjektio. (3) Onko kuvaus g : R R, g(x) = 2x, surjektio? Ratkaisu. Olkoon y R. Löytyykö sellaista pistettä x R, että g(x) = y, ts. 2x = y? Mikäli löytyy, on kuvaus g surjektio. Ratkaisemalla x yhtälöstä 2x = y saadaan x = 1 y R. Tällöin 2 Siis g on surjektio. g(x) = g( 1 2 y) = y = y. (4) Onko kuvaus h : R 2 R, h(x, y) = x y, surjektio? Ratkaisu: Olkoon t R. Löytyykö sellaista lukuparia (x, y) R 2, että h(x, y) = t, ts. x y = t? Jos löytyy, on kuvaus h surjektio. Valitaan (x, y) = (t, 0) R 2. Tällöin h(x, y) = h(t, 0) = t 0 = t. Siis h on surjektio Määritelmä Kuvaus f : A B on bijektio, jos se on sekä injektio että surjektio. 8

9 4.16 Määritelmä Olkoon f : A B kuvaus. Kuvaus g : B A on funktion f käänteiskuvaus, jos ja (f g)(b) = f(g(b)) = b kaikilla b B (g f)(a) = g(f(a)) = a kaikilla a A, ts. f g : B B on joukon B identtinen kuvaus ja g f : A A on joukon A identtinen kuvaus. Jos käänteiskuvaus on olemassa, merkitään sitä symbolilla f 1 : B A Esimerkki Osoita, että kuvauksen f : R \ {2} R \ {3}, f(x) = käänteiskuvaus on g : R \ {3} R \ {2}, Todistus. Jos x R \ {2}, niin ( 3x (g f)(x) = g(f(x)) = g x 2 Jos taas y R \ {3}, niin ( 2y (f g)(y) = f(g(y)) = f y 3 g(y) = 3x x 2, 2y y 3. ) = 2( ) 3x x 2 3x 3 = x 2 ) = 3( 2y y 3 ) 2y 2 = y 3 Määritelmän perusteella g on kuvauksen f käänteiskuvaus. 6x 3x 3(x 2) = 6x 6 = x. 6y 2y 2(y 3) = 6y 6 = y. 9

10 4.18 Huomautus Jos käänteiskuvaus on olemassa, se on yksikäsitteinen. Perustelu. Oletetaan, että kuvaukset g : B A ja g : B A ovat sellaisia, että f(g(b)) = b = f( g(b)) kaikilla b B ja g(f(a)) = a = g(f(a)) kaikilla a A. Osoitetaan, että g(b) = g(b) kaikilla b B. Olkoon b B. Tällöin g(b) = g(f( g(b))) = g(b), joten g = g. Käänteiskuvaus on siis yksikäsitteinen Lause Olkoon f : A B kuvaus. Kuvauksella f on käänteiskuvaus, jos ja vain jos f on bijektio. Todistus. Väite koostuu kahdesta väitelauseesta. Todistetaan ne erikseen. Oletus 1: Kuvauksella f on käänteiskuvaus f 1. Väite 1: Kuvaus f on bijektio. Todistus. Osoitetaan ensin, että f on injektio. Olkoot a 1, a 2 A sellaisia, että a 1 a 2. Todistetaan, että f(a 1 ) f(a 2 ). Jos f(a 1 ) = f(a 2 ), niin oletuksen 1 nojalla a 1 = f 1 (f(a 1 )) = f 1 (f(a 2 )) = a 2, mikä on ristiriita. Näin ollen f(a 1 ) f(a 2 ). Siis f on injektio. Osoitetaan vielä, että f on surjektio. Olkoon b B. On löydettävä sellainen a A, että f(a) = b. Valitaan a = f 1 (b). Tällöin a A ja oletuksen 1 perusteella Siis f on surjektio. f(a) = f(f 1 (b)) = b. Koska f on sekä injektio että surjektio, on se bijektio. Näin ollen väite 1 on totta. 10

11 Oletus 2: Kuvaus f on bijektio. Väite 2: Kuvauksella f on käänteiskuvaus f 1. Todistus. Koska kuvaus f on bijektio, niin kaikille b B löydetään sellainen yksikäsitteinen a b A, että f(a b ) = b. Määritellään kuvaus g : B A asettamalla g(b) = a b, ja osoitetaan, että g on kuvauksen f käänteiskuvaus, ts. että f(g(b)) = b kaikilla b B ja g(f(a)) = a kaikilla a A. Jos b B, niin f(g(b)) = f(a b ) = b. Jos taas a A, niin g(f(a)) = a f(a), missä a f(a) A on sellainen, että f(a f(a) ) = f(a). Koska f on oletuksen 2 nojalla injektio, on oltava a = a f(a). Näin ollen g(f(a)) = a. Siis g on kuvauksen f käänteiskuvaus. Kohdista ja seuraa, että lauseen väite on totta Esimerkki Osoita, että kuvaus f : R R, f(x) = x + 3, on bijektio, ja määritä sen käänteiskuvaus. Ratkaisu: (i) Osoitetaan, että f on injektio. Jos f(x 1 ) = f(x 2 ), niin x = x 2 + 3, joten x 1 = x 2. Siis f on injektio. (ii) Osoitetaan, että f on surjektio. Olkoon y R. Etsitään sellainen x R, että f(x) = y, ts. x + 3 = y. Ratkaisemalla tästä x saadaan x = 3 y. Nyt f(3 y) = (3 y) + 3 = y. Siis f on surjektio. Kohtien (i) ja (ii) perusteella f on bijektio, joten f:llä on käänteiskuvaus ja se on f 1 : R R, f 1 (t) = 3 t, sillä ja f f 1 (t) = f(3 t) = (3 t) + 3 = t f 1 f(x) = f 1 ( x + 3) = 3 ( x + 3) = x. Huomaa, että käänteiskuvauksen lauseke saadaan surjektiivisuuden todistuksesta. 11

12 4.21 Huomautus Jos f : A B on kuvaus, niin joukon V B alkukuva f 1 (V ) on aina olemassa. Sen sijaan käänteiskuvaus f 1 : B A on olemassa, jos ja vain jos f on bijektio. Alkukuva on joukko ja käänteiskuvaus on kuvaus Lause Oletetaan, että kuvaukset f : A B ja g : B C ovat bijektioita. Tällöin yhdistetty kuvaus g f : A C on bijektio. Sen käänteiskuvaus on (g f) 1 = f 1 g 1. Todistus. Osoitetaan ensin, että g f on bijektio, ts. se on sekä injektio että surjektio. (i) Väite 1: kuvaus g f on injektio. Todistus. Olkoot a 1, a 2 A sellaisia, että a 1 a 2. Koska f on injektio, niin f(a 1 ) f(a 2 ). Koska g on injektio, niin g(f(a 1 )) g(f(a 2 )), ts. Näin ollen g f on injektio. (ii) Väite 2: kuvaus g f on surjektio. (g f)(a 1 ) (g f)(a 2 ). Todistus. Olkoon c C. Etsitään sellainen a A, että (g f)(a) = c. Koska g : B C on surjektio, niin löydetään sellainen b B, että g(b) = c. Koska f : A B on surjektio, niin löydetään sellainen a A, että f(a) = b. Nyt Siis g f on surjektio. (g f)(a) = g(f(a)) = g(b) = c. Kohtien (i) ja (ii) perusteella g f on bijektio. Osoitetaan, että kuvauksen g f käänteiskuvaus on f 1 g 1. (iii) Väite 3: (g f) 1 = f 1 g 1. Todistus. Koska f ja g ovat bijektioita, ovat käänteiskuvaukset f 1 : B A ja g 1 : C B olemassa. Yhdistetty kuvaus f 1 g 1 on kuvaus C A. Lisäksi ( (g f) (f 1 g 1 ) ) (c) = (g f) ( (f 1 g 1 )(c) ) = g ( f ( f 1 (g 1 (c)) )) = g(g 1 (c)) = c 12

13 kaikilla c C ja ( (f 1 g 1 ) (g f) ) (a) = (f 1 g 1 ) ((g f)(a)) = f 1 ( g 1 (g(f(a))) ) = f 1 (f(a)) = a kaikilla a A. Siis f 1 g 1 on kuvauksen g f käänteiskuvaus. 13

14 Lähteet Juutinen, Petri: Johdatus matematiikkaan ( peanju/) Roberts, Charles E.: Introduction to mathematical proofs: a transition, CRC Press, Kiitokset Kiitokset Tuula Ripatille luentomuistiinpanojeni puhtaaksi kirjoittamisesta. 14

Funktioista. Esimerkki 1

Funktioista. Esimerkki 1 Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Marko Leinonen Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2018 1 Merkintöjä ja määritelmiä Luonnollisten lukujen joukko N on joukko ja kokonaislukujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus diskreettiin matematiikkaan Harjoitus 1, Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen, Funktiotehtävät, 10. syyskuuta 005, sivu 1 / 4 Perustehtävät Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x. kun x on parillinen, f : N {0, 1, }, f(x) = 1 kun x on alkuluku,

Lisätiedot

Analyysi I. Visa Latvala. 26. lokakuuta 2004

Analyysi I. Visa Latvala. 26. lokakuuta 2004 Analyysi I Visa Latvala 26. lokakuuta 2004 34 Sisältö 3 Reaauuttujan funktiot 35 3.1 Peruskäsitteitä................................. 35 3.2 Raja-arvon määritelmä............................. 43 3.3 Raja-arvon

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Vastaoletuksen muodostaminen

Vastaoletuksen muodostaminen Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Tekijäryhmät ja homomorsmit

Tekijäryhmät ja homomorsmit Tekijäryhmät ja homomorsmit LuK-tutkielma Henna Isokääntä 1953004 henna.isokaanta@gmail.com Matemaattiset tieteet Oulun yliopisto Kevät 2019 Sisältö Johdanto 1 1 Tekijäryhmät 1 2 Homomorsmit 3 Lähdeluettelo

Lisätiedot

Approbatur 3, demo 5, ratkaisut

Approbatur 3, demo 5, ratkaisut Approbatur 3, demo 5, ratkaisut 51 Tehtävänä on luetella kaikki joukon S 4 alkiot eli neljän alkion permutaatiot Tämä tarkoittaa kaikkia eri tapoja kuvata joukko {1, 2, 3, 4} bijektiivisesti itselleen

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

Vektorianalyysi II (MAT21020), syksy 2018

Vektorianalyysi II (MAT21020), syksy 2018 Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka

Lisätiedot

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014 Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Perusteita 3 1.1 Kuvauksista............................ 3 1.2 Relaatioista............................

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta

Lisätiedot

Matemaattisten työvälineiden täydentäviä muistiinpanoja

Matemaattisten työvälineiden täydentäviä muistiinpanoja Matemaattisten työvälineiden täydentäviä muistiinpanoja Antti-Juhani Kaijanaho 7 maaliskuuta 0 Deduktiivinen ja induktiivinen päättely Deduktiivisessa päättelyssä johtopäätös seuraa aukottomasti premisseistä

Lisätiedot

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

U β T. (1) U β T. (2) {,X} T. (3)

U β T. (1) U β T. (2) {,X} T. (3) 1.1 a) Joukkoperhe T = α I T α P(X) on topologia. Todistus. Osoitetaan, että topologian määritelmän 1.1 ehdot (1), (2) ja (3) toteutuvat. Ehtoa (1) varten olkoon {U β β J} T. Pitää osoittaa, että U β T.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna! Funktiot, L3a n kuvaaja n kuvaaja n kuvaaja Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!) Funktio (Käytännöllinen

Lisätiedot

Analyysi I (mat & til) Demonstraatio IX

Analyysi I (mat & til) Demonstraatio IX Analyysi I (mat & til) Demonstraatio IX 16.11. 2018 II välikoe 19.11. klo 9 salissa IX. Ilmoittaudu NettiOpsussa 12.11. mennessä. Koealue: Funktion raja-arvo, jatkuvuus ja Bolzanon lause, ts. kirjan luku

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot