9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)
|
|
- Juuso Koskinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1
2 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 5. Polarisaatiostandardit 6. Lineaaripolarimetria 7. Ympyräpolarimetria 2
3 9.1 Stokesin parametrit <- Lineaaripolarisaatio Elliptinen (tai ympyrä- )polarisaatio -> 3
4 9.1 Stokesin parametrit Stokesin parametrit kuvaavat muuten täydellisesti sähkömagneettista säteilyä, mutta ei ota huomioon vaihetta Formalismi sopii vain tilanteisiin, joissa säteily ei ole koherenttia. Säteen kohdatessa optisen elementin muuttuu Stokesin vektori. Muutosta voidaan kuvata Müllerin matriisilla. 4
5 9.1 Stokesin parametrit Missä akselit) IP E = (Q 2 + U 2 +V 2 ) ½ (a ja b ovat ellipsin Jos eli niin säteilyn sanotaan olevan polarisoitumatonta Polarisaatioaste on P E 5
6 9.1 Stokesin parametrit Positiokulma on: Usein käytetään ns. normeerattuja Stokesin parametreja Q/I=P Q ja U/I=P U joista saadaan lineaarinen polarisaatioaste Polarisaatioaste ja positiokulma voidaan mitata havainnoista, jos käytössä on sopiva mittalaite. 6
7 9.2 Polarisaatio tähtitieteessä Polarisaatiolla voidaan mitata aineen ominaisuuksia, joihin spektreillä ja/tai fotometrialla ei päästä. esim. Pintarakenne, magneettikenttä Polarisaatiosignaali on heikompi vaikeampi mitata Aina, kun valo kohtaa jotenkin orientoitunutta ainetta, se polarisoituu (esim. pöly magneettikentässä) Myös monet fysikaaliset ilmiöt tuottavat polarisoitunutta valoa 7
8 9.2 Polarisaatio tähtitieteessä Negatiivista lineaaripolarisaatiota havaitaan mm. Aurinkokuntien ilmakehättömien kappaleiden pinnalla 8
9 9.2 Polarisaatio tähtitieteessä Komeetta Hale-Bopp normaalissa valossa ja polarisaatiomittaus Nuorta tähteä kiertävä pölykiekko 9
10 9.2 Polarisaatio tähtitieteessä Valon polarisaatio Linnunradassa 10
11 9.2 Polarisaatio tähtitieteessä Zeemanin ilmiö johtuu atomin magneettimomentin vuorovaikutuksesta ympäröivän magneettikentän kanssa Tuloksena on emissioviivan hajoaminen useampaan osaan Hajontaväli riippuu magneettikentän voimakkuudesta Viivojen komponenttien säteily on polarisoitunutta 11
12 9.3 Polarisaattorit Optinen komponentti tai komponentteja, joilla polarisaatio voidaan mitata. Suurin osa näistä perustuu kahtaistaittaviin (birefringent) materiaaleihin (esim. kalsiitti) Tällaisilla materiaaleilla on kaksi eri taitekerrointa: Taitekerroin riippuu saapuvan säteilyvektorin värähtelysuunnasta optisen akselin suhteen. Kaksinaistaittavista materiaaleista voidaan rakentaa optisia komponentteja, jotka jakavat saapuvan valon kahdeksi säteeksi, joiden polarisaatio on toistensa suhteen 90 kääntynyt: O- (ordinary) ja e- (extraordinary) säteiksi Myös polaroidilevyjä käytetään 12
13 9.3 Polarisaattorit 13
14 9.3 Polarisaattorit 14
15 9.3 Aaltolevyt Aaltolevyillä voidaan mm. kääntää lineaaripolarisaation tasoa tai muuttaa ympyräpolarisaatiota lineaariseksi Ne on tehty kahtaistaittavasta materiaalista, usein kalsiitista mutta mm. jotkut polymeerit käyvät /2 ja /4 aaltolevyt ovat yleisimmin käytetyt 15
16 9.3.1 /2 aaltolevy Puoliaaltolevyllä saadaan käännettyä lineaarisen polarisaation suuntaa Siinä vaiheviive o- ja e- säteiden välillä on 180 Näin jos mittausten välillä käännetään puoliaaltolevyä 0, 22.5, 45 ja 62.5 saadaan o- ja e-säteiden intensiteetti mitattua kulmilla 0, 45, 90 ja
17 9.3.2 /4 aaltolevy Neljäsosa-aaltolevyllä voidaan muuttaa elliptisesti- tai ympyräpolarisoitunut säteily lineaarisesti polarisoituneeksi (tai päinvastoin) Siinä vaiheviive on 90 toiselle komponentille. 17
18 9.3 Wedged Double Wollaston (WeDoWo) Esimerkki nykyaikaisesta CCD polarimetrisesta ratkaisusta, jossa neljä polarisaatiotilaa saadaan mitattua kerralla Haittapuolena pieni kuvakenttä 18
19 9.4 CCD polarimetria CCD polarimetriassa saadaan yleensä mitattua samanaikaisesti sekä o- että e-säde käyttämällä puoliaaltolevyn ja kalsiittilevyn yhdistelmää (myös polaroideja käytetään) Tällöin ilmakehän polarisaatio (ja suurin osa muistakin systemaattisista häiriöistä) voidaan jättää huomiotta Ongelmana on melko pieni kuvakenttä ja säteiden kulmaerotus. Tätä ongelmaa ei ole jos käytetään polaroidia tms. polarisaattoria, missä päästetään vain yksi polarisaatiokulma mittalaitteelle, mutta silloin menetetään yleensä > 60% fotoneista. 19
20 9.4 CCD polarimetria Mittauksissa hyvä pitää mielessä intensiteetin vaihtelu mittauksen eri vaiheissa (esim. puoliaaltolevyn eri kulmilla), jotta kohde ei saturoidu CCD kamerassa. Polarisaatiomittauksen redusointi tapahtuu pitkälti samaan tyyliin kuin fotometriassakin. Datapisteiden mittaus kuvasta on yleensä suhteellista fotometriaa. 20
21 9.5 Polarisaatiostandardit Jotta polarisaatiomittaukset saadaan muunnettua vertailukelpoisiksi, on mitattava standardeja Hyviä standardeja on melko vähän ja ne voivat olla hankalia havaita 21
22 9.5 Nollapolarisaation standardit Mittalaitteessa on usein jonkin verran polaroivia komponentteja => instrumenttipolarisaatio, jonka vaikutus tulee poistaa Tätä varten täytyy havaita kohteita, joiden polarisaatio on mahdollisimman pieni ja sattumanvaraista Standardi kannattaa havaita samassa kohtaa kuin itse kohdekin 22
23 9.5 Nollapolarisaation standardit 23
24 9.5 Korkean polarisaation standardit Lineaaripolarisoituneita tähtiä, joiden positiokulma tunnetaan taivaan koordinaattien suhteen. Tarvitaan instrumenttipolarisaatiokulman muuttamiseksi johonkin haluttuun koordinaattijärjestelmään (positiokulman nollakohdan määrittämiseksi) Täytyy havaita vähintään kahta, joiden polarisaatiokulmat eroavat riittävästi 24
25 9.5 Korkean polarisaation standardit 25
26 9.6 Lineaaripolarimetria Mittaus esim. puoliaaltolevyllä Polarisaatioasteen ja -kulman määritys (esim.), mitataan intensiteetti kulmilla 0, 45, 90 ja 135: P x = I I 0 I90 I I Py = I90 I45+ I135 P = 2 P + P x y Polarisaatioasteen virhe: (%-yksiköissä kokonaisintensiteetistä) 2 Θ = 1 2 arctan E 100 = p S / N 2 P P y x 26
27 9.7 Ympyräpolarimetria Käytetään puoliaaltolevyn sijasta neljäsosaaaltolevyä muutetaan lineaaripolarisaatioksi Mitataan aaltolevyn kulmilla 0, 90, 45 ja 135 Mahdollisesta kohteesta tulevasta lineaaripolarisaatiosta voi päästä eroon pyörittämällä mittauksen aikana neljäsosaaaltolevyn eteen sijoitettua puoliaaltolevyä Ympyräpolarisaation mittauksiin ei ole saatavilla hyviä standardeja 27
9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria
9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1
10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit
9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.
Polarimetria Tekijät: Immonen Antti, Nieminen Anni, Partti Jussi, Pylkkänen Kaisa ja Viljakainen Antton Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
Polarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin
Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo
Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5
5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka
Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
Havaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).
P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.
7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
XFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen
Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8.2.6 Échelle-spektroskooppi Harva hila, n. 50 viivaa/mm Suuri blaze-kulma, n. 60 Havaitaan korkeita kertalukuja, m 20 60 suuri dispersio ja
8. Fotometria (jatkuu)
8. Fotometria (jatkuu) 1. Magnitudijärjestelmät 2. Fotometria CCD kameralla 3. Instrumentaalimagnitudit 4. Havaintojen redusointi standardijärjestelmään 5. Kalibrointi käytännössä 6. Absoluuttinen kalibrointi
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 3.5.2012, T Hackman & V-M Pelkonen 1 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannattaa käyttää? Minkälaista teleskooppia millekin
jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.
71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin
FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
Pro-gradu tutkielma. Ympyräpolarisoidun synkrotronisäteilyn tuotto. Aleksi Änäkkälä Oulun yliopisto Fysiikan laitos 2012
Pro-gradu tutkielma Ympyräpolarisoidun synkrotronisäteilyn tuotto Aleksi Änäkkälä Oulun yliopisto Fysiikan laitos 2012 Sisältö 1 Johdanto 1 2 Sähkömagneettisen säteilyn polarisaatio 2 2.1 Polarisaatio............................
POLARIMETRIA. NOT-tiedekoulun 2011 tutkielma. Tekijät: Aherto, Joona Kivijärvi, Juuso Koivunen, Miika Korhonen, Vili Väkevä, Sakari
POLARIMETRIA NOT-tiedekoulun 2011 tutkielma Tekijät: Aherto, Joona Kivijärvi, Juuso Koivunen, Miika Korhonen, Vili Väkevä, Sakari Sisällysluettelo ABSTRAKTI... 3 JOHDANTO... 4 Alkuvalmistelut... 4 Mittausyö...
Havaitsevan tähtitieteen peruskurssi I, kevät 2012
Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
7 VALON DIFFRAKTIO JA POLARISAATIO
7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä
Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Havaitsevan tähtitieteen peruskurssi I, kevät 2007
Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
Havaitsevan tähtitieteen peruskurssi I, kevät 2008
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
11. Astrometria, ultravioletti, lähiinfrapuna
11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan
CCD-kamerat ja kuvankäsittely
CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate
e =tyhjiön permittiivisyys
75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.
Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Datan käsittely Helsingin yliopisto, Fysiikan laitos kevät 2013 3. Datan käsittely Luennon sisältö: Havaintovirheet tähtitieteessä Korrelaatio Funktion sovitus Aikasarja-analyysi 3.1 Havaintovirheet Satunnaiset
Teoreettisia perusteita II
Teoreettisia perusteita II Origon siirto projektiokeskukseen:? Origon siirto projektiokeskukseen: [ X X 0 Y Y 0 Z Z 0 ] [ Maa-57.260 Kiertyminen kameran koordinaatistoon:? X X 0 ] Y Y 0 Z Z 0 Kiertyminen
Havaitsevan tähtitieteen peruskurssi I Johdanto
Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:
Optiikkaa. () 10. syyskuuta 2008 1 / 66
Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten
4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.
Havaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 18.3. ja 25.3.2010 Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät
Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä
Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät
8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN, TH, VMP)
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 2.11. ja 9.11.2017 Thomas Hackman (Kalvot JN, TH, VMP) HTTPKI, syksy 2017, luennot 2.11. ja 9.11. 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä
10. Spektrometria. Havaitsevan tähtitieteen luennot & Thomas Hackman. HTTPK I kevät
10. Spektrometria Havaitsevan tähtitieteen luennot 30.3. & 6.4.2017 Thomas Hackman HTTPK I kevät 2017 1 10. Spektrometria Sisältö: Peruskäsitteet Spektrometrin rakenne Spektrometrian käyttö Havainnot ja
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:
10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)
5.3 FERMAT'N PERIAATE
119 5.3 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 9 Valon luonne ja eteneminen (YF 33) Valon
Teoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)
Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin
VALON DIFFRAKTIO JA POLARISAATIO
1 VALON DIFFRAKTIO JA POLARISAATIO 1 Työn tavoitteet Tässä työssä tutkit valoa aaltoliikkeenä. Tutustut valon taipumiseen eli diffraktioon, joka havaitaan esimerkiksi, kun monokromaattinen valo kulkee
Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia
Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia Tiina Kiviniemi 11. huhtikuuta 2008 1 Johdanto Tämän työn tarkoituksena on tutustua käytännön Ramanspektroskopiaan sekä molekyylien
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.
Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,
FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ
FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin
Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän
1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP
Kameran kalibrointi Kameran kalibroinnilla tarkoitetaan sen kameravakion, pääpisteen paikan sekä optiikan aiheuttamien virheiden määrittämistä. Virheillä tarkoitetaan poikkeamaa ideaalisesta keskusprojektiokuvasta.
Etäisyyden yksiköt tähtitieteessä:
Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin
Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia
T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian
Havaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
Havaitsevan tähtitieteen peruskurssi I
5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään
Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit
Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
7. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8
7. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 17.3. ja 24.3.2011 Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8 1 8. Fotometria n Sisältö: q q q q q q q q q q Johdanto
5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys
7.-8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
7.-8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja 15.3.2012 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) HTTPKI, kevät 2012, luennot 7-8 1 7. Fotometria Sisältö: Johdanto Peruskäsitteitä
Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:
Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti
TTY Mittausten koekenttä. Käyttö. Sijainti
TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (
HEIJASTUMINEN JA TAITTUMINEN
S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0
Logiikan rakenteen lisäksi kaikilla ohjelmoitavilla logiikoilla on myös muita yhteisiä piirteitä.
Automaatio KYTKENTÄ INFORMAATIOTA 1 KOHTA1: KERRATTAVA MATERIAALISSA OLEVA SIEMENS SIMATIC S7CPU212 TUNNISSA TUTUKSI MONISTE ERITYISESTI LOGIIGAN TULO JA LÄHTÖ LIITTIMIEN JA LIITÄNTÖJEN OSALTA TÄSSÄ TULEE
9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Aurinko. Tähtitieteen peruskurssi
Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S
PHYS-C0240 Materiaalifysiikka kevät 2017
PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto
testo 460 Käyttöohje
testo 460 Käyttöohje FIN 2 Pikaohje testo 460 Pikaohje testo 460 1 Suojakansi: käyttöasento 2 Sensori 3 Näyttö 4 Toimintonäppäimet 5 Paristokotelo (laitteen takana) Perusasetukset Laite sammutettuna >
Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan
Albedot ja magnitudit
Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen
2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008
Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja
dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.
BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2
Radioastronomia harjoitustyö; vedyn 21cm spektriviiva
Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)
1.1 Magneettinen vuorovaikutus
1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä
PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden