Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan



Samankaltaiset tiedostot
Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Sähkökentät ja niiden laskeminen I

40 LUKU 3. GAUSSIN LAKI

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2016)

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

4757 4h. MAGNEETTIKENTÄT

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus

Öljysäiliö maan alla

Elektrodynamiikka, kevät 2008

Sähköstaattisen potentiaalin laskeminen

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki

2 Pistejoukko koordinaatistossa

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

Tilavuusintegroin3. Tilavuusintegroin3

Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköpotentiaali. Haarto & Karhunen.

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

[B] = [F ] [q][v] = Vs. m 2

Potentiaali ja potentiaalienergia

SATE2180 Kenttäteorian perusteet / 5 Laskuharjoitus 2 / Coulombin ja Gaussin lait -> sähkökentän voimakkuus ja sähkövuon tiheys

Gaussin lause eli divergenssilause 1

a P en.pdf KOKEET;

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Luku 4. Derivoituvien funktioiden ominaisuuksia.

ELEC-A4130 Sähkö ja magnetismi (5 op)

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

r > y x z x = z y + y x z y + y x = r y x + y x = r

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

ELEC C4140 Kenttäteoria (syksy 2015)

a) Lasketaan sähkökenttä pallon ulkopuolella

Mekaniikan jatkokurssi Fys102

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

Jakso 5. Johteet ja eristeet Johteista

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

1 Ensimmäisen asteen polynomifunktio

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

ELEC C4140 Kenttäteoria (syksy 2016)

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Coulombin laki. Sähkökentän E voimakkuus E = F q

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

Matematiikan tukikurssi, kurssikerta 3

4. Gaussin laki. (15.4)

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Vanhoja koetehtäviä. Analyyttinen geometria 2016

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )

Magneettikenttä ja sähkökenttä

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy

Physica 6 Opettajan OPAS (1/18)

Kvanttifysiikan perusteet 2017

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

Mat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat:

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Vektoreiden virittämä aliavaruus

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Sähkömagneettinen induktio

= 9 = 3 2 = 2( ) = = 2

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Tfy Fysiikka IIB Mallivastaukset

2 Eristeet. 2.1 Polarisoituma

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Transkriptio:

3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden johteen välisen kapasitanssin suuuus. Yleensä sähkökenttää ei voida esittää käyttäen ääellistä määää alkeisfunktioita; tällaisessa tilanteessa käytetään tavallisesti numeeisia atkaisumenetelmiä. Sellaisissakaan tapauksissa, joissa analyyttinen atkaisu on mahdollinen, ei sen löytämiseksi ole mitään yleistä menetelmää. Mikäli vaausjakautuma tunnetaan, kenttä voidaan tietysti laskea kaavan (1.10) mukaisesti integoimalla. Käytännössä kuitenkin esimekiksi johteisiin indusoituneet vaaukset ovat tuntemattomia, eikä tätä menetelmää voida suoaan käyttää. Tässä luvussa esitellään joitakin muita laskumenetelmiä ja sovelletaan niitä eilaisiin fysikaalisiin tilanteisiin. Sylintei-, pallo- tai tasosymmetisissä systeemeissä on ilmeistä, että sähkökentällä ja sähkövuon tiheydellä on sama symmetia. Tällöin D ja E voidaan laskea helposti soveltamalla Gaussin lakia pintoihin, joilla D on vakio. Tällaisia symmetisiä tilanteita voidaan hyödyntää esimekiksi taso-, sylintei- ja pallokondensaattoien kenttien ja kapasitanssien laskemisessa. 3.1 Poissonin yhtälö Mikäli pobleemasta puuttuu yksinketainen symmetia, on käytettävä muita menetelmiä. Sähkökentän on aina noudatettava Gaussin lain diffeentiaalimuotoa E = ρ/ε 0, (3.1) ja lisäksi sen on toteutettava pobleeman eunaehdot, esimekiksi oltava kohtisuoassa johtavia pintoja vastaan, koska miillä potentiaali on vakio. Esimekiksi sylinteikondensaattoissa tai koaksiaalikaapelissa potentiaali voi olla sisemmällä johteella ja ulommalla johteella 0. Käyttäen ehtoa E = φ, jolloin E = φ = 2 φ, voidaan Gaussin laki esittää potentiaalin avulla muodossa 2 φ = ρ/ε 0. (3.2) 49

50 z P z θ cosθ y z P x φ sinθ sinθ sinφ pallokoodinaatisto sinθ cosφ x φ sinφ sylinteikoodinaatisto cosφ y Tämä toisen ketaluvun osittaisdiffeentiaaliyhtälö tunnetaan nimellä Poissonin yhtälö. Diffeentiaaliopeaattoi 2 on Laplacen opeaattoi. Kateesisessa koodinaatistossa 2 = 2 x + 2 2 y + 2 2 z, 2 sylinteikoodinaatistossa 2 = 2 2 + 1 ja pallokoodinaatistossa 2 = 2 2 + 2 + 1 2 2 ϕ 2 + 2 z 2 = 1 + 1 2 2 θ 2 + cot θ 2 ( ) + 1 2 2 ϕ + 2 2 z 2 θ + 1 2 sin 2 θ 2 ϕ 2. Poissonin yhtälön lisäksi potentiaalin on toteutettava myös pobleeman eunaehdot. Sähkökenttä voidaan siis saada selville atkaisemalla ensin pobleeman eunaehdot toteuttava potentiaali Poissonin yhtälöstä ja laskemalla sen gadientti. Koska potentiaali voidaan esittää muodossa (1.29), on Poissonin yhtälön fomaali atkaisu φ() = 1 ρ( ) dτ + 1 S σ( ) ds. Koska ρ ja σ koostuvat sekä polaisaatiovaauksista että vapaista vaauksista, joista osa on induktiovaauksia, ei tästä yhtälöstä ole kovin suuta hyötyä, sillä indusoituneet ja polaisaatiovaaukset voidaan laskea vasta, kun potentiaali ja sähkökenttä tunnetaan. Jos väliaine on homogeenista, eli ε on kaikkialla sama, voidaan Gaussin laki D = (εε 0 E)=ρ f kijoittaa muotoon E = ρ f. εε 0 Sijoittamalla tähän E = φ saadaan 2 φ = ρ f εε 0. (3.3)

3.1. POISSONIN YHTÄLÖ 51 Tämä onmyös Poissonin yhtälö, mutta toisin kuin (3.2):ssa, siinä esiintyy vain vapaa vaaustiheys ρ f, joten sitä atkaistaessa ei polaisaatiovaauksia tavitse tuntea. Koska atkaisua haetaan johteiden ulkopuolisessa avauudessa, ei myöskään induktiovaauksia tavitse tuntea. Näin ollen (3.3) on usein paas lähtöyhtälö sähköstaattisen ongelman atkaisemisessa. Johteiden läsnäolo kentässä huomioidaan asettamalla φ vakioiksi johteiden pinnoilla. Alueessa, jossa vapaita vaauksia ei ole, eli ρ f = 0, Poissonin yhtälö yksinketaistuu muotoon 2 φ =0, (3.4) jota kutsutaan Laplacen yhtälöksi. Esim.: Koaksiaalikaapeli. Johteiden välissä ρ f = 0. Kenttä on sylinteisymmetinen, joten φ = φ() ja φ/ ϕ = φ/ z =0. b φ = Käytämme siis Laplacen yhtälöä sylinteikoodinaatistossa: φ = 0 1 d d dφ dφ ( )=0 d d = A = vakio dφ d = A a φ = A ln + B. Integointivakiot A ja B määätään eunaehdoista. alitaan φ(a) =, missä a on sisäsylintein säde ja φ(b) = 0, missä b on ulkosylintein säde. Silloin ja φ(b) =0 A ln b + B =0 B = A ln b φ = A ln b φ(a) = A ln a b = A = ln(a/b) φ = ln(a/b) ln b, joten φ() = ln(b/a) ln b. (3.5) Tästä saadaan kaapelin eisteessä vaikuttavaksi sähkökentäksi E = dφ d = ln(b/a) 1, eli sama tulos kuin aiemmin saatiin Gaussin lain avulla kohdassa (2.3.2). 3.1.1 Poissonin yhtälön atkaisun yksikäsitteisyys Edellisessä esimekissä johdettu atkaisu toteuttaa Laplacen yhtälön välillä a < <bsekä asetetut eunaehdot. Koska atkaisu saatiin systemaattisen integoinnin tuloksena, se on ilmeisesti ainoa atkaisu, joka toteuttaa ko. ehdot.

52 Systemaattinen integointi ei aina ole mahdollista. Jos kuitenkin jollakin tavalla on löydetty Poissonin tai Laplacen yhtälön atkaisu, joka toteuttaa tietyt eunaehdot, niin tämä on ainoa mahdollinen atkaisu näillä eunaehdoilla. Seuaavassa todistetaan, että tämä väite pitää paikkansa. Takastellaan johtavassa kappaleessa olevaa onteloa. Ilmeisesti potentiaali ontelon pinnalla on vakio, esim. 0. Oletetaan aluksi, että ontelossa ei ole vaauksia. Tällöin sen sisälläonvoi- massa Laplacen yhtälö 2 φ = 0. Koska vakion deivaatta on nolla, on φ = 0 yksi atkaisu, joka toteuttaa Laplacen yhtälön ja eunaehdon φ = 0. φ = 0 Oletetaan, että on olemassa toinen atkaisu φ 1, joka toteuttaa ehdon φ 1 = 0 ontelon pinnalla. Tällä atkaisulla on ainakin yksi ääiavo ontelon sisällä, jotta se ei olisi vakio eli sama kuin ensimmäinen atkaisu. Jos ääiavo on maksimi, on ko. pisteessä voimassa 2 φ 1 / x 2 < 0, 2 φ 1 / y 2 < 0, 2 φ 1 / z 2 < 0, eli 2 φ 1 x + 2 φ 1 2 y + 2 φ 1 2 z = 2 2 φ 1 < 0, joten φ 1 ei toteuta Laplacen yhtälöä. Samoin minimikohdassa olisi 2 φ 1 > 0. Näinollen φ = 0 on ainoa kyseiset eunaehdot toteuttava atkaisu. Jos ontelon sisällä on vapaita vaauksia, on voimassa Poissonin yhtälö 2 φ = ρ f /εε 0. Mikäli tällä olisi kaksi atkaisua φ 1 ja φ 2, jotka toteuttavat eunaehdon φ 1 = 0, φ 2 = 0,onnäiden eotus φ = φ 1 φ 2 = 0ontelon pinnalla, ja kaikkialla 2 φ = 2 φ 1 2 φ 2 = ρ f /εε 0 + ρ f /εε 0 = 0. Siis φ toteuttaa Laplacen yhtälön eunaehdolla φ = 0ontelon pinnalla. Yksi ja siis myös ainoa tämän eunaehdon toteuttava Laplacen yhtälön atkaisu on φ =0. Tällöin φ = φ 1 φ 2 = 0, joten kaikkialla φ 1 = φ 2. Poissonin yhtälölläkin on siis vain yksi annetut eunaehdot toteuttava atkaisu. Tämän peusteella suljetun metallikuoen sisällä olevassa vaauksettomassa tilassa potentiaali on vakio ja sähkökenttä on nolla. Suljettua metallikuota sanotaan Faadayn häkiksi. 3.3.1 Sähköstaattinen peilikuvapeiaate Johdekappaleita sisältävissä systeemeissä potentiaalin laskemista vaikeuttaa se seikka, ettei johteiden pinnoille indusoituneita vaauskatteita tunneta. Poissonin yhtälön atkaisun yksikäsitteisyydestä kuitenkin seuaa, että potentiaali tunnetaan, jos voidaan löytää sellainen vaausjakautuma, jonka potentiaali toteuttaa pobleeman eunaehdot. Kun ollaan kiinnostuneita vain tietystä avauuden alueesta, on mahdollista

3.1. POISSONIN YHTÄLÖ 53 löytää eilaisia vaausjakautumia, joiden aiheuttama potentiaali kyseisessä alueessa on sama. Tämän vuoksi pintavaaukset voidaan usein kovata systeemin ulkopuolelle asetetuilla kuvitelluilla vaauksilla, ns. peilivaauksilla. Tästä menetelmästä käytetään nimitystä peilikuvapeiaate. Esim. 1: Positiivisen pistevaauksen läheisyyteen etäisyydelle a tuotu johtava taso Ilmeisesti tasoon indusoituu negatiivinen vaauskate, jonka vaikutuksesta kenttä on aina kohtisuoassa tasoa vastaan. Tämä vaauskate ei ole vakio, vaan iippuu vaauksen Q etäisyydestä. Koska dipolikenttä on kohtisuoassa vaausten välisen janan keskinomaalitasoa vastaan, saadaan johtavan tason yläpuolelle sama kenttä, jos kuvitellaan vaauskate kovatuksi tason alapuolelle etäisyydelle a asetetulla peilivaauksella Q. + - - - - - - - - - - - - - Huomaa, että näiden kahden vaaussysteemin aiheuttamat kentät ovat eilaisia tason alapuolella, mutta ne aiheuttavat samat potentiaalin eunaehdot ja siis myös saman potentiaalin ja kentän tason yläpuolelle. Esim. 2: ääettömän pitkän vaatun johtavan sylintein potentiaali. Oletetaan, että sylintein säde on a ja vaaus pituusyksikköä kohti λ. Gaussin lain avulla 2πE()l = λl/ε 0, mistä E() = dφ() d kun >a. Integoimalla saadaan = λ 2πε 0, φ() = λ ln + vakio. 2πε 0 alitsemalla potentiaali nollaksi etäisyydellä = b päädytään atkaisuun - a φ() = λ 2πε 0 ln b, (A) kun >a. Koska φ() ei iipu a:sta, johteen ulkopuolelle saadaan sama potentiaali, jos sylintei poistetaan ja sen pintavaaus keätään sylintein akselille. Alueessa <a ovat potentiaalit näissä kahdessa tilanteessa eilaisia. Sylintein sisällä potentiaali on vakio φ() = λ ln b 2πε 0 a,

54 kun taas sylintein akselille asetetun vaauksen potentiaali on tässäkin alueessa muotoa (A). Esim. 3: Takastellaan y kahta ääettömän pitkää yhdensuuntaista a-säteistä sylinteinmuotoista johdinta, 2 P jotka on vaattu itseisavoltaan yhtä suuilla mutta vas- 1 takkaismekkisillä vaauksilla. aaukset pituusyksik- A B +λ D x a λ C θ köä kohti ovat λ ja λ. Tässä tapauksessa vaauskatteen jakautuminen sylintein p d pinnalle ei ole tasainen. Potentiaali voidaan atkaista Kuva 3.5 peilikuvapeiaatteella. Asetetaan sylinteit ja kuvavaaukset xy-koodinaatistoon kuvan osoittamalla tavalla. Osoitetaan, että kummankin sylintein vaaus ±λ voidaan sijoittaa kahteen symmetiseen lankaan, jotka kulkevat xz-tasossa z-akselin suuntaisina etäisyyksillä pz-akselista. On löydettävä sellainen p:n avo, jolla potentiaali on vakio sylinteien pinnoilla. Kun on positiivisesti vaatusta sylintein akselista mitattu etäisyys, on esimekki 2:n nojalla potentiaali pisteessä P φ() = λ ln b λ ln b = 2πε 0 1 2πε 0 2 Kijoitetaan tämä :n, p:n, d:n ja θ:n avulla. Ilmeisesti Samoin λ 2πε 0 ln 2 1 = λ ln 2 2. 2 2 = (d + p) 2 + 2 +2(d + p) cos θ = d 2 + p 2 +2dp + 2 +2(d + p) cos θ + d 2 d 2 = 2d(d + p)+2(d + p) cos θ + 2 + p 2 d 2 = 2(d + p)(d + cos θ)+ 2 + p 2 d 2. 1 2 = (d p) 2 + 2 +2(d p) cos θ = 2(d p)(d + cos θ)+ 2 + p 2 d 2, joten φ() = λ [ 2(d + p)(d + cos θ)+ 2 + p 2 d 2 ] ln. (B) 2(d p)(d + cos θ)+ 2 + p 2 d 2 Jos kuvavaausten paikat valitaan siten, että p 2 = d 2 a 2, on positiivisesti vaatun sylintein pinnalla ( = a) φ(a) = λ ln d + p d p = vakio. 2 1

3.6. SÄHKÖSTATIIKAN YHTEENETO 55 Symmetian vuoksi on potentiaali negatiivisesti vaatun sylintein pinnalla φ(a) Paikkoihin p = d 2 a 2 asetettujen kuvavaausten potentiaalit toteuttavat siis pobleeman eunaehdot, joten kaava (B) esittää potentiaalia sylinteien välisessä avauudessa. Johteiden välinen potentiaalieo on = φ(a) [ φ(a)]=2φ(a) = joten kapasitanssi pituusyksikköä kohti on Jos d a, ona/d 1, ja jolloin λ ln d + p 2πε 0 d p, C/l = λ = 2πε 0 ln[(d + p)/(d p)]. d + p d p = d + ( ) 2 d2 a 2 1+ 1 d d 2 a = a 2 /d 2 2 1 1+a 2 /d 2 ( = d2 1+1 a2 ) a 2 d +2 1 a 2 /d 2 4d2 2 a, 2 C l 2πε 0 ln(4d 2 /a 2 ) = πε 0 ln(2d/a). Jos esimekiksi 2d/a = 6 on C/l = 16 pf/m. 3.6 Sähköstatiikan yhteenveto Sähköstatiikan keskeiset kaavat ovat seuaavat: Coulombin laki: F = 1 q2q 1 21 3 21 (1.2) Sähkökenttä: E() = 1 ( )ρ( )dτ 3 + 1 S ( )σ( )ds 3 (1.10) Gaussin laki: Potentiaalieo: S E ds = 1 ε 0 ρdτ = Q ε 0. (1.14b) E = ρ/ε 0 (1.20) B φ( B ) φ( A )= E dl = A A B E dl (1.24)

56 Potentiaalienegia: Kapasitanssi: E = φ (1.26) U = 1 q i φ i 2 i (1.36) U = 1 2 ε 0 E 2 dτ (1.42) U = 1 2 D E dτ (2.26) C = Q (1.39) Polaisoituma: P =(ε 1)ε 0 E = χ E ε 0 E (2.5) (2.6) Sähkövuon tiheys: D = ε 0 E + P, (2.20) jolle Gaussin laki: D = ρ f (2.19) Kenttien ajaehdot: D jatkuva (2.23) E jatkuva (2.24) Poissonin yhtälö: 2 φ = ρ f /εε 0 (3.3) joka ehdolla ρ f = 0johtaa Laplacen yhtälöön 2 φ =0. (3.4)