Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).
|
|
- Jalmari Jokinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). Polarisoimaton valo on valoa, jossa sähkökenttä värähtelee kaikissa suunnissa kohtisuorasti valon etenemissuuntaa vastaan. Valo on sähkömagneettista poikittaista aaltoliikettä (MAOL s. 88(87)), joka etenee valon nopeudella 3, m/s ja jossa sähkö- ja magneettikenttä värähtelee kohtisuorasti toisiaan ja etenemissuuntaa vastaan (kuva 2). Kuva 2. valon värähtelyt Polarisoitunut valo: - osittain polarisoitunut valo: o sähkökentän värähtely on heikentynyt jossakin suunnassa - täysin polarisoitunut valo (=lineaarisesti polarisoitunut): o sähkökenttä värähtelee vain yhdessä suunnassa Polarisaattori P päästää lävitseen vain tietyn värähdyssuunnan, jolloin saadaan täysin polarisoitunutta valoa. Polarisaattori ja analysaattori sisältävät pitkiä, yhdensuuntaisia molekyyliketjuja, jotka absorboivat (imevät) tähän suuntaan polarisoitunutta valoa. Kun analysaattoria A kierretään kohtisuoraan polarisaatiotasoa vastaan (kuva 3), niin valo ei pääse analysaattorin läpi, koska päästösuunnat (kideakselit, läpäisysuunnat) ovat kohtisuorassa toisiaan vastaan (polarisaattorin ja analysaattorin pitkät ketjumaiset molekyylit ovat kohtisuorassa). Tämä osoittaa sen, että valo on poikittaista aaltoliikettä. Pitkittäinen aaltoliike, esim. ääni on aina lineaarisesti polarisoitunutta aaltoliikettä.
2 Kuva 3. Analysaattori A on kierretty kohtisuoraan polarisaatiotasoa vastaan, jolloin valo ei pääse analysaattori läpi valo on poikittaista aaltoliikettä. Valo polarisoituu ainoastaan silloin, kun se tulee vinosti eristeen pintaan, jolloin se heijastuu ja taittuu. Heijastunut ja taittunut säde on polarisoitunut. Esim. veden, lasin tai lumihangen pinnasta heijastunut valo on (kokonaan tai osittain) polarisoitunut heijastavan pinnan suuntaisesti (kuvat 4 ja 5). Polarisoitumista tapahtuu myös taittuneessa valonsäteessä. Heijastunut valo on täydellisesti polarisoitunut silloin, kun heijastuneen ja taittuneen säteen välinen kulma on suora (Brewsterin laki). Tällöin tulokulmaa α1 kutsutaan ns. Brewsterin kulmaksi αb. Kuva 4. Veden pinnasta heijastunut valo Kuva 5. Lasin pinnasta heijastunut valonsäde on polarisoitunutta pinnan suuntaisesti. on polarisoitunut pinnan Taittunut säde on vain osittain polarisoitunut. suuntaisesti, mutta taittunut säde on vain osittain polarisoitunut. Polarisoituneen valon synty: - valo tulee vinosti eristeen pintaan (esim. lasi, vesi, lumihanki) - heijastuminen/taittuminen - polarisoivat levyt (kiteet), aurinkolasit - sironta, esim. ilmakehässä sironnut valo on polarisoitunutta - sateenkaaren valo - radioaaltojen polarisointi antenneilla,
3 Polarisaation sovelluksia: - polarisoivat aurinkolasit poistavat häikäisyn Linsseissä on ainekerros, jossa pitkät molekyylit ovat asettuneet yhdensuuntaisiksi ketjuiksi niin, että ne estävät häiritsevien heijastusten pääsyn linssin läpi. Molekyyliketjujen suuntainen sähkökenttä absorboituu (imeytyy) Kuva 6. Polarisoivat aurinkolasit. tehokkaasti linssiin. Aurinkolasien molekyyliverkosto päästää lävitseen vain pystytasossa värähtelevää valoa. Sileistä vaakasuorista pinnoista (esim. vedestä) heijastunut valo on enimmäkseen vaakapolarisoitunutta, joten pystypolarisoivat linssit eivät päästä sitä läpi ja näin vältytään häikäisyltä. - tutkat o Esim. säätutkat käyttävät yleensä vaakapolarisoituja mikroaaltoja, koska sadepisarat ovat litistyneitä ja sirottavat enemmän vaaka- kuin pystysuoraan polarisoitunutta säteilyä. Lennonjohdon tutkat puolestaan käyttävät pystypolarisoituja mikroaaltoja, jotta sateen vaikutus olisi mahdollisimman pieni. - nestekidenäytöt: tietokoneet, laskimet, matkapuhelimet, o nestekidenäytön toiminta perustuu nestekiteiden kykyyn kiertää valon polarisaatiosuuntaa (vrt. plasmanäyttö, ks. internet) - auton takalasin jännitykset näkyvät polarisoivilla aurinkolaseilla - polarisoivat kameran ja mikroskoopin suodattimet - taivaan sininen väri on polarisoitunutta mehiläisten suunnistus - aineen pitoisuuden määritys, esim. elintarviketeollisuudessa o optisesti aktiiviset aineet (esim. ruokosokeri) kiertävät polarisaatiotasoa o polarisaatiotason kiertymisen aiheuttaa molekyylien epäsymmetrisyys määritetään kiertymiskulma aineen pitoisuus - kahtaistaittuminen o on ilmiö, jossa kiteen läpi kulkeva valo jakautuu kahdeksi komponentiksi (yleissääntöinen ja erikoissääntöinen säde), joiden polarisaatiosuunnat ovat kohtisuorassa toisiaan vastaan esineet näkyvät kahtena o käyttö: optiset laitteet, lääketieteen diagnostiikka, - satelliittiantennit o Satelliittilautasten polttopisteessä on osa joka vastaanottaa satelliitin lähetystä joko pysty- tai vaakapolarisaatiolla, jotta satelliitti pystyy lähettämään kaksi eri lähetystä täsmälleen samalla mikroaaltojen aallonpituudella. - kvanttisalaus: optinen langaton tiedonsiirto, valokaapelit (ks. internet) - ks. lisätietoja:
4 BREWSTERIN LAKI Heijastunut valo on täysin polarisoitunut, kun heijastuneen ja taittuneen säteen välinen kulma on suora. - α1 + α2 = 90 o (ks. kuva 7). α2 = 90 o - α1 - tulokulma α1 = αb on ns. Brewsterin kulma - n1 ja n2 ovat aineiden 1 ja 2 taitekertoimet. - pätee eristeille, esim. lasi ja vesi Brewsterin lain johto: Taittumislain mukaan ja edelleen Koska α2 = 90 o - α1, niin ja taulukon (MAOL s. 31(37)) mukaan 90, joten saadaan ja sitten. Merkitään, niin saadaan Brewsterin laki: Kulma α B = tulokulma α1 eli ns. Brewsterin kulma, jolla heijastunut säde on kokonaan polarisoitunut pinnan suuntaisesti. ESIMERKKITEHTÄVIÄ: Esim. 1. Missä kulmassa valonsäteen on tultava ilmasta veden pintaan, jotta veden pinnasta heijastunut säde olisi täydellisesti polarisoitunut? Ilman taitekerroin on 1,00 ja veden 1,33. Ratkaisu. Jotta tapahtuisi täydellinen polarisaatio, on oltava voimassa t eli,, josta saadaan tulokulmaksi eli Brewsterin kulmaksi, αb 53 o.
5 Esim. 2. Missä kulmassa valonsäteen on tultava ilmasta lasiin, jotta lasin pinnasta heijastunut säde olisi täydellisesti polarisoitunut? Ilman taitekerroin on 1,00 ja lasin 1,55. Ratkaisu. Jotta tapahtuisi täydellinen polarisaatio, on oltava voimassa = eli =,, josta saadaan tulokulmaksi eli Brewsterin kulmaksi, αb 57 o.
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
Polarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu
3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.
Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
5.3 FERMAT'N PERIAATE
119 5.3 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta
Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.
FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin
5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5
5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen
7 VALON DIFFRAKTIO JA POLARISAATIO
7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä
9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria
9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 9 Valon luonne ja eteneminen (YF 33) Valon
oppilaitos: ARKADIAN YHTEISL YSEO
,/ VALO-OPPI oppilaitos: ARKADIAN YHTEISL YSEO kurssi FY1 tehnyt Markus Hagmal1 Jätetty syyskuun 28. päivä 1999 Tarkastaja Jari Pyy LYHENNELMÄ Tutkielma käsittelee optiikkaa eli valo-oppia Lukiessasi tätä
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4.
Kertaustehtävien ratkaisuja
Kertaustehtävien ratkaisuja. c) Jaksonaika on 300 s T = = 0,50 s, f = = 600 T 0,50 s =,0 Hz.. b) Lasketaan ensin jousivakion suuruus ja sitten värähdysaika. k = - mg,0 kg 9,8 m/ s = = 98, N/ m x 0,0 m
Havaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.
71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin
VALON DIFFRAKTIO JA POLARISAATIO
1 VALON DIFFRAKTIO JA POLARISAATIO 1 Työn tavoitteet Tässä työssä tutkit valoa aaltoliikkeenä. Tutustut valon taipumiseen eli diffraktioon, joka havaitaan esimerkiksi, kun monokromaattinen valo kulkee
Valo-oppia. Haarto & Karhunen. www.turkuamk.fi
Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)
YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot
YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot 1. Selosta lyhyesti, mihin fysikaalisiin ilmiöihin perustuvat a) polaroivien aurinkolasien häikäisyä vähentävä vaikutus, b) veden pinnalla olevassa ohuessa öljykalvossa
MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006
MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:
Aaltojen heijastuminen ja taittuminen
Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan
Teoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo
Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio
Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen
Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?
VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014
VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa
d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta
VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014
VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
AURINKOENERGIA. Auringon kierto ja korkeus taivaalla
AURINKOENERGIA Auringon kierto ja korkeus taivaalla Maapallo kiertää aurinkoa hieman ellipsin muotoista rataa pitkin, jonka toisessa polttopisteessä maapallo sijaitsee. Maapallo on lähinnä aurinkoa tammikuussa
Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:
LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen
FYSA2010/2 VALON POLARISAATIO
FYSA2010/2 VALON POLARISAATIO Työssä tutkitaan valoaallon tulotason suuntaisen ja sitä vastaan kohtisuoan komponentin heijastumista lasin pinnasta. Havainnoista lasketaan Bewstein lain peusteella lasin
eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0
PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.
HEIJASTUMINEN JA TAITTUMINEN
S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0
ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:
10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)
Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
25 INTERFEROMETRI 25.1 Johdanto
5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan
Valo, valonsäde, väri
Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon,
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.
Polarimetria Tekijät: Immonen Antti, Nieminen Anni, Partti Jussi, Pylkkänen Kaisa ja Viljakainen Antton Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
RATKAISUT: 16. Peilit ja linssit
Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,
Työn tavoitteita. 1 Teoriaa
FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä
Scanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden FYSIIKAN KOE 16.9.2013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua.
e =tyhjiön permittiivisyys
75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf
3.32. On tärkeätä muistaa, että tehosta desibeleissä puhuttaessa käytetään kerrointa 10 ja kentänvoimakkuuden yhteydessä kerrointa 20.
3.3 3. Desibeli Tasoaallon vaimenemisen häviöllisessä väliaineessa voi laskea aaltoluvusta β. Aaltoluvun imaginaariosa on mitta vaimenemiselle, ja usein puhutaankin β i :stä yksiköissä neperiä/metri eikä
FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio
FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen
Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.
135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.
IR-LÄMPÖMITTARIT. Infra-punasäteily. Kollimoitu ja fokusoitu säde. Sähkömagneettinen säteily
R-LÄMPÖMTTART Jokainen kappale, jonka lämpötila on suurempi kuin 0 K, lähettää sähkömagneettista säteilyä. Aallonpituusaluetta 0.7 - n. 000 µm kutsutaan Ralueeksi. Säteilyyn perustuva lämpötilan mittaus
YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron
9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.
FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia
FY9 Fysiikan kokonaiskuva
FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin
Hydrologia. Säteilyn jako aallonpituuden avulla
Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna
34. Geometrista optiikkaa
34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä
OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:
Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat
SATEENKAARI Pro gradu Kristina Heikkinen Oulun yliopisto Fysikaalisten tieteiden laitos Oulu 2008
SATEENKAARI Pro gradu Kristina Heikkinen Oulun yliopisto Fysikaalisten tieteiden laitos Oulu 2008 1 Sisällysluettelo Johdanto... 4 1. Valon kulku... 5 1.1 Heijastuslaki... 5 1.2 Taittumislaki... 5 1.3
6 GEOMETRISTA OPTIIKKAA
127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.
TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
Opetuskalvot aiheesta pietsokontrollerit
TEKNILLINEN KORKEAKOULU Sähkö- ja tietoliikennetekniikan osasto MIKES TKK Mittaustekniikka Opetuskalvot aiheesta pietsokontrollerit 20.3.2006 Maija Ojanen, 57898F maija.ojanen@tkk.fi Mittaustekniikan erikoistyö
Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
MAOL-Pisteityssuositus Fysiikka syksy 2013
MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään
1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ
25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää
OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C
OPTISET KUIDUT KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C SISÄLLYS SISÄLLYS...2 1 Johdanto...1 2 Valon taittuminen...1 3 Optisten kuitujen lasi ja kuidun rakenne...2
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
Havaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
Optiikkaa. () 10. syyskuuta 2008 1 / 66
Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten
Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n
141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen
Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12
Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Sirpa Pöyhönen ja Taisto Herlevi Ryhmä E4 Ohj. Ari Hämäläinen HY 30.11.2001 1 Sisällysluettelo 1. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...3
Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste
Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen
Pietsoelementtien sovelluksia
Pietsoelementtien sovelluksia S-108.2010 Elektroniset mittaukset Luento 20.2.2006 Maija Ojanen Taustaa Pietsosähköisen ilmiön havaitsivat Jacques ja Pierre Curie 1880 Mekaaninen voima aiheuttaa varauksen
Pro-gradu tutkielma. Ympyräpolarisoidun synkrotronisäteilyn tuotto. Aleksi Änäkkälä Oulun yliopisto Fysiikan laitos 2012
Pro-gradu tutkielma Ympyräpolarisoidun synkrotronisäteilyn tuotto Aleksi Änäkkälä Oulun yliopisto Fysiikan laitos 2012 Sisältö 1 Johdanto 1 2 Sähkömagneettisen säteilyn polarisaatio 2 2.1 Polarisaatio............................
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta Huygensin periaate Kenttien rajapintaehdot Rajapintaehdot Fresnelin
7.6. Fysikaalinen peiliheijastus. Pinnan mikrogeometrian mallintaminen. Varjostus ja peittämisvaikutukset
7.6. Fysikaalinen peiliheijastus Tässä mallissa otetaan huomioon fysikaalispohjainen peilikomponentti (Blinn 1977. Sittemmin mallia laajennettiin käsittämään kirkkaan valaistuksen spektrin ja tämän riippuvuuden
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
Mitataan yleismittarilla langan resistanssi, metrimitalla pituus, mikrometrillä langan halkaisija. 1p
avoimen sarjan ratkaisut 011 LUKION FYSIIKKAKILPAILU 8.11.011 AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa
Aallot. voima F on suoraan verrannollinen venymään x. k = jousivakio Jousivakion yksikkö [k] = 1 N/m = 1 kg/s 2
Aallot Harmoie voima voima F o suoraa verraollie veymää x Hooke laki F = kx k = jousivakio Jousivakio yksikkö [k] = N/m = kg/s Jouse potetiaalieergia E p = kx syyttää harmoise värähtely yhtee värähdyksee
Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.
Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat
Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä. Poikkeuksena kurssit 10-14, joista tarkemmin alla.
Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä Poikkeuksena kurssit 10-14, joista tarkemmin alla Jos et ole varma, voitko valita jonkin fysiikan kurssin, ota yhteyttä lehtori Antti
Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Sateen mittaaminen Sademäärä ilmaistaan yksikössä [mm]=[kg m -2 ] Yleisesti käytetään sadeastiaa, johon kerääntynyt
2 paq / l = p, josta suuntakulma q voidaan ratkaista
33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?
Harjoitustehtävien vastaukset
Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,
11.1 MICHELSONIN INTERFEROMETRI
47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.