5.3 FERMAT'N PERIAATE
|
|
- Maria Kouki
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta voidaan johtaa geometrisen optiikan perusaksiomat. Esimerkiksi taittumislaki saadaan viereisestä kuvasta laskemalla ensin valon käyttämä aika pisteestä A pisteen O kautta pisteeseen B. Kirjoitetaan aika muuttujan x avulla ja minimoidaan se. Lasku johtaa suoraan taittumislakiin (5.2.1). Lisäkommentti: Fermat'n periaate on esimerkki variaatio-laskennasta, jossa yleisesti pyritään minimoimaan jokin määrätty integraali. Esimerkkimme tapauksessa integraali on B ds t = ò, (5.3.1) v () s missä v () s on valon nopeus radan kohdassa s. A Esimerkki: Valonsäde läpäisee kohtisuorasti L-paksuisen lasilevyn z-akselin suunnassa (kuva). Laske a) läpäisyaika t 0, kun levyn taitekerroin on vakio n 0 ja b) läpäisyaika t, kun taitekerroin kasvaa jatkuvasti z-suunnassa yhtälön n (1 3 2 = n az ) 0 + mukaan. Tässä a on positiivinen vakio.
2 120 Ratkaisu: a) Valon nopeus levyssä on vakio v 0 =c/ n 0, joten ajaksi matkalla L laskemme t 0 L n = = v c 0 0 L. b) Valon nopeus levyssä riippuu z:sta: c c v( z) = = n z n + az 3 ( ) 0(1 3 ) ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: L L L dz n0 2 n0 3 n0 2 òv( z) c ò c 0 c 0 0 t = = (1 + 3 az ) dz = ( z + az ) = L(1 + al ) = t (1 + al 2 ) KOKONAISHEIJASTUS Edellä totesimme, että valo osuessaan rajapintaan sekä heijastuu että taittuu. On kuitenkin olemassa tilanteita, joissa valo ei taitu toiseen väliaineeseen ollenkaan vaan kaikki heijastuu. Puhutaan kokonaisheijastuksesta (total internal reflection). Kun valo tulee optisesti tiheämmästä väliaineesta ja taittuu optisesti harvenpaan, ts. ni > nt (esim. vedestä ilmaan), niin taitekulma on suurempi kuin tulokulma ( q t > q i ) ja säde kääntyy poispäin normaalista
3 Kun tulokulma q = 90 t 121 q i kasvaa, saavutetaan tilanne, jossa taitekulma Tällöin tulokulma q i = q c on ns. kriittinen tulokulma, jolle pätee sin q = nt nt c sin 90 n = n. (5.4.1) i Jos tulokulma q i > q c, tapahtuu kokonaisheijastuminen. Esimerkki: Laske kokonaisheijastuksen rajakulma eli kriittinen tulokulma rajapinnoille: vesi ( n = 1.33) ilma ( n = 1.00) lasi ( n = 1.52) vesi ( n = 1.33) lasi ( n = 1.52) ilma ( n = 1.00) Ratkaisu: 1.00 vesi ilma: sinq c = = Þ q c = lasi vesi: sinq c = = Þ q c = lasi ilma: sinq c = = Þ q c = Sovellutus: Kokonaisheijastavat prismat esimerkiksi kiikarissa: q = 45 > q = 41 i Tapahtuu kokonaisheijastus kaikissa heijastuksissa ja säde ei menetä irradianssia. c i
4 122 Esimerkki: Sukellusveneen periskoopissa käytetään kahta prismaa kokonaisheijastavina komponentteina. Prismat ovat lasia, jonka taitekerroin on (a) Hahmottele kuva periskoopin toimintaperiaatteesta. (b) Periskooppiin tulee pieni vuoto ja alempi prisma peittyy veteen. Miksi periskooppi ei enää toimi? Ratkaisu: a) Molemmissa heijastuksissa tulokulma (45 astetta) on suurempi kuin kriittinen kulma (noin 41 astetta), joten tapahtuu kokonaisheijastus. b) Jos alempi prisma on vedessä, niin kriittinen tulo kulma on 61 astetta (ks. esimerkki edellä), joka on suurempi kuin säteen tulokulma 45 astetta. Kokonaisheijastusta ei tapahdu ja valo "vuotaa" hukkaan. Toinen kokonaisheijastuksen sovellutus on optinen kuitu Valo etenee kuidussa häviöttä kokonaisheijastuen kuidun seinämistä.
5 POLARISAATIO Tavallinen eli ns. luonnollinen valo on satunnaisesti polarisoitunutta. Sähkökenttävektorin Esuunta vaihtelee nopeasti ja satunnaisesti. Matemaattisesti positiivisen z-akselin suuntaan etenevä luonnollinen valo esitetään komponenteilla (ks. 81) ìex ( z, t) = E0 sin[ kz-wt] í îey ( z, t) = E0 sin[ kz- wt+ e( t)] missä siis komponenttien amplitudit ovat samat ( E0x = E0y = E0) ja vaihe-ero e () t on nyt ajasta riippuva ja se vaihtelee nopeasti ja satunnaisesti. Luonnollista valoa sanotaan myös polarisoitumattomaksi valoksi. Geometrisessa optiikassa: Luonnollinen valo voidaan muuttaa polarisoituneeksi valoksi erilaisilla polarisaattoreilla. Kuvassa alla on esitetty ns. selektiiviseen absorptioon (dichroism) perustuva filtteri (Polaroid-levy), joka tuottaa lineaarisesti polarisoitunutta valoa:
6 124 Sähkökentän "pystykomponentit" (johteiden suuntaiset) synnyttävät johteisiin virtoja ja ohmisen vastuksen kautta niiden energia häviää lämpönä ilmaan. Läpi pääsee vain vaakasuuntainen sähkökenttä ja näin valo on muuttunut lineaarisesti polarisoituneeksi. On huomattava, että polarisaattorin ns. transmissioakseli (polarizing axis) on kohtisuorassa johteita vastaan. Täydellinen (ideal) polarisaattori läpäisee 50% luonnollisen valon irradianssista riippumatta transmissioakselin suunnasta: Miten lineaarisesti polarisoitunut valo läpäisee lineaarisen polarisaattorin? Asiaa tutkitaan kuvassa alla: Ensimmäinen polarisaattori muuttaa luonnollisen valon lineaarisesti polarisoituneeksi valoksi, joka ohjataan toiseen polarisaattori eli ns. analysaattoriin. Polarisaattoreiden transmissioakseleiden välinen kulma on f, joka on myös analysaattorin transmissioakselin ja analysaattoriin saapuvan lineaarisesti polarisoituneen valon polarisaatiosuunnan välinen kulma (ks. kuva). Analysaattorin läpi mennyt valo on lineaarisesti polarisoitunutta analysaattorin transmissio-
7 125 2 akselin suunnassa ja sen irradianssille ( I µ E ) pätee ns. Malusin laki I = I 2 f, (5.5.1) max cos missä I max on läpi menneen valon maksimi-irradianssi (kun f = 0). Esimerkki: Luonnollinen valo, jonka irradianssi on I 0, läpäisee kaksi peräkkäistä lineaarista polarisaattoria, joiden transmissioakselit muodostavat kulman 30 toistensa suhteen. Laske läpi mennyt irradianssi. Ratkaisu: 1 I1 = I0 (luonnollisesta valosta puolet läpäisee) I2 I1cos 30 I æ ö = = 0ç = I0 2 è 2 ø 8 Polarisoituminen heijastuksessa Luonnollinen valo polarisoituu, joko osittain tai kokonaan, myös heijastuksessa:
8 126 Kun tulokulma on ns. polarisaatiokulma ( q i = q p ), heijastunut ja taittunut säde muodostavat keskenään 90 :een kulman ja heijastunut valo on täysin lineaarisesti polarisoitunut rajapinnan suunnassa (kohtisuorassa suunnassa tulotasoon nähden, ks. kuva). Jos qi ¹ qp, polarisoituminen on osittaista. Taittunut valo on aina vain osittain polarisoitunutta. Polarisaatiokulma q p saadaan ns. Brewsterin laista: nb tanq p =. (5.5.2) n a Esimerkki: Johda Brewsterin laki lähtien siitä tiedosta, että heijastunut ja taittunut säde muodostavat kulman 90. Ratkaisu: Kuvasta näemme qb + qp = = 90, ts. qb = 90 - qp. Tämä tulos sijoitetaan taittumislakiin: nasinqp = nbsinqb = nbsin(90 - qp) = nbcosqp ja tästä kirjoitamme sinq p nb tanq p cosq = = n p Sovellutus: Polaroid-aurinkolasit. Linssien transmissioakseli on pystysuunnassa, jolloin lasit suodattavat erityisen tehokkaasti esim. veden pinnasta heijastunutta valoa, jonka polarisaation suunta on vaakasuunta. a
9 127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan eri paikassa ja mahdollisesti eri kokoisena kuin missä se todellisuudessa on. Kuvan muodostuminen voidaan ymmärtää mallintamalla valo säteillä ja soveltamalla yksinkertaisia geometrisen optiikan peruslakeja, geometriaa ja trigonometriaa. 6.1 HEIJASTUMINEN TASOPEILISTÄ Kun valo saapuu kahden aineen rajapintaan, osa siitä heijastuu takaisin tuloväliaineeseen. Jos rajapinta on karkea (kuva b), heijastuneet säteet lähtevät satunnaisiin suuntiin eikä tapahtumaa voida hallita tarkastelemalla yksittäisiä säteitä. Kysymys on ns. diffuusista heijastumisesta. Diffuusi pinta ei pysty tuottamaan varsinaista optista kuvaa, vaikkakin kaikki esineet ympäristössämme (vaatteet, ihmiset, kirjat, yms.) ovat näkyviä juuri sen ansiosta. Tässä kappaleessa tarkastelemme heijastumista ja optisen kuvan muodostumista hyvin sileästä pinnasta (kuva a). Yhdensuuntainen sädekimppu heijastuu yhdensuuntaiseksi sädekimpuksi. Puhutaan peilimäisestä heijastuksesta (specular reflection).
10 128 Tasopeilissä esinepisteestä (object point) P lähtevät säteet heijastuvat peilistä. Jokaisen säteen heijastuskulma on sama kuin sen tulokulma peilipintaan. Heijastumisen jälkeen jokainen säde näyttää tulevan peilin takaa kuvapisteestä P (image point). Säteet itse eivät kulje kuvapisteen kautta, vaan kuvan paikka voidaan hahmotella säteiden jatkeiden avulla. Yleisesti kuvausteoriassa säteiden jatkeiden muodostamat kuvat ovat ns. valekuvia eli virtuaalisia kuvia (virtual images). Tällaisia valekuvia ei voida projisoida varjostimelle, vaan niitä on katsottava suoraan silmällä. Jos kuva muodostuu itse säteiden leikatessa toisensa, kysymyksessä on ns. todellinen kuva (real image). Tarkastellaan tarkemmin kuvan muodostumista heijastumisessa. Oleelliset säteet on piirretty kuvassa alla: s on esineen etäisyys kuvaavasta pinnasta s ' on kuvan etäisyys Geometrian avulla saadaan tasopeilin ns.kuvausyhtälö: s' = s. (6.1.1)
11 129 Tarkastellaan seuraavaksi äärellisen esineen kuvautumista tasopeilissä. Esineen (nuoli) korkeus on y. Jokainen esineen piste kuvautuu kuvapisteeksi, joista muodostuu äärellinen kuva. Tutkitaan nuolen kärjen (pisteen Q) kuvautumista. Kuvaan on piirretty kaksi pisteestä Q lähtevää sädettä, jotka heijastuttuaan jatkavat matkaa vasemmalle. Säteiden jatkeet yhtyvät pisteessä Q ', jonne kuva muodostuu. Taas heijastumislain ja yhtenevien kolmioiden avulla näemme, että kuvan korkeus y ' on sama kuin esineen korkeus y, ts. y' = y. Kuvan korkeuden y ' suhdetta esineen korkeuteen y sanotaan (poikittaiseksi) suurennukseksi m (lateral magnification), siis y ' m =. (6.1.2) y Tasopeilille laskimme edellä tuloksen y= y', joten suurennukseksi tulee yksi. Tasopeili ei siis suurenna tai pienennä. Edellisessä kuvassa kuvanuoli osoittaa samaan suuntaan kuin esinenuoli. Sanotaan, että kuva on oikein päin. Tasopeilin suurennus on aina siis m =+ 1, jossa (+)-merkki tarkoittaa oikeinpäin Esimerkki: Nainen, jonka pituus on 160 cm, näkee itsensä juuri ja juuri kokonaan seinäpeilistä. Naisen silmät ovat 150 cm:n korkeudella lattiasta. Määritä peilin korkeus ja alareunan etäisyys lattiasta.
12 Ratkaisu: 130 Peilin korkeus on 80 cm. Alareuna on 75 cm:n etäisyydellä lattiasta. Mielenkiintoinen yksityiskohta: tulokset eivät riipu peilin ja katsojan etäisyydestä s. 6.2 TAITTUMINEN TASOPINNASSA Kuva voi muodostua myös tasomaisen rajapinnan läpi taittuneilla säteillä (esim. vesi-ilma-rajapinnassa): Kulmat q ovat pieniä ja molemmat säteet menevät silmään.
13 Taittumislaki: n1sinq1 = n2sinq2. Pienillä kulmilla sinq» tanq, ja taittumislaki voidaan kirjoittaa n 131 tanq» n tanq, joka kuvan perusteella saadaan muotoon n x x» n. s s' 1 2 Tästä kirjoitamme kuvausyhtälöksi n =. (6.2.1) n 2 s' s Suurennuksen tutkimme myöhemmin taittavan pallopinnan yhteydessä. Esimerkki: Kala ui 1 m:n syvyydessä. Kuinka syvällä se näyttää uivan? Ratkaisu: Ilman taitekerroin: n 2 = 1.00 Veden taitekerroin: n 1 = 1.33» 4/ 3 Esine: s = 1.00 m n2 3 Kuva: s' = s = s = 75 cm n1 4 1
14 HEIJASTUMINEN PALLOPEILISTÄ Pallopeili on esinepisteen O suhteen joko kovera (concave) tai kupera (convex) riippuen siitä onko peilin kaarevuuskeskipiste C samalla tai vastakkaisella puolella kuin esine. Viereisessä kuvassa tarkastellaan kuperaa peiliä. O = esinepiste, I = kuvapiste, V = vertex (huippupiste), s = esineen etäisyys ja s' = kuvan etäisyys V:stä. Jana OC on systeemin ns. optinen akseli. Piste P on mielivaltainen piste pinnalla korkeudella h. Kuvaan on piirretty kaksi esinepisteestä lähtevää sädettä. Toinen, optisen akselin suuntainen säde heijastuu huippupisteestä V suoraan takaisin ja toinen pisteestä P heijastuslain mukaisesti. Heijastuneet säteet divergoivat, mutta niiden jatkeet leikkaavat muodostaen virtuaalisen kuvapisteen I. Etsimme yhtälöä, joka kytkee toisiinsa esineen etäisyyden s kuvapisteen etäisyyden s ' ja peilin kaarevuussäteen R. Kolmiosta OPC kirjoitamme ensin siis a + j+ (180 - q) = 180 ja kolmiosta OPI saamme a + a' + (180-2 q) = 180. Sieventämällä tulee q = a + j ja 2 q = a + a' ja nämä yhdistämällä tulee a - a' =- 2j. (6.3.1)
15 133 Kuvan perusteella kirjoitamme myös tulokset h h tana =, tan a' s + d = s' - d ja tan j = missä d on pieni väli VQ. h R - d, Seuraavaksi teemme tärkeän approksimaation. Jos piste P on lähellä huippupistettä V, kulmat a, a ' ja j ovat pieniä ja sarjakehitelmistä (esim. j :lle) 3 5 j j sinj = j- + -L 3! 5! 2 4 j j cosj = L 2! 4! riittää ottaa huomioon vain ensimmäiset termit. Voidaan kirjoittaa (esim. j :lle) tanj» sin j» j» h/ R. Tässä siis myös pieni väli d on approksimoitu nollaksi. Yhtälö (6.3.1) saa nyt muodon h - h =- 2 h, s s' R mistä pisteen P korkeus h supistuu pois. Kaikki etäisyydet ovat positiivisia ja tulos pätee kuperalle peilille. Vastaava tarkastelu, positiivisia suureita soveltaen johtaa samantapaiseen yhtälöön koveralle peilille. Kun sovelletaan jäljempänä esitettyjä merkkisääntöjä, yhteinen yhtälö molemmille peilityypeille on s + s' = R. (6.3.2) Tämä on ensimmäisen kertaluvun teorian mukainen kuvausyhtälö. Säteiden suunnat poikkeavat vain vähän optisesta akselista, joten puhutaan myös ns. paraksiaalisesta approksimaatiosta. Kuvausyhtälön esitti ensimmäisen kerran Gauss vuonna 1841 ja hänen mukaansa sitä sanotaan myös Gaussin kuvausyhtälöksi.
16 134 Merkkisäännöt: 1. Esineen etäisyys s > 0, kun esine on samalla puolella kuin pintaan tulevat säteet. 2. Kuvan etäisyys s ' > 0, kun kuva on samalla puolella kuin pinnasta lähtevät säteet. 3. kaarevuussäde R > 0, kun kaarevuuskeskipiste C on samalla puolella kuin pinnasta lähtevät säteet. - kovera peili R > 0 - kupera peili R < 0 Yhteenvetona merkkisäännöistä voidaan todeta, että positiiviset kuvan ja esineen etäisyydet muodostuvat todellisilla säteillä ja vastaavat siten todellisia esineitä ja kuvia. Negatiiviset etäisyydet muodostuvat säteiden jatkeilla ja vastaavat virtuaalisia (vale-) esineitä ja kuvia. Pallopeilistä saadaan tasopeili asettamalla R. Kuvausyhtälö (6.3.2) antaa tällöin s' =- s, joka on tuloksen (6.1.1) yleisempi muoto. Negatiivinen merkki tarkoittaa, että kuva on virtuaalinen kuva, joka siis muodostuu säteiden jatkeiden avulla. Polttoväli f Jos esine on äärettömän kaukana ( s = ), säteet tulevat peiliin optisen akselin suuntaisina ja fokusoituvat polttopisteeseen F kuvausyhtälön (6.3.2) mukaan etäisyydelle s' = R/2.
6 GEOMETRISTA OPTIIKKAA
127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan
Lisätiedotja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:
10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)
Lisätiedot6 GEOMETRISTA OPTIIKKAA
127 6 GEOMETISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan
LisätiedotGeometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste
Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen
LisätiedotKuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.
135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.
LisätiedotValon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
Lisätiedoteli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0
PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys
LisätiedotRATKAISUT: 16. Peilit ja linssit
Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,
Lisätiedot7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
LisätiedotRatkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n
141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen
LisätiedotKuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.
FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
Lisätiedot23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
LisätiedotPolarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu
Lisätiedot3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
Lisätiedot34. Geometrista optiikkaa
34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä
Lisätiedot4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
LisätiedotYOUNGIN KOE. varmistaa, että tuottaa vaihe-eron
9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
LisätiedotKuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).
P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.
LisätiedotTeoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
Lisätiedot34 GEOMETRINEN OPTIIKKA (Geometric Optics)
90 34 GEOMETRINEN OPTIIKKA (Geometric Optics) Omat kasvot kylpyhuoneen peilissä, kuu kaukoputken läpi katsottuna, kaleidoskoopin kuviot. Kaikki nämä ovat esimerkkejä optisista kuvista (images). Kuva muodostuu,
LisätiedotValon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen
Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?
LisätiedotFYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6
FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Lisätiedot4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta
LisätiedotValo, valonsäde, väri
Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon,
LisätiedotRatkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:
LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen
Lisätiedot2 paq / l = p, josta suuntakulma q voidaan ratkaista
33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Geometrinen optiikka (YF 34) Heijastuminen
LisätiedotS-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
Lisätiedot5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5
5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka
Lisätiedot11.1 MICHELSONIN INTERFEROMETRI
47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
LisätiedotMaxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.
Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä
LisätiedotYHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
Lisätiedot7 VALON DIFFRAKTIO JA POLARISAATIO
7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä
Lisätiedot8.3 KAMERAT Neulanreikäkamera
88 Analysoitava valo tulee vasemmalta. Se okusoidaan kapeaan rakoon S (tulorako), josta se kollimoidaan linssillä L yhdensuuntaiseksi sädekimpuksi. Rako S on siis linssin polttovälin päässä linssistä.
LisätiedotEsimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50:
173 ------------------------------------------------Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: Kaarevuussäteet R1 3 cm ja R. Systeemimatriisi on M R T R1,
LisätiedotKenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
LisätiedotTyö 2324B 4h. VALON KULKU AINEESSA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada
Lisätiedotoppilaitos: ARKADIAN YHTEISL YSEO
,/ VALO-OPPI oppilaitos: ARKADIAN YHTEISL YSEO kurssi FY1 tehnyt Markus Hagmal1 Jätetty syyskuun 28. päivä 1999 Tarkastaja Jari Pyy LYHENNELMÄ Tutkielma käsittelee optiikkaa eli valo-oppia Lukiessasi tätä
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta Huygensin periaate Kenttien rajapintaehdot Rajapintaehdot Fresnelin
LisätiedotScanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
LisätiedotVALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014
VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.
Lisätiedot766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2.
766349A AALTOLIIKE JA OPTIIKKA kl 017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.. 1. Mitkä funktioista a) y( x, t) ( x t) b) y( z, t) 5sin [4 ( t z)] ja c) y( x, t) 1/( x t) etenevät muotonsa säilyttäen
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Lisätiedote) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm.
98 kotitehtävä ------------------------------------------------Esimerkki: Isotrooppinen 100 :n lamppu on 2.0 m:n korkeudella lattiasta (ks. edelliset esimerkit). Sen säteilyintensiteetti on I e = 8.0 sr
Lisätiedot1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
LisätiedotMatematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
LisätiedotTyö 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
Lisätiedot9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
Lisätiedotja siis myös n= nk ( ). Tällöin dk l l
Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä
Lisätiedotx 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
Lisätiedot25 INTERFEROMETRI 25.1 Johdanto
5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan
LisätiedotNäihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,
TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko
LisätiedotHavaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen
LisätiedotFY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät
FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotVALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014
VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa
LisätiedotFY9 Fysiikan kokonaiskuva
FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
LisätiedotKertaustehtävien ratkaisuja
Kertaustehtävien ratkaisuja. c) Jaksonaika on 300 s T = = 0,50 s, f = = 600 T 0,50 s =,0 Hz.. b) Lasketaan ensin jousivakion suuruus ja sitten värähdysaika. k = - mg,0 kg 9,8 m/ s = = 98, N/ m x 0,0 m
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
LisätiedotOPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:
Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat
LisätiedotVALON KÄYTTÄYTYMINEN RAJAPINNOILLA
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.
Lisätiedot. Lasketaan muutamia pisteitä ja piirretään kuvaajat:
RATKAISUOHJEET Harjoitus 1 1. a) Tässä paikka x ja aika t esiintyvät muodossa xv t, joten funktio etenee muotonsa säilyttäen. Nopeus on 1 m/s positiivisen x-akselin suuntaan. b) Tässä paikka z ja aika
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 9 Valon luonne ja eteneminen (YF 33) Valon
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan
LisätiedotHavaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Lisätiedot12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,
9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
LisätiedotValo-oppia. Haarto & Karhunen. www.turkuamk.fi
Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)
Lisätiedot4. Kertausosa. 1. a) 12
. Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Lisätiedot1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
Lisätiedot4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
LisätiedotHEIJASTUMINEN JA TAITTUMINEN
S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0
LisätiedotToisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.
Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat
LisätiedotSuorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
LisätiedotTyö 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
LisätiedotIntegrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
LisätiedotHavaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
LisätiedotRatkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet
197 Lausu logaritmeja käyttämättä jaksollisen desimaaliluvun (kymmenysluvun) 0,578703703 kuutiojuuri jaksollisena desimaalilukuna. [S3, pitempi kurssi] Ratkaisut 1917 197 1917 Tarkastelemme kolmiota ABC,
LisätiedotTehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Lisätiedotd sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
Lisätiedot