HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012

Koko: px
Aloita esitys sivulta:

Download "HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012"

Transkriptio

1 HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012

2 A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä: 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. Muun muassa Yhdysvaltain liittovaltio myy velkasopimuksia (treasury bills) huutokaupalla, valuuttakauppa, oikeudet luonnonvaroihin, tarjouskilpailut ja valtion omaisuuden yksityistäminen tapahtuvat jonkinlaista huutokauppaa käyttäen. 2. Huutokaupat ovat kohtuullisen yksinkertaisia pelejä ja niitä voidaan käyttää taloustieteen teorioiden empiiriseen testaukseen. 3. Huutokaupat ovat teoreettisesti merkittäviä, koska monet taloustieteen standardimallit voidaan tulkita huutokaupoiksi ja lisäksi huutokaupat ovat yksi teoria hinnanmuodostuksesta, joka on tärkeä talousteorian tutkimuskohde.

3 B. Yhden objektin myynti Myyjällä on objekti, jonka hän haluaa myydä. Arvostus nolla. Ostaja haluaa ostaa objektin. Arvostus v > 0. Kaikki tämä on julkista tietoa. Millä hinnalla ostaja ostaa objektin, jos ylipäänsä ostaa? Oletetaan yksi periodi, jonka alussa myyjä tekee tarjouksen ja jonka ostaja sitten hyväksyy tai hylkää. Olkoon myyjän tarjous eli hinta p.

4 Jos p > v ostaja ei suostu kauppaan ja jos p < v ostaja suostuu kauppaan. Jos taas p = v oletetaan, että ostaja suostuu kauppaan. Myyjän paras tarjous on p = v, mikä on ennustus siitä miten tilanteessa käy.

5 Mitä mahtaa tapahtua, jos ostajia onkin kaksi ja heidän arvostuksensa ovat v 1 ja v 2 missä v 1 < v 2? Nyt ennustus on, että p = v 2.

6 Mitä mahtaa tapahtua, jos periodeja onkin kaksi ja ostajalla on mahdollisuus tehdä vastatarjous myyjälle juuri ennen maailmanloppua? Kun ostajia on yksi hän tarjoaa p = 0 ja myyjä hyväksyy sen. Jos ostajia onkin kaksi he molemmat tehnevät vastatarjouksen ja myyjä hyväksyy korkeimman. Ennustus on, että objekti vaihtaa omistajaa hinnalla v 1.

7 C. Epätäydellinen informaatio Oletetaan, että kaikki tietävät myyjän arvostuksen, joka normalisoidaan nollaksi. Ostajien arvostukset ovat yksityistä informaatiota. He ajattelevat muiden arvostusten määräytyvän satunnaisesti jostain todennäköisyysjakaumasta.

8 Olkoon arvostus tasajakautunut välillä [a, A]. Tasajakauman tiheysfunktio on f(x) = 1 A a kun a < x < A ja nolla muulloin. Tasajakauman kertymäfunktio on F (x) = x a A a kun a < x < A. F (x) = 0 kun x a ja F (x) = 1 kun x A. Tasajakauman odotusarvo on E(x) = tf(t)dt = 1 A a = 1 A a [ 12 t 2] A a = 1 2 (a + A). Aa tdt

9 Ostajien arvostus yksityistä informaatiota ja tasajakautunut välillä [0, A]. Kun on vain yksi ostaja myyjä tekee tarjouksen q. Myyjän ongelma on ( ) Max q Pr (v < q) 0 + (1 Pr (v < q)) q Max q 1 q A q Tämän ongelman ensimmäisen kertaluvun ehto on 1 2 q A = 0 mistä saadaan optimaalinen q = A 2

10 Myyjän odotettu hyöty on A 4. Tilanne ei ole tehokas, koska kaupat jäävät syntymättä kun v < A 2. Analyysi perustuu täysin siihen, että myyjä pystyy sitoutumaan tarjoukseensa. Jos ostaja hyväksyy tarjouksen myyjä tietää, että ostajan arvostus on välillä [ A2, A ]. Tällöin ostajan intressissä on määrätä uusi optimaalinen hinta kuten edellä.

11 Yhden ostajan huutokaupassa myyjän odotettu hyöty on nolla. Oletetaan, että ostajia on kaksi ja että myyjä tekee tarjouksen q. Myyjän ongelma on max q Pr (v 1, v 2 < q) 0 + (1 Pr (v 1, v 2 < q)) q ( max q 1 ( ) ) q 2 A q

12 Ensimmäisen kertaluvun ehto on 1 3 q2 A 2 = 0 mistä saadaan optimaalinen q = A 2 3. Myyjän odotettu hyöty on 2 3 A 2 3. Arvataan, että jos ostajia on n kappaletta myyjän optimitarjous on q = A n n+1 ja odotettu hyöty n n+1 A n n+1.

13 Jos myyjä pitääkin huutokaupan, kun ostajia on kaksi tilanne on monimutkaisempi. Merkitään ostajien arvostuksia taas v 1 ja v 2. Kumpi tahansa näistä voi olla alhaisempi. Varataan merkintä m 1 näistä alhaisemmalle; m 1 = min (v 1, v 2 ). Vastaavasti merkitään näistä korkeampaa m 2. Huutokaupassa myyjä odottaa saavansa m 1. Tämän odotusarvo on E(m 1 ) = A 0 2m 1 A ( 1 m A ) dm = 1 3 A.

14 Myyjän odotettu hyöty on suurempi, kun hän tekee tarjouksen q kuin huutokaupassa. Miksi sitten huutokauppaa käytetään? Katsotaan, mitä tapahtuu kun huutokaupassa on n ostajaa. Ostajien arvostukset v 1,..., v n ja järjestetyt arvostukset m 1,..., m n 1, m n missä tärkeä on toiseksi korkein arvostus m n 1. Myyjän odotettu hyöty on E(m n 1 ) = A 0 n(n 1)m 1 A ( 1 m A ) ( ma ) n 2 dm = n 1 n+1 A On helppo tarkistaa, että kun ostajia on kolme tai enemmän huutokauppa tuottaa myyjälle suuremman hyödyn kuin optimaalinen ota-tai-jätä-tarjous.

15 E. Tavanomaisia huutokauppoja Tapana on pitää tavanomaisina huutokauppamuotoina Englantilaista huutokauppaa Hollantilaista huutokauppaa First price sealed bid huutokauppaa (fpsb) Vickrey-huutokauppaa eli second price sealed bid huutokauppaa (spsb). Spsb-huutokauppa on esimerkki mekanismista, jonka tasapainossa talousyksiköt paljastavat preferenssinsä totuudenmukaisesti.

16 Kun pohditaan strategioita huutokaupoissa ratkaisukäsite on Nash-tasapaino. Spsb:ssä on muitakin Nash-tasapainoja kuin dominoivien strategioiden tasapaino. Kolme ostajaa joiden arvostukset ovat 5, 10, ja 15. Seuraava on Nash-tasapaino: ostaja jonka arvostus on 5 tarjoaa 5, ostaja jonka arvostus on 10 tarjoaa 20 ja ostaja jonka arvostus on 15 tarjoaa 7. Objekti menee ostajalle jonka arvostus on 10 hinnalla 7 eikä yksikään ostaja voi parantaa asemaansa muuttamalla strategiaansa.

17 Yksi tärkeimmistä huutokauppateorian tuloksista on Teoreema (Revenue equivalence). Olkoot ostajat riskineutraaleja ja kunkin arvostus yksityistä informaatiota ja riippumattomasti samasta nousevasta ja atomittomasta jakaumasta määräytynyt. Tällöin kaikki huutokaupat (myyntimekanismit), joissa i) objekti päätyy aina ostajalle jonka arvostus on korkein, ja ii) ostaja jolla on alhaisin mahdollinen arvostus saa nollan verran hyötyä, tuottavat odotusarvomielessä saman verran tuloa (hyötyä) myyjälle.

18 Johdetaan optimistrategia fpsb-huutokaupassa. Kaikki ostajat käyttävät samaa tarjousstrategiaa b(v). Pelaajia n kappaletta ja jokaisen arvostus määräytyy riippumattomasti jakaumasta F. Olkoon b jatkuva ja aidosti kasvava funktio. Tarkastellaan ostajaa i jonka arvostus on v ja joka poikkeaa ehdotetusta tasapainostrategiasta tarjoamalla b. Olkoon v se arvostus joka johtaisi tarjoukseen b tasapainossa eli b = b(v ).

19 Ostaja i saa objektin jos muiden n 1 ostajan arvostus on alhaisempi kuin v. Tämä tapahtuu todennäköisyydellä ( F ( v )) n 1. Ostajan i odotettu hyöty T ( v, v ) = ( v b ( v )) ( F ( v )) n 1. Ostajan i optimi määräytyy ensimmäisen kertaluvun ehdosta T ( v, v ) v = b ( v ) ( F ( v )) n 1 + ( v b ( v )) (n 1) ( F ( v )) n 2 f ( v ) = 0

20 Tämä pätee tasapainossa kohdassa v = v. Tasapainotarjousfunktio toteuttaa siis ehdon b (v) = (v b (v)) (n 1) f(v) F (v).

21 Tasajakaumalle tämä on helpohko differentiaaliyhtälö alkuarvolla b(0) = 0. b (v) = (v b (v)) (n 1) 1 v Tämä voidaan ratkaista esimerkiksi kertomalla molemmat puolet integroivalla tekijällä µ = exp ( n 1 v dv) = v n 1. Tulokseksi saadaan b(v) = n 1 n v. Mitä enemmän ostajia sitä vähemmän ylijäämää huutokaupan voittaja saa. Vastaavasti myyjän tulot kasvavat ostajien määrän lisääntyessä.

22 F. Tilastollisesti riippuvat arvostukset ja voittajan kirous Voittajan kirous on ilmiö, jonka uskotaan tapahtuneen ja yhä tapahtuvan huutokaupoissa, joissa ostajien arvostukset ovat samat, mutta jossa ostajat eivät tiedä täsmälleen arvostuksiaan. Tyyppiesimerkki on öljynporausoikeuksien myynti. Oikeus myydään tietylle alueelle ja se arvo riippuu alueella olevan öljyn määrästä. Tämä on sama riippumatta oikeuden omistajasta. Ostajat tekevät alueella koeporauksia ja saavat informaatiota öljyn määrästä. Riippuen siitä, missä poraus tehdään ostajat saavat erilaista informaatiota. Jos ostajat eivät tajua tätä, huutokaupan voittaa se, jonka arvio on optimistisin.

23 Tilanne mallitetaan siten, että ostajien signaalit ovat affi lioituneita. Toisin sanoen jos yksi ostaja saa korkean signaalin on todennäköistä että muidenkin ostajien signaalit ovat korkeita. Perustulokset ovat, että englantilainen huutokauppa johtaa korkeampaan odotettuun hintaan, kuin spsb-huutokauppa, joka puolestaan johtaa korkeampaan hintaan kuin fpsb-huutokauppa. Heuristiikka perustuu siihen, että voittavan ostajan ylijäämä johtuu hänen yksityisestä informaatiostaan. Mitä enemmän hinta riippuu muiden informaatiosta sitä enemmän hinta on sidoksissa voittajan informaatioon, koska signaalit ovat affi lioituneita.

24 Voittajan informaatiopalkka (information rent) ja ylijäämä ovat alhaisempia ja hinta siis korkeampi. Samasta syystä myyjän kannattaa paljastaa kaikki yksityinen myytävää objektia koskeva informaationsa.

25 Esimerkki (Englantilainen huutokauppa,ostajilla sama arvostus). Ostajia n kappaletta ja he saavat signaalin t i objektista ja heidän arvostuksensa on α β. v i = αt i + β j i t j Olkoon t (j) j:nneksi matalin signaali, jolloin siis t (1) on alin ja t (n) on korkein signaali. Symmetrisessä tasapainossa pelaaja vetäytyy pelistä, kun hän on indifferentti vetäytymisen ja voittamisen välillä. Ensimmäinen vetäytyminen tapahtuu hinnalla (α + β(n 1)) t (1).

26 Tämä olisi objektin todellinen arvo, jos kaikkien signaalit olisivat t (1). Jos signaalin t (1) saanut odottaisi korkeampaa hintaa ja voittaisi hinnalla ( t(1) + ε ) (α + β(n 1)) hän päättelisi, että t (n) = t (1) + ε.

27 Objektin arvo hänelle olisi enintään αt (1) + (n 1)β ( t (1) + ε ) mikä on vähemmän kuin hänen maksamansa hinta. Loput ostajista havaitsevat, että yksi heistä on vetäytynyt. Seuraava vetäytyminen tapahtuu hinnalla βt (1) + (α + (n 2)β) t (2). Tämä olisi vetäytyjän arvostus jos kaikki muut vetäytyisivät samaan aikaan. Tätä logiikkaa noudattaen viimeinen henkilö vetäytyy, kun hinta on p = β n 2 j=1 t (j) + (α + β)t (n 1)

28 Tämä on tasapaino, koska jos ostaja jonka arvostus on t (n 1) odottaisi ja voittaisi objektin korkeammalla hinnalla, vaikkapa hinnalla p + (α + β)ε hän päättelisi, että t (n) = t (n 1) + ε.

29 Tällöin objektin arvo hänelle olisi αt (n 1) + β n 2 j=1 eli alhaisempi kuin hänen maksamansa hinta. t (j) + β(t (n 1) + ε) Toisaalta, jos hän lopettaisi kun hinta on alhaisempi, vaikkapa p (α + β)ε hän tietäisi että viimeisen kilpailijan signaali on ainakin t (n 1) ε. Tällöin objektin arvo hänelle olisi vähintään p βε eli korkeampi kuin nykyinen hinta.

30 Esimerkissä on tärkeää huomata, että toisin kuin yksityisten arvostusten tapauksessa pelaajat vetäytyvät pelistä, kun he tietävät että hinta on alhaisempi kuin objektin arvo (odotusarvomielessä). Mutta heille relevantti objektin arvo on ehdolla, että he voittavat ja sen takia tarjouksia sopeutetaan alaspäin (shading).

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Luento 9. June 2, Luento 9

Luento 9. June 2, Luento 9 June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 9. 2. (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Markkinoiden suunnittelu ja Gale-Shapley-algoritmi

Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinat eivät välttämättä synny itsestään ja monesti on useita tapoja järjestää markkinat. Markkinoiden keskeinen tehtävä on mahdollistaa vaihdanta.

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Huutokauppateoria Salanién (2005) ja Klempererin (2004) mukaan

Huutokauppateoria Salanién (2005) ja Klempererin (2004) mukaan Huutokauppateoria Salanién (2005) ja Klempererin (2004) mukaan Mat-2.4142 Optimointiopin seminaari Eeva Vilkkumaa Optimointiopin seminaari - Kevät 2008 / 1 Sovellusalueet Huutokauppatyypit Ohjelma Tuoton

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Asymmetrinen informaatio

Asymmetrinen informaatio Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on

Lisätiedot

Moraalinen uhkapeli: laajennuksia ja sovelluksia

Moraalinen uhkapeli: laajennuksia ja sovelluksia Moraalinen uhkapeli: laajennuksia ja sovelluksia Sisältö Kysymysten asettelu Monen tehtävän malli Sovellusesimerkki: Vakuutus Sovellusesimerkki: Palkkion määrääminen Johtajan palkitseminen Moraalisen uhkapelin

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

Peliteoria luento 3. May 27, Peliteoria luento 3

Peliteoria luento 3. May 27, Peliteoria luento 3 May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja

Lisätiedot

Informaatio ja Strateginen käyttäytyminen

Informaatio ja Strateginen käyttäytyminen Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Luento 7. June 3, 2014

Luento 7. June 3, 2014 June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Inversio-ongelmien laskennallinen peruskurssi Luento 7 Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

b) Jos Ville kaataisikin karkit samaan pussiin ja valitsisi sieltä sattumanvaraisen karkin, niin millä todennäköisyydellä hän saisi merkkarin?

b) Jos Ville kaataisikin karkit samaan pussiin ja valitsisi sieltä sattumanvaraisen karkin, niin millä todennäköisyydellä hän saisi merkkarin? MAA1-harjoituskoe RATKAISUT 1. Villellä on kaksi karkkipussia. Ensimmäisessä pussissa on 3 salmiakkiufoa, 2 merkkaria ja 5 liitulakua. Toisessa pussissa on 5 merkkaria, 3 liitulakua ja 4 hedelmäkarkkia.

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

Tuoton arvioinnista eri huutokauppamekanismeissa

Tuoton arvioinnista eri huutokauppamekanismeissa Tuoton arvioinnista eri huutokauppamekanismeissa Pro gradu -tutkielma Ari Alasalmi Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2015 Sisältö Johdanto 2 1 Yleistä teoriaa 3 1.1 Funktioteoriaa...........................

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi & Emmi Martikainen emmi.martikainen@kkv.fi Luennon sisältö Hintakilpailu ja tuotedifferentiaatio Peräkkäiset pelit (12.4-12.5) Alalle tulon estäminen Taloudellinen

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot