Talousmatematiikka (3 op)

Samankaltaiset tiedostot
Talousmatematiikka (3 op)

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Talousmatematiikka (4 op)

Matematiikkaa kauppatieteilijöille

Korkolasku ja diskonttaus, L6

diskonttaus ja summamerkintä, L6

1 Prosenttilaskua 3. 2 Yksinkertainen korkolasku 4. 3 Diskonttaus 6. 4 Koronkorko 8. 5 Korkokannat 9. 6 Jatkuva korko Jaksolliset suoritukset 11

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

a) (1, 0735) , 68. b) Korkojaksoa vastaava nettokorkokanta on

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Jaksolliset suoritukset, L13

802118P Lineaarialgebra I (4 op)

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = = =

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu Työhuone M231

Talousmatematiikan perusteet

Matematiikan tukikurssi

Talousmatematiikan perusteet

1 Aritmeettiset ja geometriset jonot

Mat Investointiteoria Laskuharjoitus 3/2008, Ratkaisut

9 VEROTUS, TALLETUKSET JA LAINAT

Viimeinen erä on korot+koko laina eli 666, , 67AC.

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan

(1) Katetuottolaskelma

Yksinkertainen korkolasku

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

YHTEENVETO LAINATARJOUKSISTA

10 Liiketaloudellisia algoritmeja

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L7

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Tasaerälaina ja osamaksukauppa

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA

Pyramidi 9 Trigonometriset funktiot ja lukujonot HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Matematiikan tukikurssi

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

lnx x 1 = = lim x = = lim lim 10 = x x0

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Tasaerälaina ja osamaksukauppa

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Nykyarvo ja investoinnit, L9

4 LUKUJONOT JA SUMMAT

Johdantoa INTEGRAALILASKENTA, MAA9

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

Aritmeettinen jono

BL20A0500 Sähkönjakelutekniikka

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä.

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

Jäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Jaksolliset ja toistuvat suoritukset

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Prosentti- ja korkolaskut 1

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Verkkokurssin tuotantoprosessi

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

10.5 Jaksolliset suoritukset

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Ominaisarvo ja ominaisvektori

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

Mat Investointiteoria - Kotitehtävät

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

Talousmatematiikan perusteet

Talousmatematiikan perusteet

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

Huippu 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO

Korko Mela-laskelmissa

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

Yhden muuttujan funktion minimointi

Mat Dynaaminen optimointi, mallivastaukset, kierros 5

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

Sijoitustodistuksen nykyinen markkinahinta: euroa. Jos viitekorko laskee 0,5 %-yksikköä, uusi markkinahinta: euroa

Transkriptio:

Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011

Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu http://cc.oulu.fi/ tvedenju/talousmatematiikka/ Luennot salissa L7 Laskariryhmät: ma 8-10 M101 ti 10-12 KO143 pe 10-12 BK122 2 / 117

Kurssin suoritus 1 Loppukoe/päättökoe (ajankohta sovitaan myöhemmin) 3 / 117

Kurssin suoritus 1 Loppukoe/päättökoe (ajankohta sovitaan myöhemmin) 2 Kurssin jälkeen pidettävään päättökokeeseen luetaan hyväksi myös laskuharjoituksista saatavat pisteet. 4 / 117

Kurssin suoritus 1 Loppukoe/päättökoe (ajankohta sovitaan myöhemmin) 2 Kurssin jälkeen pidettävään päättökokeeseen luetaan hyväksi myös laskuharjoituksista saatavat pisteet. 3 Laskuharjoituspisteitä saa seuraavan taulukon mukaisesti: Harjoituspisteet Tehdyt tehtävät Pisteet alle 25% 0 p. 25%-50% 1 p. 50%-75% 2 p. yli 75% 4 p. 5 / 117

Sisältö I FINANSSIMATEMATIIKKA 1 Prosenttilaskua 2 Yksinkertainen korkolasku 3 Diskonttaus 4 Koronkorko 5 Jatkuva korkolasku 6 Jaksolliset suoritukset 7 Luotot ja korkolasku 8 Annuiteettiperiaate 9 Lainan kuolettaminen ja efektiivinen korkokanta 10 Keskimaksuhetki ja Todellinen vuosikorko 11 Investointilaskelmia 6 / 117

Sisältö II INDEKSITEORIA 1 Keskiarvoista 2 Indeksiluvun käsite 3 Kuluttajahintaindeksi 4 Aikasarjan deflatointi ja inflatointi 5 Indeksiluvun muodostaminen 6 Keskilukumalli 7 Keskilukumallin painotetut indeksiluvut 8 Kokonaislukumallit 9 Keskilukumallin ja kokonaislukumallin yhteys 10 Fisherin indeksikriteerit 7 / 117

Kurssin opiskelusta Huomio a) Älä opettele kaavoja ulkoa. 8 / 117

Kurssin opiskelusta Huomio a) Älä opettele kaavoja ulkoa. b) Yritä liittää esitetty teoria/kaava aina johonkin esimerkkiin. 9 / 117

Kurssin opiskelusta Huomio a) Älä opettele kaavoja ulkoa. b) Yritä liittää esitetty teoria/kaava aina johonkin esimerkkiin. c) Kysy tarvittaessa! 10 / 117

Kurssin opiskelusta Huomio a) Älä opettele kaavoja ulkoa. b) Yritä liittää esitetty teoria/kaava aina johonkin esimerkkiin. c) Kysy tarvittaessa! d) Tee harjoitustehtäviä! 11 / 117

Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? 12 / 117

Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? b) Kuinka lasketaan lainan kuukausierän suuruus kun laina-aikana on 20 vuotta? 13 / 117

Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? b) Kuinka lasketaan lainan kuukausierän suuruus kun laina-aikana on 20 vuotta? c) Kuinka paljon laina/luotto oikeasti maksaa? 14 / 117

Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? b) Kuinka lasketaan lainan kuukausierän suuruus kun laina-aikana on 20 vuotta? c) Kuinka paljon laina/luotto oikeasti maksaa? d) Miten tutkia investoinnin kannattavuutta? 15 / 117

Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? b) Kuinka lasketaan lainan kuukausierän suuruus kun laina-aikana on 20 vuotta? c) Kuinka paljon laina/luotto oikeasti maksaa? d) Miten tutkia investoinnin kannattavuutta? e) Miten rahan arvon muutoksia seurataan? 16 / 117

Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? b) Kuinka lasketaan lainan kuukausierän suuruus kun laina-aikana on 20 vuotta? c) Kuinka paljon laina/luotto oikeasti maksaa? d) Miten tutkia investoinnin kannattavuutta? e) Miten rahan arvon muutoksia seurataan? f) Miten seurata erilaisten hyödykkeiden kulutuksen muutoksia? 17 / 117

KORKOLASKENTAA 18 / 117

Prosenttilaskua Jos luku a kasvaa p%, niin uusi arvo on a + p 100 a. 19 / 117

Prosenttilaskua Jos luku a kasvaa p%, niin uusi arvo on a + p 100 a. Jos luku a vähenee p%, niin uusi arvo on a p 100 a. 20 / 117

Prosenttilaskua Esimerkki 1 Paljonko on 1500 e maksava tuote 15% alennusmyynnissä? 21 / 117

Prosenttilaskua Esimerkki 1 Paljonko on 1500 e maksava tuote 15% alennusmyynnissä? 1500 e 15 1500 e = 1275 e (= 0, 85 1500 e) 100 22 / 117

Prosenttilaskua Montako prosenttia luku a on luvusta b? p = a b 100% 23 / 117

Prosenttilaskua Esimerkki 2 Montako prosenttia luku a on luvusta b? a) a = 15, b = 90 b) a = 90, b = 15 24 / 117

Prosenttilaskua Esimerkki 2 Montako prosenttia luku a on luvusta b? a) a = 15, b = 90 b) a = 90, b = 15 a) 15 100% = 16, 7% (= 0, 1666666... 0, 167) 90 25 / 117

Prosenttilaskua Esimerkki 2 Montako prosenttia luku a on luvusta b? a) a = 15, b = 90 b) a = 90, b = 15 a) b) 15 100% = 16, 7% (= 0, 1666666... 0, 167) 90 90 100% = 600% (= 6, 00) 15 26 / 117

Prosenttilaskua Kuinka monta prosenttia p luku a on suurempi (pienempi) kuin luku b? p = a b b 100% 27 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? 28 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 29 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 Vast. 700% 30 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 Vast. 700% b) 175 25 175 = 0, 857 31 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 Vast. 700% b) 175 25 175 = 0, 857 Vast. 85, 7% 32 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 Vast. 700% b) 175 25 175 = 0, 857 Vast. 85, 7% 33 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 Vast. 700% b) c) 175 25 175 160 20 160 = 0, 857 Vast. 85, 7% = 0, 875 34 / 117

Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) 160 20 20 = 7 Vast. 700% b) c) 175 25 175 160 20 160 = 0, 857 Vast. 85, 7% = 0, 875 Vast. 87, 5% 35 / 117

Prosenttilaskua Esimerkki 4 a) Mistä luvusta 24 on 32%? b) Mitä lukua 80 on 20% pienempi? c) Mikä luku on 15 % suurempi kuin 50? d) Mikä luku on 10% pienempi kuin 30? e) Mikä luku on 32% luvusta 24? 36 / 117

Prosenttilaskua Esimerkki 4 a) Mistä luvusta 24 on 32%? b) Mitä lukua 80 on 20% pienempi? c) Mikä luku on 15 % suurempi kuin 50? d) Mikä luku on 10% pienempi kuin 30? e) Mikä luku on 32% luvusta 24? a) 24 x = 0, 32 0, 32x = 24 x = 24 0, 32 = 75 37 / 117

Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) 38 / 117

Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) x 80 x = 0, 2 0, 2x = x 80 0, 8x = 80 x = 100 39 / 117

Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) x 80 x = 0, 2 0, 2x = x 80 0, 8x = 80 x = 100 c) (Mikä luku on 15 % suurempi kuin 50?) 40 / 117

Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) x 80 x = 0, 2 0, 2x = x 80 0, 8x = 80 x = 100 c) (Mikä luku on 15 % suurempi kuin 50?) x 50 50 = 0, 15 x 50 = 7, 5 x = 57, 5 41 / 117

Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) x 80 x = 0, 2 0, 2x = x 80 0, 8x = 80 x = 100 c) (Mikä luku on 15 % suurempi kuin 50?) x 50 50 = 0, 15 x 50 = 7, 5 x = 57, 5 d) (Mikä luku on 10% pienempi kuin 30?) 42 / 117

Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) x 80 x = 0, 2 0, 2x = x 80 0, 8x = 80 x = 100 c) (Mikä luku on 15 % suurempi kuin 50?) x 50 50 = 0, 15 x 50 = 7, 5 x = 57, 5 d) (Mikä luku on 10% pienempi kuin 30?) 30 x 30 = 0, 1 30 x = 3 x = 27 43 / 117

Prosenttilaskua e) (Mikä luku on 32% luvusta 24?) 44 / 117

Prosenttilaskua e) (Mikä luku on 32% luvusta 24?) x = 0, 32 x = 24 0, 32 = 7, 68 24 45 / 117

Yksinkertainen korkolasku Korko on korvaus lainaksi saadusta/annetusta rahapääomasta (esim. luotto tai talletus). 46 / 117

Yksinkertainen korkolasku Korko on korvaus lainaksi saadusta/annetusta rahapääomasta (esim. luotto tai talletus). Korkokanta i on prosenttiluku, joka ilmoittaa kuinka prosenttia (%) pääoma kasvaa korkojakson aikana. 47 / 117

Yksinkertainen korkolasku Korko on korvaus lainaksi saadusta/annetusta rahapääomasta (esim. luotto tai talletus). Korkokanta i on prosenttiluku, joka ilmoittaa kuinka prosenttia (%) pääoma kasvaa korkojakson aikana. Korkojakso Korkokanta 1 vuosi i pa. (per annum) 6 kk i ps. (per semester) 3 kk i pq. (per quartal) 1 kk, 2 kk i per (1) kk, i per 2 kk 48 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua sovelletaan ainoastaan yhden korkojakson sisällä. 49 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua sovelletaan ainoastaan yhden korkojakson sisällä. Yksinkertainen korko Pääoma ajanhetkellä t (0 t 1) on K t = K 0 (1 + it), (1) missä K 0 = alkupääoma(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) 50 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua sovelletaan ainoastaan yhden korkojakson sisällä. Yksinkertainen korko Pääoma ajanhetkellä t (0 t 1) on K t = K 0 (1 + it), (1) missä K 0 = alkupääoma(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Korko ajanhetkellä t on K t K 0 = K 0 it. 51 / 117

Yksinkertainen korkolasku Korko on siis suoraan verrannollinen kuluneeseen aikaan korkojakson sisällä, koska missä c = K 0 i =vakio. K 0 it = ct, 52 / 117

Yksinkertainen korkolasku Korko on siis suoraan verrannollinen kuluneeseen aikaan korkojakson sisällä, koska missä c = K 0 i =vakio. K 0 it = ct, Pääoman kasvu on siis lineaarista korkojakson sisällä. (vrt. kuva) 53 / 117

Yksinkertainen korkolasku Kysymys Korko on siis suoraan verrannollinen kuluneeseen aikaan korkojakson sisällä, koska missä c = K 0 i =vakio. K 0 it = ct, Pääoman kasvu on siis lineaarista korkojakson sisällä. (vrt. kuva) Mitä tapahtuu korkojakson lopussa? 54 / 117

Yksinkertainen korkolasku Kysymys Korko on siis suoraan verrannollinen kuluneeseen aikaan korkojakson sisällä, koska missä c = K 0 i =vakio. K 0 it = ct, Pääoman kasvu on siis lineaarista korkojakson sisällä. (vrt. kuva) Mitä tapahtuu korkojakson lopussa? Vastaus Korkojakson lopussa korko liitetään pääomaan eli realisoidaan. Uusi kasvanut pääoma toimii seuraavan korkojakson alkupääomana. 55 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua käyttävät esim. pankit (korko talletuksille). 56 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua käyttävät esim. pankit (korko talletuksille). Prolongointi: pääomaa siirretään ajassa eteenpäin. 57 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua käyttävät esim. pankit (korko talletuksille). Prolongointi: pääomaa siirretään ajassa eteenpäin. Esimerkki 5 Talletetaan 25 000 e korkokannalla 6% pa. Määrää talletuksen arvo a) vuoden b) 8 kk:n c) 16 kk:n kuluttua? d) 16 kk:n kuluttua, ilman että korko realisoidaan pääomaan aina korkojakson lopussa. 58 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua käyttävät esim. pankit (korko talletuksille). Prolongointi: pääomaa siirretään ajassa eteenpäin. Esimerkki 5 Talletetaan 25 000 e korkokannalla 6% pa. Määrää talletuksen arvo a) vuoden b) 8 kk:n c) 16 kk:n kuluttua? d) 16 kk:n kuluttua, ilman että korko realisoidaan pääomaan aina korkojakson lopussa. a) K 0 = 25000 e i = 0, 06pa t = 1 ( korkojakson pituus 1 vuosi) 59 / 117

Yksinkertainen korkolasku Yksinkertaista korkolaskua käyttävät esim. pankit (korko talletuksille). Prolongointi: pääomaa siirretään ajassa eteenpäin. Esimerkki 5 Talletetaan 25 000 e korkokannalla 6% pa. Määrää talletuksen arvo a) vuoden b) 8 kk:n c) 16 kk:n kuluttua? d) 16 kk:n kuluttua, ilman että korko realisoidaan pääomaan aina korkojakson lopussa. a) K 0 = 25000 e i = 0, 06pa t = 1 ( korkojakson pituus 1 vuosi) K t = K 0 (1 + it) = 25000 e (1 + 0, 06 1) = 25000 e 1, 06 = 26500 e 60 / 117

Yksinkertainen korkolasku b) (aika 8 kk) K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = 61 / 117

Yksinkertainen korkolasku b) (aika 8 kk) K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = 8 12 62 / 117

Yksinkertainen korkolasku b) (aika 8 kk) K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = 8 12 K t = K 0 (1 + it) = 25000 e (1 + 0, 06 = 26000 e 8 12 ) 63 / 117

Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) Nyt aika menee korkojakson yli, joten joudutaan laskemaan osissa: 64 / 117

Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) Nyt aika menee korkojakson yli, joten joudutaan laskemaan osissa: K 1 = 25000 e (1 + 0, 06 1) = 26500 e 65 / 117

Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) Nyt aika menee korkojakson yli, joten joudutaan laskemaan osissa: K 1 = 25000 e (1 + 0, 06 1) = 26500 e Realisoidaan korko pääomaan, jolloin K 2 = 26500 e (1 + 0, 06 4 12 ) = 27030 e 66 / 117

Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) Lasketaan ilman, että realisoidaan pääomaa. K 0 = 25000 e i = 0, 06pa t = 16 12 ( korkojakson pituus 1 vuosi eli 12 kk) 67 / 117

Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) Lasketaan ilman, että realisoidaan pääomaa. K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = 16 12 K t = 25000 e (1 + 0, 06 16 12 ) = 27000 e 68 / 117

Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) Lasketaan ilman, että realisoidaan pääomaa. K 0 = 25000 e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = 16 12 K t = 25000 e (1 + 0, 06 16 12 ) = 27000 e Huom. 30 e erotus c) kohtaan verrattuna. (Miksi?) 69 / 117

Yksinkertainen korkolasku Esimerkki 6 Mikä on alkupääoman 18 000 e arvo 10 kk kuluttua, kun korkokantana on a) 8% pa. b) 5% ps.? c) 5% ps. (ilman koron realisointia pääomaan)? 70 / 117

Yksinkertainen korkolasku Esimerkki 6 Mikä on alkupääoman 18 000 e arvo 10 kk kuluttua, kun korkokantana on a) 8% pa. b) 5% ps.? c) 5% ps. (ilman koron realisointia pääomaan)? a) Korkojaksona 12 kk, joten 10 kk kuluttua pääoman arvo on K t = K 0 (1 + it) = 18000 e(1 + 0, 08 10 12 ) = 19200 e 71 / 117

Yksinkertainen korkolasku Esimerkki 6 Mikä on alkupääoman 18 000 e arvo 10 kk kuluttua, kun korkokantana on a) 8% pa. b) 5% ps.? c) 5% ps. (ilman koron realisointia pääomaan)? a) Korkojaksona 12 kk, joten 10 kk kuluttua pääoman arvo on K t = K 0 (1 + it) = 18000 e(1 + 0, 08 10 12 ) = 19200 e b) Korkojaksona 6 kk (< 10kk), joten lasketaan osissa: 0 6 kk : K 1 = 18000 e(1 + 0, 05 1) = 18900 e 72 / 117

Yksinkertainen korkolasku Esimerkki 6 Mikä on alkupääoman 18 000 e arvo 10 kk kuluttua, kun korkokantana on a) 8% pa. b) 5% ps.? c) 5% ps. (ilman koron realisointia pääomaan)? a) Korkojaksona 12 kk, joten 10 kk kuluttua pääoman arvo on K t = K 0 (1 + it) = 18000 e(1 + 0, 08 10 12 ) = 19200 e b) Korkojaksona 6 kk (< 10kk), joten lasketaan osissa: 0 6 kk : K 1 = 18000 e(1 + 0, 05 1) = 18900 e 6 10 kk : K t = 18900 e(1 + 0, 05 4 6 ) = 19530 e 73 / 117

Yksinkertainen korkolasku c) Korkojaksona 6 kk eikä realisoida korkoa pääomaan 74 / 117

Yksinkertainen korkolasku c) Korkojaksona 6 kk eikä realisoida korkoa pääomaan K t = K 0 (1 + it) = 18000 e(1 + 0, 05 10 6 ) = 19500 e Huom. 30 e erotus b) kohtaan verrattuna. 75 / 117

Yksinkertainen korkolasku Esimerkki 7 Mikä korkokanta i% pa. vastaa pääoman 7 % kasvua 3 kuukaudessa? Nyt K 0 = alkupääoma, korkojakso = 12kk ja t = 3 12 = 1 4. 76 / 117

Yksinkertainen korkolasku Esimerkki 7 Mikä korkokanta i% pa. vastaa pääoman 7 % kasvua 3 kuukaudessa? Nyt K 0 = alkupääoma, korkojakso = 12kk ja t = 3 12 = 1 4. K 0 (1 + i 1 4 ) 77 / 117

Yksinkertainen korkolasku Esimerkki 7 Mikä korkokanta i% pa. vastaa pääoman 7 % kasvua 3 kuukaudessa? Nyt K 0 = alkupääoma, korkojakso = 12kk ja t = 3 12 = 1 4. K 0 (1 + i 1 4 ) = 1, 07 K 0 78 / 117

Yksinkertainen korkolasku Esimerkki 7 Mikä korkokanta i% pa. vastaa pääoman 7 % kasvua 3 kuukaudessa? Nyt K 0 = alkupääoma, korkojakso = 12kk ja t = 3 12 = 1 4. K 0 (1 + i 1 4 ) = 1, 07 K 0 1 + i 1 4 = 1 + 7 100 79 / 117

Yksinkertainen korkolasku Esimerkki 7 Mikä korkokanta i% pa. vastaa pääoman 7 % kasvua 3 kuukaudessa? Nyt K 0 = alkupääoma, korkojakso = 12kk ja t = 3 12 = 1 4. K 0 (1 + i 1 4 ) = 1, 07 K 0 1 + i 1 4 = 1 + 7 100 7 i = 4 100 = 28 100 = 28% 80 / 117

Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? 81 / 117

Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? a) Korkojakson pituus 12 kk. K 0 (1 + 0, 1t) = 1, 08 K 0 82 / 117

Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? a) Korkojakson pituus 12 kk. K 0 (1 + 0, 1t) = 1, 08 K 0 83 / 117

Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? a) Korkojakson pituus 12 kk. K 0 (1 + 0, 1t) = 1, 08 K 0 1 + 0, 1t = 1, 08 84 / 117

Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? a) Korkojakson pituus 12 kk. K 0 (1 + 0, 1t) = 1, 08 K 0 1 + 0, 1t = 1, 08 0, 1t = 0, 08 0, 08 t = 0, 1 = 0, 8 85 / 117

Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? a) Korkojakson pituus 12 kk. K 0 (1 + 0, 1t) = 1, 08 K 0 1 + 0, 1t = 1, 08 0, 1t = 0, 08 0, 08 t = 0, 1 = 0, 8 Siis kysytty aika on 0, 8 12kk = 9, 6kk. 86 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. 87 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 88 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 89 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 90 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 91 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 1, 05 (1 + 0, 05t)K 0 = 1, 08 K 0 92 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 1, 05 (1 + 0, 05t)K 0 = 1, 08 K 0 1, 05 + 1, 05 0, 05t = 1, 08 93 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 1, 05 (1 + 0, 05t)K 0 = 1, 08 K 0 1, 05 + 1, 05 0, 05t = 1, 08 1, 05 0, 05t = 1, 08 1, 05 94 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 1, 05 (1 + 0, 05t)K 0 = 1, 08 K 0 1, 05 + 1, 05 0, 05t = 1, 08 1, 05 0, 05t = 1, 08 1, 05 0, 03 t = = 0, 571(< 1) 1, 05 0, 05 95 / 117

Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 1, 05 (1 + 0, 05t)K 0 = 1, 08 K 0 1, 05 + 1, 05 0, 05t = 1, 08 1, 05 0, 05t = 1, 08 1, 05 0, 03 t = = 0, 571(< 1) 1, 05 0, 05 Kysytty aika: 6kk + 0, 571 6kk 9, 4kk. 96 / 117

Diskonttaus Yksinkertaista korkolasku yhden korkojakson sisällä ajanhetkellä t (0 t 1) on K t = K 0 (1 + it), (2) missä K 0 = alkupääoma(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) 97 / 117

Diskonttaus Yksinkertaista korkolasku yhden korkojakson sisällä ajanhetkellä t (0 t 1) on missä K t = K 0 (1 + it), (2) K 0 = alkupääoma(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Entä jos halutaan määrätä tunnettua (tulevan) ajanhetken t > 0 pääomaa K t vastaava alkupääoman arvo K 0? 98 / 117

Diskonttaus Ratkaistaan yhtälöstä (2) K 0, jolloin 99 / 117

Diskonttaus Ratkaistaan yhtälöstä (2) K 0, jolloin Virallinen diskonttauskaava K 0 = K t 1 + it. (3) missä K 0 = pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) 100 / 117

Diskonttaus Ratkaistaan yhtälöstä (2) K 0, jolloin Virallinen diskonttauskaava K 0 = K t 1 + it. (3) missä K 0 = pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Kuten yksinkertainen korkolasku, myös kaavan (3) mukainen diskonttaus toimii ainoastaan yhden korkojakson sisällä. 101 / 117

Diskonttaus Ratkaistaan yhtälöstä (2) K 0, jolloin Virallinen diskonttauskaava K 0 = K t 1 + it. (3) missä K 0 = pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Kuten yksinkertainen korkolasku, myös kaavan (3) mukainen diskonttaus toimii ainoastaan yhden korkojakson sisällä. Diskonttaus on siis toimenpide, missä pääomaa siirretään ajassa taaksepäin. 102 / 117

Diskonttaus Kuinka paljon pääoma sitten muuttuu kun t 0? 103 / 117

Diskonttaus Kuinka paljon pääoma sitten muuttuu kun t 0? Muutos on tietenkin erotus K 0 K t = K t 1 + it K t ( ) 1 = K t 1 + it 1 ( ) it = K t < 0 1 + it) }{{} <0 104 / 117

Diskonttaus Kuinka paljon pääoma sitten muuttuu kun t 0? Muutos on tietenkin erotus K 0 K t = K t 1 + it K t ( ) 1 = K t 1 + it 1 ( ) it = K t < 0 1 + it) }{{} <0 Muutoksen itseisarvo eli diskontto on K t = K 0 K t = K t ( it ) 1 + it 105 / 117

Diskonttaus Kuinka paljon pääoma sitten muuttuu kun t 0? Muutos on tietenkin erotus K 0 K t = K t 1 + it K t ( ) 1 = K t 1 + it 1 ( ) it = K t < 0 1 + it) }{{} <0 Muutoksen itseisarvo eli diskontto on K t = K 0 K t = K t Vertaa korko K t K 0 = K 0 it. ( it ) 1 + it 106 / 117

Diskonttaus Mikä on koron ja diskonton suhde? 107 / 117

Diskonttaus Mikä on koron ja diskonton suhde? Diskonton ja koron täytyy tietenkin olla samat. 108 / 117

Diskonttaus Mikä on koron ja diskonton suhde? Diskonton ja koron täytyy tietenkin olla samat. Tarkistetaan: ( ) it K t = K t 1 + it ( ) it = (K 0 (1 + it)) 1 + it = K 0 it. 109 / 117

Diskonttaus Mikä on koron ja diskonton suhde? Diskonton ja koron täytyy tietenkin olla samat. Tarkistetaan: ( ) it K t = K t 1 + it ( ) it = (K 0 (1 + it)) 1 + it = K 0 it. Siis prolongointi yksinkertaisella korkolaskulla ja virallinen diskonttaus ovat käänteisiä toimituksia. 110 / 117

Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon 15000 e? 111 / 117

Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon 15000 e? Nyt K t = 15000 e ja korkojakso on 12 kk, joten t = 9 12 = 3 4. 112 / 117

Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon 15000 e? Nyt K t = 15000 e ja korkojakso on 12 kk, joten t = 9 12 = 3 4. Lisäksi K t = K 0 (1 + it), joten 113 / 117

Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon 15000 e? Nyt K t = 15000 e ja korkojakso on 12 kk, joten t = 9 12 = 3 4. Lisäksi K t = K 0 (1 + it), joten K 0 = K t 1 + it 114 / 117

Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon 15000 e? Nyt K t = 15000 e ja korkojakso on 12 kk, joten t = 9 12 = 3 4. Lisäksi K t = K 0 (1 + it), joten K 0 = K t 1 + it = 15000 e 1 + 0, 08 3 4 115 / 117

Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon 15000 e? Nyt K t = 15000 e ja korkojakso on 12 kk, joten t = 9 12 = 3 4. Lisäksi K t = K 0 (1 + it), joten K 0 = K t 1 + it = 15000 e 1 + 0, 08 3 4 = 15000 e 1, 06 = 14151 e 116 / 117

Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon 20000 e? 117 / 117

Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon 20000 e? Nyt K t = 20000 e, korkojakso on 12 kk ja aika on 15 kk, joka menee korkojakson yli. 118 / 117

Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon 20000 e? Nyt K t = 20000 e, korkojakso on 12 kk ja aika on 15 kk, joka menee korkojakson yli. Diskontataan siis osissa: 119 / 117

Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon 20000 e? Nyt K t = 20000 e, korkojakso on 12 kk ja aika on 15 kk, joka menee korkojakson yli. Diskontataan siis osissa: 15kk 12kk 120 / 117

Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon 20000 e? Nyt K t = 20000 e, korkojakso on 12 kk ja aika on 15 kk, joka menee korkojakson yli. Diskontataan siis osissa: 15kk 12kk K 1 = 20000 e 1 + 0, 08 3 12 121 / 117

Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon 20000 e? Nyt K t = 20000 e, korkojakso on 12 kk ja aika on 15 kk, joka menee korkojakson yli. Diskontataan siis osissa: 15kk 12kk K 1 = 20000 e 1 + 0, 08 3 12 = 20000 e 1, 02 = 19607, 84 e 122 / 117

Diskonttaus 12kk 0kk 123 / 117

Diskonttaus 12kk 0kk K 0 = 19607, 84 e 1 + 0, 08 12 12 124 / 117

Diskonttaus 12kk 0kk 19607, 84 e K 0 = 1 + 0, 08 12 12 19607, 84 e = 1, 08 = 18155, 41 e 125 / 117

Diskonttaus 12kk 0kk 19607, 84 e K 0 = 1 + 0, 08 12 12 19607, 84 e = 1, 08 = 18155, 41 e (Miten voit tarkistaa laskun?) 126 / 117

Diskonttaus Virallista diskonttausta käytetään sijoitustodistusten kaupassa. Sijoitus todistus on pankin liikkeelle laskema velkakirja (hinta K 0 ), jonka haltialle pankki maksaa todistukseen mainitun rahan K t ajan t kuluttua. 127 / 117

Diskonttaus Virallista diskonttausta käytetään sijoitustodistusten kaupassa. Sijoitus todistus on pankin liikkeelle laskema velkakirja (hinta K 0 ), jonka haltialle pankki maksaa todistukseen mainitun rahan K t ajan t kuluttua. Esimerkki 11 150000 e sijoitustodistus erääntyy 8kk kuluttua. Määrää sen hinta, kun korkokanta on 5% pa. 128 / 117

Diskonttaus Virallista diskonttausta käytetään sijoitustodistusten kaupassa. Sijoitus todistus on pankin liikkeelle laskema velkakirja (hinta K 0 ), jonka haltialle pankki maksaa todistukseen mainitun rahan K t ajan t kuluttua. Esimerkki 11 150000 e sijoitustodistus erääntyy 8kk kuluttua. Määrää sen hinta, kun korkokanta on 5% pa. Diskontataan, jolloin K 0 = 150000 e 1 + 0, 05 8 12 = 145161 e 129 / 117

Vekselidiskonttaus Vekseleiden yhteydessä käytetään vekseli- eli kauppadiskonttausta. 130 / 117

Vekselidiskonttaus Vekseleiden yhteydessä käytetään vekseli- eli kauppadiskonttausta. Vekselidiskonttauskaava K 0 = K t (1 it), (4) missä K 0 = vekselin käteis- eli nykyarvo K t = ajan t kuluttua erääntyvän vekselin nimellisarvo i = diskonttauskorkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) 131 / 117

Vekselidiskonttaus Vekseleiden yhteydessä käytetään vekseli- eli kauppadiskonttausta. Vekselidiskonttauskaava K 0 = K t (1 it), (4) missä K 0 = vekselin käteis- eli nykyarvo K t = ajan t kuluttua erääntyvän vekselin nimellisarvo i = diskonttauskorkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Vekselidiskontto: K t = K t K 0 = K t K t (1 it) = K t it. 132 / 117

Vekselidiskonttaus Esimerkki 12 Vekseli, jonka nimellisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on käteisarvo, kun diskonttauskorkokanta on 12% pa. 133 / 117

Vekselidiskonttaus Esimerkki 12 Vekseli, jonka nimellisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on käteisarvo, kun diskonttauskorkokanta on 12% pa. Käytetään vekselidiskonttausta, jolloin K 0 = 9000 e (1 0, 12 5 ) = 9000 e 450 e = 8550 e 12 134 / 117

Vekselidiskonttaus Esimerkki 13 Mikä on edellisen esimerkin vekselin nykyarvo virallisen diskonttauksen mukaan. 135 / 117

Vekselidiskonttaus Esimerkki 13 Mikä on edellisen esimerkin vekselin nykyarvo virallisen diskonttauksen mukaan. Käytetään virallista diskonttausta vekselidiskonttauksen sijaan. Tällöin 9000 e K 0 = 1 + 0, 12 5 = 9000 e 1, 05 = 8571 e 12 136 / 117

Vekselidiskonttaus Esimerkki 14 Vekseli, jonka käteisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on nimellisarvo, kun diskonttauskorkokanta on 12% pa.? 137 / 117

Vekselidiskonttaus Esimerkki 14 Vekseli, jonka käteisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on nimellisarvo, kun diskonttauskorkokanta on 12% pa.? Käytetään vekselidiskonttausta, jolloin K t = 9000 e 1 0, 12 5 12 = 9473, 68 e 138 / 117

Vekselidiskonttaus Esimerkki 15 Vekseli, jonka käteisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on nimellisarvo, kun diskonttauskorkokanta on 12% pa.? 139 / 117

Vekselidiskonttaus Esimerkki 15 Vekseli, jonka käteisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on nimellisarvo, kun diskonttauskorkokanta on 12% pa.? Käytetään vekselidiskonttausta, jolloin K t = 9000 e 1 0, 12 5 12 = 9473, 68 e 140 / 117

Koronkorko Korkojakson sisällä pääoma kasvaa lineaarisesti yhtälön K t = K 0 (1 + it). 141 / 117

Koronkorko Korkojakson sisällä pääoma kasvaa lineaarisesti yhtälön K t = K 0 (1 + it). Korkojakson lopussa korko realisoidaan pääomaan. 142 / 117

Koronkorko Korkojakson sisällä pääoma kasvaa lineaarisesti yhtälön K t = K 0 (1 + it). Korkojakson lopussa korko realisoidaan pääomaan. Seuraavassa korkojaksossa uusi kasvanut pääoma kasva korkoa kunnes korko jälleen liitetään pääomaan. 143 / 117

Koronkorko Korkojakson sisällä pääoma kasvaa lineaarisesti yhtälön K t = K 0 (1 + it). Korkojakson lopussa korko realisoidaan pääomaan. Seuraavassa korkojaksossa uusi kasvanut pääoma kasva korkoa kunnes korko jälleen liitetään pääomaan. Näin edellisten korkojaksojen tuottama korko kasvaa korkoa aina seuraavilla jaksolla. 144 / 117

Koronkorko Korkojakson sisällä pääoma kasvaa lineaarisesti yhtälön K t = K 0 (1 + it). Korkojakson lopussa korko realisoidaan pääomaan. Seuraavassa korkojaksossa uusi kasvanut pääoma kasva korkoa kunnes korko jälleen liitetään pääomaan. Näin edellisten korkojaksojen tuottama korko kasvaa korkoa aina seuraavilla jaksolla. Syntyy ns. koronkorko. 145 / 117

Koronkorko Oletetaan, että korkojaksoja on n kappaletta ja alkupääoma on K 0. 146 / 117

Koronkorko Oletetaan, että korkojaksoja on n kappaletta ja alkupääoma on K 0. Pääoma 1. korkojakson lopussa: K 1 = K 0 (1 + i). 147 / 117

Koronkorko Oletetaan, että korkojaksoja on n kappaletta ja alkupääoma on K 0. Pääoma 1. korkojakson lopussa: K 1 = K 0 (1 + i). Pääoma 2. korkojakson lopussa: K 2 = K 1 (1 + i) = K 0 (1 + i) 2. 148 / 117

Koronkorko Oletetaan, että korkojaksoja on n kappaletta ja alkupääoma on K 0. Pääoma 1. korkojakson lopussa: K 1 = K 0 (1 + i). Pääoma 2. korkojakson lopussa: K 2 = K 1 (1 + i) = K 0 (1 + i) 2. Näin jatkamalla saadaan pääoma n. korkojakson lopussa: K n = K n 1 (1 + i) = K n 2 (1 + i) 2 = = K 0 (1 + i) n. 149 / 117

Koronkorko Oletetaan, että korkojaksoja on n kappaletta ja alkupääoma on K 0. Pääoma 1. korkojakson lopussa: K 1 = K 0 (1 + i). Pääoma 2. korkojakson lopussa: K 2 = K 1 (1 + i) = K 0 (1 + i) 2. Näin jatkamalla saadaan pääoma n. korkojakson lopussa: K n = K n 1 (1 + i) = K n 2 (1 + i) 2 = = K 0 (1 + i) n. Saadaan geometrinen jono (K j ) n j=1, missä K j+1 K j = 1 + i. korkotekijä 150 / 117

Koronkorko Koronkorko Pääoma n. korkojakson lopussa on K n = K 0 (1 + i) n, (5) missä K 0 on alkupääoma, i on korkokanta ja n on kokonaisten korkojaksojen lukumäärä. (Huom. Vajaissa korkojaksoissa käytetään yksinkertaista korkolaskua.) 151 / 117

Koronkorko Jaksollinen diskonttaus Pääoman arvo alussa on K 0 = K n (1 + i) n, (6) missä K n on pääoman arvo lopussa, i on korkokanta ja n on kokonaisten korkojaksojen lukumäärä. Jaksojen lukumäärä Tästä voidaan selvittää myös jaksojen lukumäärä n: n = Kn ln K 0 ln(1 + i). (7) 152 / 117

Koronkorko Esimerkki 16 Mihin arvoon 1000 e kasvaa 6 vuodessa korkokannalla a) 4% pa. b) 2% ps. c) 1% pq. d) kun aika on 6,5 vuotta ja korkokanta 4% pa. 153 / 117

Koronkorko Esimerkki 16 Mihin arvoon 1000 e kasvaa 6 vuodessa korkokannalla a) 4% pa. b) 2% ps. c) 1% pq. d) kun aika on 6,5 vuotta ja korkokanta 4% pa. a) Nyt i = 4% pa, joten korkojaksoja on yhteensä n = 6 kpl. 154 / 117

Koronkorko Esimerkki 16 Mihin arvoon 1000 e kasvaa 6 vuodessa korkokannalla a) 4% pa. b) 2% ps. c) 1% pq. d) kun aika on 6,5 vuotta ja korkokanta 4% pa. a) Nyt i = 4% pa, joten korkojaksoja on yhteensä n = 6 kpl. Siis K 6 = K 0 (1 + i) n = 1000 e 1, 04 6 = 1265 e 155 / 117

Koronkorko Esimerkki 16 Mihin arvoon 1000 e kasvaa 6 vuodessa korkokannalla a) 4% pa. b) 2% ps. c) 1% pq. d) kun aika on 6,5 vuotta ja korkokanta 4% pa. a) Nyt i = 4% pa, joten korkojaksoja on yhteensä n = 6 kpl. Siis K 6 = K 0 (1 + i) n = 1000 e 1, 04 6 = 1265 e b) Nyt i = 2% ps, joten korkojaksoja on yhteensä n = 2 6 = 12 kpl. 156 / 117

Koronkorko Esimerkki 16 Mihin arvoon 1000 e kasvaa 6 vuodessa korkokannalla a) 4% pa. b) 2% ps. c) 1% pq. d) kun aika on 6,5 vuotta ja korkokanta 4% pa. a) Nyt i = 4% pa, joten korkojaksoja on yhteensä n = 6 kpl. Siis K 6 = K 0 (1 + i) n = 1000 e 1, 04 6 = 1265 e b) Nyt i = 2% ps, joten korkojaksoja on yhteensä n = 2 6 = 12 kpl. Siis K 12 = 1000 e 1, 02 12 = 1268 e 157 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. 158 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e 159 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. 160 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. Nyt K 6,5 = 1000 e 1, 04 6,5 = 1290, 38 e 161 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. Nyt K 6,5 = 1000 e 1, 04 6,5 = 1290, 38 e Oliko tämä laskettu oikein? 162 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. Nyt K 6,5 = 1000 e 1, 04 6,5 = 1290, 38 e Oliko tämä laskettu oikein? Ei sillä kaava (6) toimii ainoastaan kokonaisilla korkojaksoilla. Lasketaan tämä siis oikein: 163 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. Nyt K 6,5 = 1000 e 1, 04 6,5 = 1290, 38 e Oliko tämä laskettu oikein? Ei sillä kaava (6) toimii ainoastaan kokonaisilla korkojaksoilla. Lasketaan tämä siis oikein: K 6 = 1000 e 1, 04 6 = 1265, 32 e 164 / 117

Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, 01 24 = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. Nyt K 6,5 = 1000 e 1, 04 6,5 = 1290, 38 e Oliko tämä laskettu oikein? Ei sillä kaava (6) toimii ainoastaan kokonaisilla korkojaksoilla. Lasketaan tämä siis oikein: K 6 = 1000 e 1, 04 6 = 1265, 32 e 6 K 6,5 = K 6 (1 + 0, 04 ) = 1290, 62 e 12 165 / 117

Koronkorko Esimerkki 17 Millä korkokannoilla a) i pa. ja b) j ps. pääoma kolminkertaistuu 8 vuodessa? 166 / 117

Koronkorko Esimerkki 17 Millä korkokannoilla a) i pa. ja b) j ps. pääoma kolminkertaistuu 8 vuodessa? a) Nyt aika on 8 vuotta ja korkojakson pituus 1 vuosi, eli korkojaksoja yhteensä n = 8 kpl. 167 / 117

Koronkorko Esimerkki 17 Millä korkokannoilla a) i pa. ja b) j ps. pääoma kolminkertaistuu 8 vuodessa? a) Nyt aika on 8 vuotta ja korkojakson pituus 1 vuosi, eli korkojaksoja yhteensä n = 8 kpl. Halutaan siis kolminkertaistaa alkupääoma K 0. 168 / 117

Koronkorko Esimerkki 17 Millä korkokannoilla a) i pa. ja b) j ps. pääoma kolminkertaistuu 8 vuodessa? a) Nyt aika on 8 vuotta ja korkojakson pituus 1 vuosi, eli korkojaksoja yhteensä n = 8 kpl. Halutaan siis kolminkertaistaa alkupääoma K 0. Siis K 0 (1 + i) 8 = 3K 0 (1 + i) 8 = 3 1 + i = 8 3 i = 8 3 1 0, 147 169 / 117

Koronkorko Esimerkki 17 Millä korkokannoilla a) i pa. ja b) j ps. pääoma kolminkertaistuu 8 vuodessa? a) Nyt aika on 8 vuotta ja korkojakson pituus 1 vuosi, eli korkojaksoja yhteensä n = 8 kpl. Halutaan siis kolminkertaistaa alkupääoma K 0. Siis K 0 (1 + i) 8 = 3K 0 (1 + i) 8 = 3 1 + i = 8 3 i = 8 3 1 0, 147 Haluttu korkokanta on siis 14, 7% pa. 170 / 117

Koronkorko b) Nyt aika on 8 vuotta ja korkojakson pituus 0,5 vuotta, eli korkojaksoja yhteensä n = 2 8 = 16 kpl. 171 / 117

Koronkorko b) Nyt aika on 8 vuotta ja korkojakson pituus 0,5 vuotta, eli korkojaksoja yhteensä n = 2 8 = 16 kpl. Siis K 0 (1 + i) 16 = 3K 0 (1 + i) 16 = 3 1 + i = 16 3 i = 16 3 1 0, 071 172 / 117

Koronkorko b) Nyt aika on 8 vuotta ja korkojakson pituus 0,5 vuotta, eli korkojaksoja yhteensä n = 2 8 = 16 kpl. Siis K 0 (1 + i) 16 = 3K 0 (1 + i) 16 = 3 1 + i = 16 3 i = 16 3 1 0, 071 Haluttu korkokanta on siis 7, 1% ps. 173 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? 174 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 175 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 50000 e = 30000 e (1 + 0, 04) n 176 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 50000 e = 30000 e (1 + 0, 04) n 1, 04 n = 5 3 177 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 50000 e = 30000 e (1 + 0, 04) n 1, 04 n = 5 3 ln 1, 04 n = ln 5 3 178 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 50000 e = 30000 e (1 + 0, 04) n 1, 04 n = 5 3 ln 1, 04 n = ln 5 3 n ln 1, 04 = ln 5 3 179 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 50000 e = 30000 e (1 + 0, 04) n 1, 04 n = 5 3 ln 1, 04 n = ln 5 3 n ln 1, 04 = ln 5 3 n = ln 5 3 13, 024 ln 1, 04 180 / 117

Koronkorko Esimerkki 18 Olkoon alkupääoma 30000 e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi 50000 e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä 50000 e = 30000 e (1 + 0, 04) n 1, 04 n = 5 3 ln 1, 04 n = ln 5 3 n ln 1, 04 = ln 5 3 n = ln 5 3 13, 024 ln 1, 04 Tarvitaan siis vähintää 13 kokonaista jaksoa ja osa seuraavaa korkojaksoa. Miten selvitetään tarkka aika? 181 / 117

Korkokannoista (Relatiivinen korkokanta) Idea Jaetaan korkoprosentit ja korkojakso samassa suhteessa (esim. puolitetaan prosentti ja korkojakso). 182 / 117

Korkokannoista (Relatiivinen korkokanta) Idea Jaetaan korkoprosentit ja korkojakso samassa suhteessa (esim. puolitetaan prosentti ja korkojakso). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään relatiivisia jos korkokantojen suhde on sama kuin korkojaksojen pituuksien suhde, ts. i j = p q. (8) 183 / 117

Korkokannoista (Relatiivinen korkokanta) Idea Jaetaan korkoprosentit ja korkojakso samassa suhteessa (esim. puolitetaan prosentti ja korkojakso). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään relatiivisia jos korkokantojen suhde on sama kuin korkojaksojen pituuksien suhde, ts. i j = p q. (8) Relatiivisessa korkokannassa saadaan suurempi korkotuotto, mitä lyhyempi korkojakson pituus on. 184 / 117

Korkokannoista (Relatiivinen korkokanta) Idea Jaetaan korkoprosentit ja korkojakso samassa suhteessa (esim. puolitetaan prosentti ja korkojakso). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään relatiivisia jos korkokantojen suhde on sama kuin korkojaksojen pituuksien suhde, ts. i j = p q. (8) Relatiivisessa korkokannassa saadaan suurempi korkotuotto, mitä lyhyempi korkojakson pituus on. Relatiiviset korkokannat eivät anna siis samaa tuottoa pääomalle (esim. 4% pa. ja 2% ps.). 185 / 117

Korkokannoista (Konforminen korkokanta) Idea Etsitään eri korkokannalle i (per p) sellainen korkokanta j (per q), että tuotto kummallakin korkokannalla on sama (samassa ajassa). 186 / 117

Korkokannoista (Konforminen korkokanta) Idea Etsitään eri korkokannalle i (per p) sellainen korkokanta j (per q), että tuotto kummallakin korkokannalla on sama (samassa ajassa). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään konformiset jos ne antavat saman tuoton (pääoma-arvon) kaikilla ajanhetkillä t, joka on korkojaksojen p ja q jokin monikerta. 187 / 117

Korkokannoista (Konforminen korkokanta) Idea Etsitään eri korkokannalle i (per p) sellainen korkokanta j (per q), että tuotto kummallakin korkokannalla on sama (samassa ajassa). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään konformiset jos ne antavat saman tuoton (pääoma-arvon) kaikilla ajanhetkillä t, joka on korkojaksojen p ja q jokin monikerta. Jos siis aikaan t tarvitaan n kpl korkojaksoja p ja m kpl korkojaksoja q, niin täytyy olla np = mq = n m = q p. (9) 188 / 117

Korkokannoista (Konforminen korkokanta) Idea Etsitään eri korkokannalle i (per p) sellainen korkokanta j (per q), että tuotto kummallakin korkokannalla on sama (samassa ajassa). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään konformiset jos ne antavat saman tuoton (pääoma-arvon) kaikilla ajanhetkillä t, joka on korkojaksojen p ja q jokin monikerta. Jos siis aikaan t tarvitaan n kpl korkojaksoja p ja m kpl korkojaksoja q, niin täytyy olla np = mq = n m = q p. (9) Käyttäen jaksollista korkolaskua saadaan K 0 (1 + i) n = K 0 (1 + j) m j = (1 + i) q p 1 (10) 189 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 19 Määritä korkokannalle 7% per 10kk a) konforminen neljännesvuosikorkokanta, b) relatiivinen neljännesvuosikorkokanta. 190 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 19 Määritä korkokannalle 7% per 10kk a) konforminen neljännesvuosikorkokanta, b) relatiivinen neljännesvuosikorkokanta. a) Nyt i = 7% (per p = 10kk) ja j =? (per q = 3kk), joten j = (1 + i) q p 1 = (1 + 0, 07) 3 10 1 = 0, 0205 = 2, 05%. 191 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 19 Määritä korkokannalle 7% per 10kk a) konforminen neljännesvuosikorkokanta, b) relatiivinen neljännesvuosikorkokanta. a) Nyt i = 7% (per p = 10kk) ja j =? (per q = 3kk), joten j = (1 + i) q p 1 = (1 + 0, 07) 3 10 1 = 0, 0205 = 2, 05%. b) Relatiivinen neljännesvuosikorkokanta on 3 0, 07 = 2, 10%. 10 192 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 20 Loppupääomaksi halutaan 50000 e. Korkokanta on 4% ps. ja talletusaika on 6 vuotta. Paljonko on alkupääoman oltava? 193 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 20 Loppupääomaksi halutaan 50000 e. Korkokanta on 4% ps. ja talletusaika on 6 vuotta. Paljonko on alkupääoman oltava? Nyt korkojaksoja on n = 2 6 = 12 kpl, joten ratkaistaan K 0 yhtälöstä K n = K 0 (1 + i) n. 194 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 20 Loppupääomaksi halutaan 50000 e. Korkokanta on 4% ps. ja talletusaika on 6 vuotta. Paljonko on alkupääoman oltava? Nyt korkojaksoja on n = 2 6 = 12 kpl, joten ratkaistaan K 0 yhtälöstä K n = K 0 (1 + i) n. Täten saadaan K 0 = K n (1 + i) n = 50000 e 1, 04 12 = 31230 e. 195 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 21 Määritä korkokannalle 6% pa. konforminen puolivuotiskorkokanta. 196 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 21 Määritä korkokannalle 6% pa. konforminen puolivuotiskorkokanta. On siis oltava K 0 (1 + 0, 06) = K 0 (1 + j) 2 missä j on kysytty puolivuotiskorkokanta ja K 0 on alkupääoma. Täten 197 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 21 Määritä korkokannalle 6% pa. konforminen puolivuotiskorkokanta. On siis oltava K 0 (1 + 0, 06) = K 0 (1 + j) 2 missä j on kysytty puolivuotiskorkokanta ja K 0 on alkupääoma. Täten 1, 06 = (1 + j) 2 198 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 21 Määritä korkokannalle 6% pa. konforminen puolivuotiskorkokanta. On siis oltava K 0 (1 + 0, 06) = K 0 (1 + j) 2 missä j on kysytty puolivuotiskorkokanta ja K 0 on alkupääoma. Täten 1, 06 = (1 + j) 2 j = 1, 06 1 0, 0296 = 2, 96% 199 / 117

Korkokannat (Konforminen korkokanta) Esimerkki 21 Määritä korkokannalle 6% pa. konforminen puolivuotiskorkokanta. On siis oltava K 0 (1 + 0, 06) = K 0 (1 + j) 2 missä j on kysytty puolivuotiskorkokanta ja K 0 on alkupääoma. Täten 1, 06 = (1 + j) 2 j = 1, 06 1 0, 0296 = 2, 96% Konforminen puolivuotiskorkokanta on siis j = 2, 96% ps. (vrt. relatiivinen). 200 / 117

Jatkuva korkolasku Miten korkolaskulle käy jos korkojakson pituus lyhennetään mielivaltaisen pieneksi? 201 / 117

Jatkuva korkolasku Miten korkolaskulle käy jos korkojakson pituus lyhennetään mielivaltaisen pieneksi? Korkojakson pituus siis lähestyy nollaa, joten korkoa liitetään pääomaan jatkuvasti. 202 / 117

Jatkuva korkolasku Miten korkolaskulle käy jos korkojakson pituus lyhennetään mielivaltaisen pieneksi? Korkojakson pituus siis lähestyy nollaa, joten korkoa liitetään pääomaan jatkuvasti. Idea: lasketaan siis koronkorkoa mielivaltaisen pienellä korkojakson pituudella. 203 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea Olkoon K 0 alkupääoma, K t pääoma hetkellä t > 0, i korkokanta jotakin korkojaksoa kohti. 204 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea Olkoon K 0 alkupääoma, K t pääoma hetkellä t > 0, i korkokanta jotakin korkojaksoa kohti. 1 Koronkoron kaava: K t = K 0 (1 + i) n 205 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea Olkoon K 0 alkupääoma, K t pääoma hetkellä t > 0, i korkokanta jotakin korkojaksoa kohti. 1 Koronkoron kaava: K t = K 0 (1 + i) n 2 Nyt t = (aika) (korkojakson pituus) ( korkojaksojen lkm ), joten (aika) = t (korkojakson pituus) 206 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea Olkoon K 0 alkupääoma, K t pääoma hetkellä t > 0, i korkokanta jotakin korkojaksoa kohti. 1 Koronkoron kaava: K t = K 0 (1 + i) n 2 Nyt t = (aika) (korkojakson pituus) ( korkojaksojen lkm ), joten (aika) = t (korkojakson pituus) 3 Jaetaan aikaväli [0, t] n:ään yhtäsuureen osaa ja realisoidaan korko jokaisen osavälin lopussa. 207 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea Olkoon K 0 alkupääoma, K t pääoma hetkellä t > 0, i korkokanta jotakin korkojaksoa kohti. 1 Koronkoron kaava: K t = K 0 (1 + i) n 2 Nyt t = (aika) (korkojakson pituus) ( korkojaksojen lkm ), joten (aika) = t (korkojakson pituus) 3 Jaetaan aikaväli [0, t] n:ään yhtäsuureen osaa ja realisoidaan korko jokaisen osavälin lopussa. 4 Nyt uudeksi korkojaksoksi saadaan (uusi korkojakso) = (aika) n = t (korkojakson pituus) n 208 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea 1 Uusi korkokanta on nyt uusi korkokanta = t i per uusi korkojakso. n 209 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea 1 Uusi korkokanta on nyt uusi korkokanta = t i per uusi korkojakso. n 2 Korkojaksoja on nyt n kpl välillä [0, t], joten K (n) t = K 0 (1 + i t n )n 210 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea 1 Uusi korkokanta on nyt uusi korkokanta = t i per uusi korkojakso. n 2 Korkojaksoja on nyt n kpl välillä [0, t], joten K (n) t = K 0 (1 + i t n )n 3 Sijoitetaan it n = 1 x, jolloin n = x it. 211 / 117

Jatkuva korkolasku Jatkuvan korkolaskun idea 1 Uusi korkokanta on nyt uusi korkokanta = t i per uusi korkojakso. n 2 Korkojaksoja on nyt n kpl välillä [0, t], joten K (n) t = K 0 (1 + i t n )n 3 Sijoitetaan it n = 1 x, jolloin n = x it. 4 Siis K (n) t = K 0 ( 1 + 1 x ) x it. 212 / 117