Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.
|
|
- Kaarlo Juusonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa keskitytään vaauksien aiheuttaman sähkökentän laskemiseen. Muuttuvan magneettikentän aiheuttaman sähkökentän laskemiseen peehdytään kappaleessa ähkömagneettinen induktio. sittelemme tässä kappaleessa Gaussin lain. Tästä laista voi valita integaalimuodon tai diffeentiaalimuodon. Yleensä opiskelijat pitävät ensiksi mainittua havainnollisempana. Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gadientti ja kuvalähdepeiaate. Niistä puhutaan myöhemmin. Gaussin lain integaalimuoto Gaussin lakia voidaan käyttää sähkökentän laskemiseen tietyissä symmetisissä tapauksissa. Myöhemmin keotaan lisää siitä, milloin Gaussin lakia kannattaa käyttää ja milloin sitä ei voi käyttää. Gaussin lain integaalimuoto on d sis. Tämä on sähkömagnetiikan täkeimpiä yhtälöitä ja tätä kannattaa ehdottomasti opetella käyttämään. Mitä tämä Gaussin lain integaalimuoto sitten takoittaa? iinä on ilmaistu suljetun pinnan läpäisevä sähkökentän vuo kahdella tavalla. ähkökentän vuo ähkökentän vuon ymmätää ehkä havainnollisimmin kenttäviivojen avulla. Tuomo Nygénin laatimasta kussin 76619A ähkömagnetismi monisteesta löytyi seuaava kuvaus kenttäviivoista:
2
3 Voidaan ajatella, että sähkökentän vuo on kenttäviivojen lukumäää tai ainakin veannollinen siihen. iellä, missä kenttäviivoja on paljon, vuota on paljon ja päinvastoin. Jos kenttäviivoja on tiheässä, pienenkin pinta-alan läpi menee suui vuo, mutta havojen kenttäviivojen alueella isokaan pinta-ala ei keää suuta vuota. Jos sinulla on silmukka, jonka läpi haluat saada menemään mahdollisimman paljon vuota, sinun kannattaa asettaa silmukka kohtisuoaan kenttäviivoja vastaan. Tieteellisempi esitys sähkökentän vuolle on: d, missä d on pinta-alkiovektoi. Pintaalkiovektoi on kohtisuoassa pintaa vastaan ja sen itseisavo on pinta-alkion d suuuinen yksikkönä neliömeti. Kahden vektoin pistetulo voidaan tunnetusti saattaa muotoon d d cos, missä ψ on vektoin ja vektoin d välinen kulma. Katso kuva! ψ Jos sähkökenttä on vakio pinnalla, vuon lausekkeeksi tulee yksinketaisesti Nyt voidaan päätellä, että pistevaauksen lähettämä kokonaisvuo on: Pistevaaushan lähettää joka suuntaan yhtä paljon vuota, eli sähkökenttä on vakio sen -säteisen pallon pinnalla, jonka keskipisteessä pistevaaus on. Kaikki pistevaauksen lähettämä vuo menee tietysti umpinaisen, pistevaausta ympäöivän pallon läpi. Pallon pinta-ala on 4π. Voidaan esittää yleisesti: Vaaus, jonka suuuus on, lähettää ympäilleen sähkökentän vuon /ε olipa vaauksen muoto millainen tahansa.
4 Tätäkin asiaa on helpompi käsitellä kenttäviivojen avulla. ähköinen vaaus aiheuttaa sähkökentän. ähkökenttää voidaan kuvata kenttäviivojen avulla. Tietystä määästä vaausta lähtee tietty määä kenttäviivoja. Jos vaauksen ympäille asetetaan suljettu pinta, nämä kenttäviivat lävistävät pinnan ainakin kean. d d d Jos suljetun pinnan muoto on sellainen, että kenttäviivat kulkevat sen lävitse useamman kean, esimekiksi n ketaa, sisällä olevalle vaaukselle n on paiton ja ulkopuolella oleville paillinen. Ulos meneville viivoille tulo ds on positiivinen positiiviselle vaaukselle ja sisään meneville negatiivinen. Näin ulkopuolella oleville vaauksille tulojen ds summa tulee nollaksi ja sisäpuolella oleville kyseisten tulojen summa on d s. simekki 6: Ohuesta langasta tehdään suoakaiteen muotoinen silmukka, jonka pituus on a ja leveys b. ilmukka asetetaan sähkökenttään, jonka voimakkuus on, siten että sähkökentän voimaviivat ja silmukan taso muodostavat kulman θ. Mikä sähkökentän vuo menee silmukan läpi, kun a = 1 cm, b = 5, cm, θ = 7 o ja = 4 V/m? θ
5 atkaisu: ähkökentän vuo määitellään: d, missä d on pinta-alkiovektoi. Pistetulo voidaan saattaa muotoon d d cos, missä ψ on vektoin ja vektoin d välinen kulma, tässä tapauksessa 9 o θ = 5 o. ähkökentän vuo on nyt: d d cos Koska sähkökenttä ja kulma ψ ovat vakioita, ja cosψ voidaan ottaa integaalimekin eteen ja sähkökentän vuo saadaan laskettua: V d cos cos d cos ab 4 cos 5 m.1m.5m 1Vm 1Nm / C Integaali d takoitti tässä yksinketaisesti silmukan pinta-alaa = ab. ψ θ simekki 7: Minkä sähkökentän vuon pistevaaus = + 1, μc aiheuttaa 1, metin päässä olevan pinnan A läpi maksimissaan? Pinta A on euon kolikon suuuinen. atkaisu: Pistevaauksen ympäilleen lähettämän sähkökentän vuo on. Tämä vuo jakaantuu tasaisesti kaikkiin suuntiin. Mitä kauemmaksi siiytään, sitä pienemmäksi vuon tiheys menee. Kymmenen metin etäisyydellä kyseinen vuo on jakaantunut pinta-alalle 4 4 1m. uon.m kolikon halkaisija on noin mm ja pinta-ala d. Maksimivuo saadaan menemään pinnan läpi, kun kolikko asetetaan kohtisuoaan tulevaa vuota vastaan, sillä tällöin pistetulo on suuin mahdollinen: d
6 d Koska vuo menee tasaisesti pinta-alaan 4 1m., pinta-alaan m vuosta menee osuus.m 6 4 1m 1, 1 C,m 16 8, m 1 C Nm Nm,7 C,7Vm Kun teet yksikkötakastelua, muista että J = Nm = VC. Tässä laskussa on ajateltu, että 1 metin etäisyydellä pistevaauksesta sähkökentän voimaviivat ovat lähes yhdensuuntaiset, jolloin d ds. simekki 8: inulla on epämäääisen muotoinen muovikappale, jonka kokonaisvaaus on. Laitat muovikappaleen jätesäkkiin ja suljet säkin suun tiukasti. Mikä sähkökentän kokonaisvuo menee jätesäkistä läpi. atkaisu: ähköisesti vaattu muovikappale aiheuttaa ympäilleen vuon /ε. Koko tämä vuo tulee jätesäkin pinnan läpi. Jos jätesäkin pinta on utussa, vuo voi mennä jätesäkin läpi useita ketoja, mutta yhteenlaskettu kokonaisvuo on kuitenkin tuo /ε.
7 uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vaaus voi olla jakautunut tasaisesti aineeseen eli vaausjakauma on silloin vakio. Tällöin vaaustiheys aineessa tilavuus V on V Vastaavasti jos pinnalle on jakautunut tasaisesti vaaus, on pinta-vaaustiheys eli vaauskate: ähköopissa käytetään myös käsitettä vaaus pituusyksikköä kohden. Tätä sanotaan joskus viivavaaukseksi: L Vaaustiheyksiä laskettaessa tavitaan pallon pinta-alan lauseketta 4 ja pallon tilavuuden 4 lauseketta. Tentissä oletetaan, että opiskelija joko osaa nämä ulkoa tai osaa johtaa nämä. Jos vaaustiheys aineessa ei ole vakio, vaan noudattaa jotain tunnettua yhtälöä, kokonaisvaaus saadaan integoimalla. simekiksi kokonaisvaaus tilavuudessa V, jossa on paikasta iippuva vaaustiheys ρ, lasketaan seuaavasti dv Pinnalla, jossa on vaaustiheys σ, lasketaan: V d Pinta- ja tilavuusalkioita ei koodinaatistoissa on kappaleessa Laskemisen avuksi. Kyseinen kappale on linkissä: simekki 9: Pitkässä langassa on vaaustiheys pituusyksikköä kohden λ =,. 1-6 C/m. Kuinka suui vaaus on tämän langan osassa, joka on metin pituinen? atkaisu: = λl =,. 1-6 C/m. 1 m =,. 1-6 C
8 simekki 1: Vaaus on jakautunut tasaisesti -säteiseen umpinaiseen palloon. Mikä on pallon vaaustiheys? Kuinka paljon vaausta on tämän pallon pintakeoksessa, joka on D:n paksuinen? atkaisu: Vaaustiheys on vakio eli vaaus on jakaantunut tasaisesti pallon tilavuuteen, joka on 4 V Vaaustiheys on silloin: 4 4 V D:n paksuisen pallokuoen tilavuus on: ] [ ' D D V Kyseisessä pallokuoessa on vaaus: ] [ ] [ 4 4 ' ' D D V simekki 11: Ympyänmuotoisessa -säteisessä levyssä vaaus pintayksikköä kohden vaauskate iippuu säteestä seuaavan yhtälön mukaisesti: 1 Mikä on koko levyn vaaus? D
9 atkaisu: Käytetään yhtälöä: s d s = kokonaispintavaaus ympyälevyllä d = pinta-alkio Pinta-alkio sylinteikoodinaatistossa sylintein kannessa on kappaleen Laskemisen avuksi mukaan dd d. ijoitamme integaaliin vaauskatteen ja pinta-alkion: 6 / 1 1 d d d d d d d s Voidaan käyttää myös sellaista pinta-alkiota, jossa on vain yksi muuttuja. Otetaan pinta-alkioksi ympyäengas, jonka säde on ja leveys säteen suunnassa d. Tällaisen ympyäenkaan ala on kehän pituus ketaa leveys, koska engas on hyvin ohut. iis pinta-alkio tässä tapauksessa on d = π d. Pinta-alkio on mekitty kuvaan mustalla. Fyysikot käyttävät paljon tällaisia yhden muuttujan pinta-alkioita. Kun integoidaan yli koko ympyälevyn, saadaan kokonaisvaaus: 6 / 1 d d d s d
10 Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: d sis Gaussin laki peustuu siihen, että suljetun pinnan läpi kulkeva sähkökentän vuo on veannollinen tämän suljetun pinnan sisälle jäävän vaauksen määään. Näin on iippumatta pinnan muodosta ja vaausjakauman muodosta. Gaussin lakia ei kuitenkaan voi käyttää sähkökentän laskemiseen kuin tietyissä symmetisissä tapauksissa. Laskuvinkkejä: Mieti ensin, voiko kyseisessä tehtävässä käyttää Gaussin lakia vai pitääkö vaaus paloitella pieniksi vaausalkioiksi ja sen jälkeen integoida. Katso kappale Menetelmän valinta sähkökenttiä laskettaessa. Piiä vaauksista lähtevät kenttäviivat. dellä keottiin kenttäviivojen ominaisuuksista. Lisää tietoa saat sähkökentän suunnista, kun laskemme sähkökenttiä paloittelumenetelmällä. Valitse sitten Gaussin suljettu pinta. e on yleensä näissä laskuissa joko pallo tai sylintei. Pistevaauksille, palloille ja pallokuoille valitaan pallon muotoinen Gaussin pinta. Pitkille langoille, sylinteeille, sylinteikuoille valitaan sylintein muotoinen Gaussin pinta, joka asetetaan langan tai sylintein suuntaisesti. Tasoille ja tasomaisille ajapinnoille voidaan käyttää myös sylinteiä, mutta nyt sylintei asetetaan kohtisuoaan tasoa vastaan siten, että se kulkee tason läpi. Katso jäljempänä oleva kuva! Pallon muotoinen Gaussin pinta piietään siten, että pinta on siinä kohdassa, missä sähkökenttä halutaan laskea. ylintein muotoinen Gaussin pinta piietään siten, että joko kansi tai vaippa iippuu tapauksesta on siinä kohdassa, missä sähkökenttä pitää laskea. tsi ne kohdat, missä Gaussin pinta ja kenttäviivat ovat yhdensuuntaiset. iellä tulo nolla. ds on tsi seuaavaksi ne kohdat, joissa Gaussin pinta ja kenttäviivat ovat kotisuoassa toisiaan vastaan. iellä ds voidaan kijoittaa ds. Jos Gaussin pinta on oikein valittu, yleensä edellisen kohdan pinnalla sähkökenttä on vakio, jolloin voidaan ottaa integaalimekin eteen. Nyt d on pelkkä pinta-ala niille alueille, joilla Gaussin pinta ja kenttäviivat ovat kohtisuoassa. Huomaa, että nyt ei enää ole välttämättä kyseessä suljettu pinta, jolle mekittäisiin d Laske seuaavaksi Gaussin lain oikea puoli eli määitä suljetun pinnan sisään jäävät vaaukset I. Jos vaausjakauma ei ole vakio, integoidaan. Mekitse yhtä suuiksi se, minkä sait Gaussin lain vasemmalta puolelta ja se, minkä sait Gaussin lain oikealta puolelta.
11 atkaise yhtälöstä sähkökenttä. euaavassa on esitetty eilaisia tilanteita ja niihin sopivia Gaussin pintoja. Pallosymmetinen vaausjakauma: Gaussin pinta d ylinteisymmetinen vaausjakauma: d Gaussin pinta L
12 Tasomainen vaausjakauma tai ajapinta: d Gaussin pinta Täällä sähkökenttä voi olla ylöstai alaspäin tai nolla. simekki 1: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. atkaisu: Valitaan Gaussin pinnaksi pallo, jonka säde on isompi kuin. Gaussin pinta d
13 Positiivisesta pistevaauksesta ja positiivisesti vaatusta pallosta lähtee säteettäin ulospäin sähkökentän kenttäviivoja, jotka ovat kohtisuoassa kyseisen vaatun pallon pintaa vastaan. ähkökenttävektoi on siis kohtisuoassa myös Gaussin pallon joka on ulompana pintaa vastaan ja yhdensuuntainen pinta-alkiovektoin kanssa, josta syystä vektoeiden ja d pistetulosta tulee tavallinen skalaaitulo d. Lisäksi sähkökentän itseisavo on symmetian vuoksi vakio kyseisellä pinnalla, jolloin voidaan ottaa integaalimekin eteen. Näiden kahden ehdon peusteella saamme Gaussin lain vasemman puolen muotoon: d d d 4 Oikea puoli saadaan helposti, sillä Gaussin pinnan sisäpuolelle jäävä vaaus on sis =. Nyt saamme lopulta: 4 4 li tasaisesti vaatun pallon kenttä on sama kuin pistevaauksen kenttä. simekki 1: Ääettömän pitkässä suoassa langassa on vaaus pituusyksikköä kohden = λ. Laske sähkökenttä :n etäisyydellä langasta. Langan poikkileikkaus on ympyä, jonka säde on. atkaisu: Käytetään Gaussin lakia. Gaussin laki: d sis Nyt valitaan Gaussin pinnaksi sylintei, jonka pituus on L ja pohjan säde >. Lasketaan ensin yhtälön vasen puoli. d on pinta-alkiovektoi. en itseisavo eli suuuus on pinta-alkion d suuuinen ja sen suunta on kohtisuoaan pintaa vastaan. on sähkökenttä ja se on tällaisen ääettömän pitkän langan tapauksessa kohtisuoassa lankaa vastaan.
14 d d Kuvasta nähdään, että Gaussin pintana toimivan sylintein vaipalla ja d ovat yhdensuuntaisia. ylintein päissä sen sijaan ja d ovat kohtisuoassa. Miten käy pistetulon d? Kun vektoit ovat kohtisuoassa toisiaan vastaan, niiden välinen pistetulo tulee nollaksi. Näin käy sylintein päissä. Kun vektoit ovat yhdensuuntaisia, niiden välinen pistetulo tulee pelkäksi itseisavojen tuloksi eli tässä tapauksessa d:ksi. Näin käy vaipalla. L dellä on sovellettu kaavaa: A B A B cos, missä α on vektoeiden A ja B välinen kulma. Paloitellaan Gaussin lain vasen puoli: d d d d d d vaippa päät vaippa vaippa vaippa L saatiin ottaa pois integaalimekin sisältä, sillä sähkökentän itseisavo on vakio vaipan alueella, koska vaippa on vakioetäisyydellä langasta. Tällöin integaali: d vaippa kuvaa pelkkää vaipan alaa, joka on πl. Gaussin lain vasen puoli saatiin kuntoon. Nyt oikea puoli: sis takoitti Gaussin pinnan sisään jäävää vaausta. Lasketaan siis sylintein sisään jäävä vaaus. ylintein pituus on L. Langassa on vaaus pituusyksikköä kohden λ, joten sylintein sisään jää sis = Lλ. Nyt saadaan Gaussin laki muotoon: L L Kuvan olen piitänyt sillä oletuksella, että langan vaaus on positiivinen.
15 simekki 14: Tasaisesti vaatussa -säteisessä pallossa on vaaustiheys ρ. Laske sähkökenttä pallon sisäpuolella. atkaisu: Gaussin pinnaksi valitaan taas pallo. Gaussin lain vasemmasta puolesta tulee samanlainen kuin simekissä 7 ja samoin peustein, nyt vain on pienempi kuin. Oikealla puolella pitää laskea sis eli -säteisen pallon sisäpuolelle jäävä vaaus. e on helppoa, koska vaaustiheys on vakio: sis = ρv sis = ρ4/π Nyt Gaussin laki on saatu muotoon: 4 4
16 simekki 15: Pallossa, jonka säde on, on vaaustiheys 1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun >. atkaisu:
17
18 simekki 16: ylinteisymmetinen vaaustiheys alueessa < on muotoa 1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun >. atkaisu:
19
20 simekki 17: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xztasoon nähden. Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy. y atkaisu: x
21 Gaussin lain diffeentiaalimuoto Gaussin lain integaalimuodosta voidaan johtaa Gaussin lauseen avulla diffeentiaalimuoto: Diffeentiaalimuoto on kätevä silloin, kun on laskettava sähkökenttä systeemissä, jossa vaaustiheys ei ole vakio. Näissä laskuissa tavitset divegenssiopeaattoeita ei koodinaatistoissa. uoakulmaisessa koodinaatistossa: ylinteikoodinaatistossa: Pallokoodinaatistossa: Kun systeemissä on pistevaaus tai kappale, jossa on vakiovaaustiheys, tällä menetelmällä laskeminen voi olla paljon monimutkaisempaa kuin käyttäen Gaussin lain integaalimuotoa. simekki 18: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. Käytä Gaussin lain diffeentiaalimuotoa. atkaisu: Pallon ulkopuolella vaaustiheys on nolla. Käytetään pallokoodinaatistoa: 1 1 sin 1 sin sin
22 Tiedämme, että sähkökentällä on ainoastaan adiaalinen komponentti eli komponentit θ ja φ ovat nollia. Yhtälö sievenee muotoon: 1 Keotaan yhtälön molemmat puolet :lla: Nyt saamme: C C * Joudumme laskemaan sähkökentän myös pallon sisäpuolella, jolloin saamme eunaehdosta atkaistua vakion C. Pallon sisällä on vaaustiheys 4 4 ijoitetaan vaaustiheys Gaussin lain diffeentiaalimuotoon: 4 sin 1 sin sin 1 1 Poistetaan yhtälöstä kulmaiippuvat komponentit: 4 1 Keotaan yhtälön molemmat puolet :lla: 4 Integoidaan: d d ** ähkökentän täytyy olla jatkuva kohdassa =, jolloin *:stä ja **:stä saadaan: 4 4 C C li nyt vasta saimme sähkökentän pallon ulkopuolella: 4 C
23 Kokeillaan, miten edellä olevat esimekit onnistuvat Gaussin lain diffeentiaalimuodolla. Huomataan, että menetelmä on veattain kätevä tällaisissa systeemeissä. simekki 19: Pallossa, jonka säde on, on vaaustiheys 1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:
24
25 simekki : ylinteisymmetinen vaaustiheys alueessa < on muotoa 1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:
26 simekki 1: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xztasoon nähden. Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy käyttäen Gaussin lain diffeentiaalimuotoa. y atkaisu: x
27 Menetelmän valinta sähkökentän laskemisessa ähkömagnetismin lisämateiaalissa on esitelty seuaavat menetelmät sähkökentän laskemiseksi: Gaussin lain integaalimuoto, Gaussin lain diffeentiaalimuoto, pistevaausten yhtälö ja jatkuvan vaauksen paloitteleminen pistevaauksiksi. Myöhemmin esitetään, miten sähkökenttä saadaan potentiaalin gadienttina ja kuvalähdepeiaate. Joskus on vaikea tietää, voiko Gaussin lain integaalimuotoa käyttää. euaavasta taulukosta voi olla apua: Vaausjakauman muoto Pistevaaus Umpinainen pallo Pallokuoi isäkkäiset pallot Pitkä umpinainen sylintei Pitkä ontto sylintei Koaksiaalikaapeli Pitkät sisäkkäiset sylinteit Pitkä suoa lanka Laaja taso Useita yhdensuuntaisia laajoja tasoja Kahden ei aineen tasomainen ajapinta Jatkuva vaausjakauma esimekiksi ilmassa tai avauudessa Lyhyt lanka Ympyälevy Ympyäengas pämäääisen muotoinen kappale Toimiva Gaussin pinta Pallo Pallo Pallo Pallo ylintei ylintei ylintei ylintei ylintei ylintei tai suoakulmainen sämiö ylintei tai suoakulmainen sämiö ylintei tai suoakulmainen sämiö ylintei tai suoakulmainen sämiö i voi käyttää Gaussin lakia i voi käyttää Gaussin lakia i voi käyttää Gaussin lakia i voi käyttää Gaussin lakia
Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä
Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi
LisätiedotSähkökentät ja niiden laskeminen I
ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä
Lisätiedot766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua
7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri
Lisätiedot40 LUKU 3. GAUSSIN LAKI
Luku 3 Gaussin laki 3.1 Coulombin laista Gaussin lakiin Takastellaan pistemäisen vaauksen q aiheuttamaa sähkökenttää, joka noudattaa yhtälöä (1.1). Tämän sähkökentän vuo etäisyydellä olevan pienen pintaelementin
LisätiedotSATE2180 Kenttäteorian perusteet / 5 Laskuharjoitus 2 / Coulombin ja Gaussin lait -> sähkökentän voimakkuus ja sähkövuon tiheys
ATE180 Kenttäteoian peusteet 018 1 / Tehtävä 1. Pisteessä P 1 (,, -4) sijaitsee - mc suuuinen negatiivinen vaaus ja pisteessä P (1, -4, ) on positiivinen C vaaus. Määitä positiiviseen vaaukseen vaikuttava
Lisätiedota) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
LisätiedotSähköstaattisen potentiaalin laskeminen
Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa
LisätiedotTietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
LisätiedotSähköpotentiaali. Haarto & Karhunen.
Sähköpotentiaali Haato & Kahunen www.tukuamk.fi Johantoa Kun vaaus q on sähkökentässä siihen vaikuttaa voima Saman suuuinen voima tavitaan siitämään vaausta matkan sähkökentän aiheuttamaa voimaa vastaan
LisätiedotJakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
Lisätiedot[B] = [F ] [q][v] = Vs. m 2
Luku 7 Magneettikenttä 7.1 Loentz-voima Liikkuviin vaauksiin kohdistuu sähkökentän aiheuttaman voiman lisäksi toinenkin voima, joka selitetään magneettikentän avulla. Vasinaisesti magneettikenttä on havaittu
LisätiedotÖljysäiliö maan alla
Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö
Lisätiedot766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN
766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
Lisätiedota P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
LisätiedotLujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA
Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
LisätiedotEristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä
risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on
LisätiedotSähkömagneettinen induktio
ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä
LisätiedotYleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.
Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus
Lisätiedot1. Työn tavoitteet. 2. Teoria ELEKTRONIN OMINAISVARAUS
Oulun yliopisto Fysiikan ja kemian laitos Fysikaalisen kemian laboatoiohajoitukset 1 1. Työn tavoitteet Englantilainen fyysikko J. J. Thomson teki vuonna 1897 katodisäteillä kokeita, joiden peusteella
LisätiedotMatematiikan kurssikoe, Maa 9 Integraalilaskenta RATKAISUT Torstai A-OSA
Matematiikan kussikoe, Maa 9 Integaalilaskenta RATKAISUT Tostai..8 A-OSA Sievin lukio. a) Integoi välivaiheineen i) (x t ) dt ii) x dx. b) Määittele integaalifunktio. c) i) Olkoon 5 f(x) dx =, f(x) dx
LisätiedotLukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN
alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus
LisätiedotYmpyrä sekä kehä-, keskus- ja tangenttikulmat
31.1.017 Ympyä sekä kehä-, keskus- ja tangenttikulmat GEMETRI M3 Ympyä: Ympyä on niiden tason pisteiden joukko, jotka ovat säteen etäisyydellä keskipisteestä. Sanotaan, että ympyä on tällaisten pisteiden
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotFysiikkakilpailu , avoimen sarjan vastaukset AVOIN SARJA
AVOIN SARJA Kijoita tekstaten koepapeiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä- että koepapeit palautetaan kilpailun
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
LisätiedotNäytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
LisätiedotTilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz
/9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotTilavuusintegroin3. Tilavuusintegroin3
/5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
LisätiedotSähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä
Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotPinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali
Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
LisätiedotAluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4
MAB: Ympyä 4 Aluksi Tämän luvun aihe on ympyä. Ympyä on yksi geometisista peusmuodoista ja on sinulle ennestään hyvinkin tuttu. Mutta oletko tullut ajatelleeksi, että ympyää voidaan pitää säännöllisen
LisätiedotJakso 5. Johteet ja eristeet Johteista
Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotDifferentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedot4757 4h. MAGNEETTIKENTÄT
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotFYSA2010/2 VALON POLARISAATIO
FYSA2010/2 VALON POLARISAATIO Työssä tutkitaan valoaallon tulotason suuntaisen ja sitä vastaan kohtisuoan komponentin heijastumista lasin pinnasta. Havainnoista lasketaan Bewstein lain peusteella lasin
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 7. Integaalilauseita 7.1. Gousatin lemma. (Edouad Jean-Baptiste Gousat, 1858-1936, anskalainen matemaatikko) Olkoon R tason suljettu suoakaide,
LisätiedotPYÖRÄHDYSKAPPALEEN PINTA-ALA
PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotKartio ja pyramidi
Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota
LisätiedotSATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus
AT taattinen kenttäteoria kevät 6 / 5 Laskuharjoitus / Coulombin laki ja sähkökentänvoimakkuus Tehtävä Kaksi pistevarausta ja sijaitsevat x-tason pisteissä r x e x e ja r x e x e. Mikä ehto varauksien
LisätiedotMagneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
LisätiedotMagneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
LisätiedotRATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
LisätiedotYmpyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
LisätiedotSATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
LisätiedotLUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
Lisätiedotx 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
LisätiedotLuku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi
SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen
LisätiedotSATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki
STE80 Kenttäteorian perusteet syksy 08 / 5 Tehtävä. Karteesisessa koordinaatistossa potentiaalin nollareferenssitaso on y = 4,5 cm. Määritä johteelle (y = 0) potentiaali ja varaustiheys, kun E = 6,67 0
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
LisätiedotELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA
Lisätiedot4. Gaussin laki. (15.4)
Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
Lisätiedotf x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
Lisätiedot4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste
LisätiedotMatematiikan tukikurssi: kurssikerta 12
Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.
LisätiedotYksinkertainen korkolasku
Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua
LisätiedotSÄHKÖMAGNEETTINEN KYTKEYTYMINEN
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotAnna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
LisätiedotKapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
Lisätiedot