Luento 7. June 3, 2014

Koko: px
Aloita esitys sivulta:

Download "Luento 7. June 3, 2014"

Transkriptio

1 June 3, 2014

2 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

3 P1:n strategiajoukko on S 1 = {(A,E),(A,F ),(B,E),(B,F )} ja P2:n strategiajoukko S 2 = {C,D}. Tasapainoja ovat ((A,F );D), ((B,F );C) ja ((B,E);C).

4 Pelipuusta saattaa olla vaikea löytää tasapainoja. Hyödyllinen apuväline normaalimuodon peli, joka on rakennettu ekstensiivisen muodon pelin strategioista (ja hyödyistä). C D AE 1, 2 3, 1 AF 0, 0 3, 1 BE 2, 0 2, 0 BF 2, 0 2, 0 Niin sanottu redusoitu normaalimuodon peli on C D AE 1, 2 3, 1 AF 0, 0 3, 1 B 2, 0 2, 0

5 Esimerkkien perusteella on käynyt selväksi, että Nash-tasapainon määritelmä sallii joskus epäuskottavan tuntuiset tasapainot. Tästä syystä kavennamme uskottavien tasapainojen määrää vaatimalla niiltä lisäominaisuuksia. Vaadimme, että jokaisessa osapelissä tasapainon täytyy määrätä pelaajille optimaalinen käyttäytyminen. Tällaista tasapainoa sanotaan osapelitäydelliseksi. Joskus vaatimuksella on voimaa joskus ei, mutta silloin kun sen avulla voidaan sulkea pois muita tasapainoja näin myös menetellään.

6 Denition Olkoon h historia joka ei ole terminaalinen ekstensiivisen muodon pelissäγ = N,H,P,(u i ). Se indusoi ekstensiivisen muodon pelin Γ(h) = N,H(h),P(h),(u i (h)), missä h H(h) jos ja vain jos (h,h ) H, P(h)(h ) = P((h,h )) ja u i (h)(h ) = u i ((h,h )). Γ(h):ta sanotaan historian h indusoimaksi osapeliksi. Sanallisesti osapeli on se osa alkuperäistä peliä, jota pelaajat pelaavat tietyn historian jälkeen. Kaikki edellä tapahtunut on siis tietyssä mielessä unohdettu.

7 Tarkastellaan pelaajan i strategiaa s i ja historiaa h. Strategia s i indusoi strategian osapeliin Γ(h) ja tätä merkitään s i h. Denition Ekstensiivisen muodon pelissä Γ = N,H,P,(u i ) strategiaproili s on osapelitäydellinen Nash-tasapaino, jos jokaiselle pelaajalle i N ja jokaiselle ei-terminaaliselle historialle, jolle P(h) = i, pätee u i ( s i h,s i h ) ui ( si,s i h ) kaikille strategioille si osapelissä Γ(h). Osapelitäydellinen Nash-tasapaino on siis sellainen, että kunkin pelaaja alkuperäisestä strategiaansa seuraamalla pelaa kussakin osapelissä Nash-tasapainoa.

8 Äärellisissä peleissä osapelitäydellinen Nash-tasapaino voidan löytää takaperoisella induktiolla. Induktio tapahtuu osapelien pituuden suhteen, missä pelin pituus on sen pisin historia. Ensin etsitään ykkösen pituiset osapelit ja niiden Nash-tasapainot, sitten kakkosen pituiset pelit ja niiden Nash-tasapainot ehdolla, että ykkösen pituisten pelien tasapainot on kiinnitetty, jne. Jos jollain pelaajalla on useampi kuin yksi optimaalinen valinta jossain osapelissä tarkastellaan näistä kutakin erikseen; näin löydetään useita osapelitäydellisiä tasapainoja. Luento 6:n toisessa pelissä on kaksi osapelitäydellistä tasapainoa puhtaissa strategioissa (d, m, u, m; d, d) ja (u,m,d,m;m,d).

9 Theorem Takaperoisella induktiolla löydetään kaikki äärellisten ekstensiivisen muodon pelien osapelitäydelliset tasapainot puhtaissa strategioissa. Corollary Äärellisissä ekstensiivisen muodon peleissä on olemassa osapelitäydellinen tasapaino.

10 Emme ole käsitelleet sekastrategioita laisinkaan. Nämä hoituvat periaatteessa seuraavalla tuloksella. Theorem (Kuhn 1953) Jokaista sekastrategiaa äärellisessä ekstensiivisen muodon pelissä vastaa niin sanottu käyttäytymisstrategia, jossa pelaajat sekoittavat kussakin päätössolmussaan ja vastaavasti jokaista käyttäytymisstrategiaa vastaa sekastrategia.

11 Tarkastellaan tilannetta, jossa monopolilla on neljä uusinta mallia olevaa älypuhelinta myynnissä. Potentiaalisia ostajia on neljä ja periodeja, jolloin puhelimia voidaan myydä on kaksi. Kaksi ostajista arvostaa puhelimia niin, että ensimmmäisen periodin käytöstä he ovat valmiit maksamaan 1200 ja toisen periodin käytöstä 500. Toiset kaksi ostajaa arvosta puhelimia analogisesti 500 ja 200. Edellisten kokonaisarvostus on siis 1700 ja jälkimmäisten 700, jos he saavat puhelimet heti ensimmäisellä periodilla. Monopoli valitsee hinnan p 1 ensimmäiselle periodille ja hinnan p 2 toiselle periodille.

12 Tätä tilannetta ei ole hyödyllistä mallittaa ekstensiivisen muodon pelinä, vaikka sekin olisi mahdollista. Valitsemalla hinnan 700 monopoli myy kaikki puhelimet ensimmäisellä periodilla ja ansaitsee Jos vähintään yksi korkean arvostuksen ostaja ostaa puhelimen ensimmäisellä periodilla toisen periodin hinta on väistämättä 200. Näin korkean arvostuksen ostajat tietävät, että he voivat kokea hyödyn = 300 odottamalla toiseen periodiin. Siispä monopoli pyytää ensimmäisellä periodilla hinnan Tällöin monopoli ansaitsee = Monopoli voi ansaita vieläkin enemmän, jos se julistaa hintatakuun 'Jos sama tuote löytyy halvemmalla maksan erotuksen'.

13 Tässä on esitetty vain monopolin päätökset ja ostajien yhteishyöty.

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista

Lisätiedot

Luento 6. June 1, 2015. Luento 6

Luento 6. June 1, 2015. Luento 6 June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Rationalisoituvuus ja yleinen tieto rationaalisuudesta

Rationalisoituvuus ja yleinen tieto rationaalisuudesta Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit

Epätäydellisen tiedon jatkuvat pelit Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Helsinki 4..2006 Peliteorian seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto 2 Epätäydellisen tiedon jatkuva peli 2. Jatkuvan

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

Luento 9. June 2, Luento 9

Luento 9. June 2, Luento 9 June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Evolutiivinen stabiilisuus populaation

Evolutiivinen stabiilisuus populaation Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Yleinen tietämys ja Nashin tasapaino

Yleinen tietämys ja Nashin tasapaino Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä

Lisätiedot

Peliteoria luento 3. May 27, Peliteoria luento 3

Peliteoria luento 3. May 27, Peliteoria luento 3 May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla

Lisätiedot

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kahdeksan tehtävää, yksi per luento (5 Saaran, 3 Benin). Katso

Lisätiedot

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Y56 laskuharjoitukset 6

Y56 laskuharjoitukset 6 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012

HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä: 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. Muun muassa Yhdysvaltain

Lisätiedot

Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Johdantoa peliteoriaan - ka ytetyt termit Peliteoria tutkii pelaajien toimintaa peleissa. Mika on peli? Mika on pelaaja? Peli tarkasti

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Tasapaino epätäydellisen tiedon peleissä

Tasapaino epätäydellisen tiedon peleissä hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto

Lisätiedot

Johdatus peliteoriaan

Johdatus peliteoriaan Johdatus peliteoriaan Kahden pelaajan nollasummapelien ratkaiseminen ja Nashin tasapainojen olemassaolo usean pelaajan yleisessä summapelissä Henri Nousiainen Matematiikan pro gradu Jyväskylän yliopisto

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries

Lisätiedot

JOHDATUSTA PELITEORIAAN

JOHDATUSTA PELITEORIAAN JOHDATUSTA PELITEORIAAN Satu Adel Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

PELITEORIAN PERUSTEITA

PELITEORIAN PERUSTEITA PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus

Lisätiedot

Paljonko maksat eurosta -peli

Paljonko maksat eurosta -peli Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan

Lisätiedot

Task list Submit code Submissions Messages Scoreboard View queue Edit contest

Task list Submit code Submissions Messages Scoreboard View queue Edit contest Jäätelö Edit task Translate 1.00 s Uolevi aikoo ostaa kaksi jäätelötötteröä: yhden Maijalle ja yhden itselleen. Tiedossasi on jokaisen myynnissä olevan jäätelötötterön hinta ja paino sekä suurin summa,

Lisätiedot

YSILUOKKA. Tasa-arvo yhteiskunnassa ja työelämässä

YSILUOKKA. Tasa-arvo yhteiskunnassa ja työelämässä YSILUOKKA Tasa-arvo yhteiskunnassa ja työelämässä Sisältö ja toteutus Tunnin tavoitteena on, että oppilaat ymmärtävät mitä sukupuolten välinen tasaarvo tarkoittaa Suomessa, mitä tasa-arvoon liittyviä haasteita

Lisätiedot

Peliteoria ja huutokauppamekanismit

Peliteoria ja huutokauppamekanismit Peliteoria ja huutokauppamekanismit Satu Ruotsalainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Satu Ruotsalainen, Peliteoria ja huutokauppamekanismit

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tero Sirkka Peliteoriaa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö Sirkka, Tero: Peliteoriaa Pro gradu

Lisätiedot

Pelit matematiikan opetuksessa

Pelit matematiikan opetuksessa Pelit matematiikan opetuksessa Vadim Kulikov Helsingin Yliopisto Matematiikan ja tilastotieteen laitos Epsilonit kirjaa tutkimassa, 28.01.2012 Millaisia pelejä? pärjääminen edellyttää ongelmanratkaisukykyä,

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu

LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu LAAJENNETUN MUODON RATIONALISOITUVUUS 3.3.2010 Pähkinänkuoressa: Laajennetun muodon rationalisoituvuus Laajennetun muodon peli (Extensive Form Game) Laajennetun muodon pelin tasapainokäsitteitä. Tosimaailman

Lisätiedot

Mikrotalousteoria 2, 2008, osa IV

Mikrotalousteoria 2, 2008, osa IV Sisältö Mikrotalousteoria 2, 2008, osa IV 1 Hyvinvoinnin taloustiedettä 2 2 Pareto-kriteeri 2 3 Kaldorin kompensaatiokriteeri 2 4 Peliteoriasta 3 5 Peliteoreettisen analyysin vaiheet 3 6 Staattiset pelit

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

Banana Split -peli. Toinen kierros Hyvin todennäköisesti ryhmien yhteenlaskettu rahasumma on suurempi kuin 30 senttiä. Ryhmien

Banana Split -peli. Toinen kierros Hyvin todennäköisesti ryhmien yhteenlaskettu rahasumma on suurempi kuin 30 senttiä. Ryhmien Banana Split -peli Tavoite Esitellä banaanin tuotantoketju (mitä banaanille tapahtuu ennen kuin se on kuluttajalla) ja keskustella kuka saa mitä banaanin hinnasta. Kuinka peliä pelataan Jaa ryhmä viiteen

Lisätiedot

Sopimusteoria: Salanie luku 3.2

Sopimusteoria: Salanie luku 3.2 Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat

Lisätiedot

Evolutiivisesti stabiilin strategian oppiminen

Evolutiivisesti stabiilin strategian oppiminen Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista

Lisätiedot

MINI- JA MIDITENNISKIERTUE

MINI- JA MIDITENNISKIERTUE MINI- JA MIDITENNISKIERTUE Minitennis Osallistumiskelpoisuus, luokkajako, ilmoittautuminen ja osanottajamäärän rajoittaminen Minitenniskilpailuun osallistuvan pelaajan ei tarvitse maksaa kilpailulisenssiä.

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

Luento 3: Bayesiläiset pelit

Luento 3: Bayesiläiset pelit Luento 3: Bayesiläiset pelit Saara Hämäläinen Helsingin yliopisto TA5 Luento 3 2017 1 / 33 Game Theory by Ben Polak (Open Yale) "Nash Equilibrium"(luento 5, kokonaan) "Mixed strategies: definition"(luento

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä.

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä. Y56 Kevät 2010 1 Luku 29 Peliteoria Tässä luvussa tarkastellaan peliteorian perusteita. Tavoitteena on, että opit muodostamaan itsenäisesti kutakin peliä kuvaavat osat, ratkaisemaan erilaisten pelien tasapainon

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

PIKAPELI PIKA-MONOPOLY

PIKAPELI PIKA-MONOPOLY PIKAPELI BRAND Jos osaat pelata MONOPOLY-peliä ja haluat pelata pikapelin: 1. Pankkiiri sekoittaa aluksi lainhuudatustodistukset ja jakaa niistä kaksi jokaiselle pelaajalle. Pelaajat maksavat pankkiirille

Lisätiedot

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Mikä on probabilistinen malli? Kutsumme probabilistisiksi malleiksi kaikkia

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

SM-turnaukset 14.5.-22.5.2016 1/5

SM-turnaukset 14.5.-22.5.2016 1/5 SM-turnaukset 14.5.-22.5.2016 1/5 Erikoismääräykset (yhteinen osa) 1. Kilpailut järjestäjää Suomen Shakkiliitto ja Helsingin Shakkiklubi (HSK). Järjestelytoimikunnassa ovat HSK: Matti Uimonen, Matti Kauranen,

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 8. 1. Esimerkki 1: Peli on symmetrinen, joten riittää, että tarkastelemme, mikä on tasapaino

Lisätiedot

Luento 4: Ekstensiiviset pelit, horisontaalinen yhteistyö & vertikaaliset rajoitteet

Luento 4: Ekstensiiviset pelit, horisontaalinen yhteistyö & vertikaaliset rajoitteet Luento 4: Ekstensiiviset pelit, horisontaalinen yhteistyö & vertikaaliset rajoitteet Saara Hämäläinen Helsingin yliopisto TA6m Luento 4 2016 1 / 53 Esitietoja: Game Theory by Ben Polak (Open Yale) "Sequential

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

Johdatus go-peliin. 25. joulukuuta 2011

Johdatus go-peliin. 25. joulukuuta 2011 Johdatus go-peliin 25. joulukuuta 2011 Tämän dokumentin tarkoitus on toimia johdatuksena go-lautapeliin. Lähestymistapamme poikkeaa tavallisista go-johdatuksista, koska tässä dokumentissa neuvotaan ensin

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

2019/2020 MIEHET 1-DIVISIOONA

2019/2020 MIEHET 1-DIVISIOONA Kausi 2019/2020 MIEHET 1-DIVISIOONA ; Lohko A 1. A-men Eräkare Jorma Puh. 0503835758 2. Kaksari Kittilä Anssi Puh. 0443667680 3. MänTS Wallenius Jari Puh. 0406604973 4. RKT Seppänen Henry Puh. 0415068044

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Markkinainstituutio ja markkinoiden toiminta. TTT/Kultti

Markkinainstituutio ja markkinoiden toiminta. TTT/Kultti Markkinainstituutio ja markkinoiden toiminta TTT/Kultti Pyrin valottamaan seuraavia käsitteitä i) markkinat ii) tasapaino iii) tehokkuus iv) markkinavoima. Määritelmiä 1. Markkinat ovat mekanismi/instituutio,

Lisätiedot

Muumion kirous. Pelisuunnitteludokumentti. Veikkauksen pelisuunnittelukilpailua (Peliskaba2015) varten

Muumion kirous. Pelisuunnitteludokumentti. Veikkauksen pelisuunnittelukilpailua (Peliskaba2015) varten Pelisuunnitteludokumentti Muumion kirous Veikkauksen pelisuunnittelukilpailua (Peliskaba2015) varten Tekijä: Esko Vankka Osoite: Yliopistonkatu 39 E 51, 33500 Tampere Puh: 0400 832 907 Email: esko.pj.vankka@gmail.com

Lisätiedot

Mobiilileikkipaikka! www.lappset.com/mobi

Mobiilileikkipaikka! www.lappset.com/mobi Mobiilileikkipaikka! www.lappset.com/mobi Jos et voi voittaa heitä, liity heihin Pelikulttuuri on yhä enenevässä määrin läsnä yhteiskunnassamme. Tietokonepelejä pelataan jokaisessa kodissa tietokoneella,

Lisätiedot

Viittomakielen tulkkien palkka- ja muut työsuhteen ehdot

Viittomakielen tulkkien palkka- ja muut työsuhteen ehdot Viittomakielen tulkkien palkka- ja muut työsuhteen ehdot tuntipalkkaan perustuvassa työsuhteessa 1.2.2016 31.1.2017 Viittomakielen tulkkien palkka- ja muut työsuhteen ehdot tuntipalkkaan perustuvassa työsuhteessa

Lisätiedot

Nollasummapelit ja muut yleisemmät summapelit

Nollasummapelit ja muut yleisemmät summapelit Nollasummapelit ja muut yleisemmät summapelit Teemu Orjatsalo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Teemu Orjatsalo, Nollasummapelit

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 5 Ratkaisuehdotuksia Näissä harjoituksissa viljellään paljon sanaa paradoksi. Sana tulee ymmärtää laajassa mielessä. Suppeassa mielessähän

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan

x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan 19.1. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ ÐÓÔÔÙ ÐÔ ÐÙÒ Ö Ø ÙØ 2018 1. Eevalla ja Martilla on kokonaislukumäärä euroja. Martti sanoi Eevalle: Jos annat minulle kolme euroa, niin minulla on n-kertainen määrä rahaa sinuun

Lisätiedot

4. www-harjoitusten mallivastaukset 2017

4. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Kuvio 1 Tasapaino (Equilibrium) on suljettujen ja avointen tietorakenteiden dynaaminen suhde

Kuvio 1 Tasapaino (Equilibrium) on suljettujen ja avointen tietorakenteiden dynaaminen suhde Kuvio 1 Tasapaino (Equilibrium) on suljettujen ja avointen tietorakenteiden dynaaminen suhde Suljetut skeemat eivät muutu prosessin kuluessa Tasapaino Avoimet skeemat voivat muuttua prosessin kuluessa

Lisätiedot

Mediakyselyn tulokset

Mediakyselyn tulokset Teetimme Tammikuussa 2016 kyselyn lasten mediakäyttäytymisestä Kankaan päiväkodin esikoululaisten ja Kankaan koulun 1-4- luokkalaisten vanhemmilla. Kyselyn avulla oli tarkoitus kartoittaa lasten sosiaalisen

Lisätiedot

CHERMUG-pelien käyttö opiskelijoiden keskuudessa vaihtoehtoisen tutkimustavan oppimiseksi

CHERMUG-pelien käyttö opiskelijoiden keskuudessa vaihtoehtoisen tutkimustavan oppimiseksi Tiivistelmä CHERMUG-projekti on kansainvälinen konsortio, jossa on kumppaneita usealta eri alalta. Yksi tärkeimmistä asioista on luoda yhteinen lähtökohta, jotta voimme kommunikoida ja auttaa projektin

Lisätiedot

2-6 PELAAJAA. PELIN TAVOITE Tavoitteena on jäädä pelin viimeiseksi pelaajaksi, kun kaikki muut ovat menneet konkurssiin.

2-6 PELAAJAA. PELIN TAVOITE Tavoitteena on jäädä pelin viimeiseksi pelaajaksi, kun kaikki muut ovat menneet konkurssiin. Jos tunnet Monopoly-pelin hyvin ja haluat nopeuttaa peliä: 1. Aluksi pankkiiri sekoittaa omistusoikeuskortit ja jakaa kullekin pelaajalle kaksi korttia. Pelaajat maksavat pankkiirille saamiensa kiinteistöjen

Lisätiedot

Taustaa GrIFK kyky- ja taitokoulutoiminnalle!

Taustaa GrIFK kyky- ja taitokoulutoiminnalle! Taustaa GrIFK kyky- ja taitokoulutoiminnalle! Tarve kyky- ja taitokoulutoiminnalle on suuri! Pelaajat haluavat oppia enemmän, kokea pätevyyttä, haasteita ja onnistumisia. Vanhemmat haluavat lapsensa oppivan

Lisätiedot

Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist

Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist 21.01.2013 Ohjaaja: Kimmo Berg Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

ALHAMBRA. Muuri Seralji Puutarha Holvikäytävä Paviljonki Asuinrakennus Torni Rakennuksen nimi Hinta

ALHAMBRA. Muuri Seralji Puutarha Holvikäytävä Paviljonki Asuinrakennus Torni Rakennuksen nimi Hinta ALHAMBRA Parhaat rakennusmestarit kaikkialta Euroopasta ja Arabiasta haluavat näyttää taitonsa. Palkkaa sopivimmat työjoukot ja varmista, että sinulla on aina tarpeeksi oikeaa valuuttaa. Sillä kaikkia

Lisätiedot

Taloustieteen Nobel peliteorian kehittäjille

Taloustieteen Nobel peliteorian kehittäjille Kansantaloudellinen aikakauskirja - 90. vsk. - 4/1994 Katsauksiaja keskustelua Taloustieteen Nobel peliteorian kehittäjille KLAUS KULTTI Vuoden 1994 taloustieteen Nobelin palkinnon saivat professori John

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot