Prof. Marko Terviö Assist. Jan Jääskeläinen
|
|
- Kalevi Saaristo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mallivastaukset (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman arvostuksensa, ilman että lisää voittoja muissa tapauksissa. Tarjoamalla alle oman arvostuksen pienentää mahdollisuuksiaan voittaa, mutta ei vaikuta voittoihin niissä tapauksissa joissa oma tarjous on yhä korkein. Niinpä oma tarjous vaikuttaa vain todennäköisyyteen voittaa, mutta ei siihen kuinka paljon maksaa ehdolla, että oma tarjous on korkein. (b) Mistään lisäinformaatiosta ei olisi hyötyä, koska oma strategia on dominoiva (ks. edellinen kohta). (c) Kyllä. Nyt ei voi saada taloudellisesta voittoa, ellei tarjoa alle oman arvostuksen. Tradeoff on tämä: Mitä vähemmän tarjoaa sitä enemmän tekee voittoa jos oma tarjous on korkein, mutta samalla todennäköisyys sille että oma tarjous on korkein pienenee. Tässä ei siis ole dominoivaa strategiaa. Nyt jos saisi tietää korkeimman muiden tekemän tarjouksen niin kannattaisi tarjota hieman enemmän, jos se on alle oman arvostuksen, tai olla tarjoamatta ollenkaan, jos se on yli oman arvostuksen. (d) Ei vaan alempi. Epävarmassa tapauksessa on riski siitä, että voitto on yliarvioitu. Voit ajatella esimerkiksi tilannetta, jossa voitto on 50% todennäköisyydellä e 5 miljoonaa ja 50% todennäköisyydellä e 15 miljoonaa. Koska kaikkien kilpailuun osallistujien tarjoukset ovat arvioita saman lisenssin arvosta, on todennäköistä että eniten tarjoavat ovat niitä, jotka yliarvioivat kohteen arvoa. Jos tarjoaisi voiton odotusarvon ja voittaisi tarjouskilpailun, niin tekee tappiota jos myös seuraavaksi korkein tarjous perustuu yliarviointiin ja lisenssi realisoituu vähemmän arvokkaaksi. Epävarmuuden johdosta oma arvostus ei tässä ole sama asia kuin oma arvio, vaan oma arvostus täytyy korjata alaspäin ennakoiden tämä ns. voittajan kirous. (e) Kyllä. Koska muutkin tarjoajat yrittävät arvottaa samaa kohdetta, ne sisältävät informaatiota kohteen todellisesta arvosta, jota kannattaa hyödyntää omaa tarjousta suunnitellessa (riippumatta tarjouskilpailun säännöistä). 3. (a) Tulosmatriisissa on rivit ja sarakkeet molempien pelaajien mahdollisille toimenpiteille kunakin vuonna. Row Corporation Column Industries Mainosta Älä mainosta Mainosta 5, 5 9, 4 Älä mainosta 4, 9 8, 8 1
2 Kertapelin uniikki Nash-tasapaino oli (Mainosta,Mainosta). Kertapelin tulema (Älä mainosta, Älä mainosta) antaisi kuitenkin suuremman kokonaisvoiton (8 > 5). Tarkistetaan, onko tasapaino (Älä mainosta, Älä mainosta) mahdollinen, kun diskonttokorko r = 0.1. Yritykset voisivat tehdä yhteistyötä ja sopia olemaan mainostamatta, mutta tällöin molemmilla olisi kannustin poiketa sovitusta, sillä molemmille yrityksille suurin tulos toteutuu silloin, kun yritys itse mainostaa ja kilpailija ei mainosta. Tarkastellaan onnistuuko synkkä strategia, jossa rangaistuksena mainostamisesta kilpailija valitsee ikuisesti strategian Mainosta, ylläpitämään yhteistyötasapainoa. Tämä strategia on rankin mahdollinen rangaistusstrategia, joten jos yhteistyö ei ole mahdollista synkällä strategialla, se ei ole mahdollista muillakaan. Lasketaan yritysten nykyarvoiset tulokset eri valinnoista. Diskonttotekijä tulevaisuuden tulemille on nyt B = 1/(1 + r). Jos molemmat yritykset valitsevat strategian Älä mainosta, niiden tulos on (käytetään perpetuiteetin kaavaa) πa,b = 8 + 8B + 8B = 8 + 8/r = 8 + 8/0.1 = 88 Lasketaan seuraavaksi nykyarvoinen tulema, jos yhteistyöstä poiketaan. Toinen firma valitsee siis strategian Mainosta ensimmäisellä periodilla, kun kilpailija jättää mainostamatta. Seuraavalla periodilla kilpailija rankaisee mainostamalla ikuisesti. Tähän kannattaa vastata mainostamalla. Jos yritys poikkeaa, sen tulos on π p i = 9 + 5B + 5B = 9 + 5/r = 9 + 5/0.1 = 59 (Synkkä, Synkkä) on siis tasapaino, kun r = 0.1. Kumpaan firma ei siis mainosta, kun pelataan synkkää strategiaa. (b) Ratkaistaan alin diskonttokorko r, jolla (Synkkä, Synkkä) on toistetun pelin tasapaino. Edelliskohdassa ratkaistiin voitot yhteistyössä sekä silloin, kun toinen firma poikkeaa: πa,b = 8 + 8B + 8B = 8 + 8/r π p i = 9 + 5B + 5B = 9 + 5/r Tasapainossa pitää päteä πa,b πp i, eli 8 + 8/r 9 + 5/r r < 3 Kun diskonttokorko on alle 300% on (Älä mainosta, Älä mainosta) mahdollinen joka periodi toistetun pelin tasapainossa, kun kumpikin pelaaja pelaa synkkää strategiaa, jossa pelaaja valitsee Älä mainosta ja rankaisee kilpailijan pettämisestä mainostamalla ikuisesti. Lisähuomio: Suurin diskonttotekijä, jolla mainostamisesta pidättäytyminen on mahdollista toistetun pelin tasapainossa, on B = 1/4. Tämän voi tulkita riippuvan pääoman vaihtoehtoiskustannuksen r lisäksi myös todennäköisyydelle siitä, että peli päättyy minkä tahansa yhden periodin aikana ρ. Tällöin B = (1 ρ)/(1+r), ja diskonttotekijä B > 0.25 toteutuu esimerkiksi jos r < 0.1 ja ρ <
3 Π (nykyarvo) Synkkä Petä B Kuva 1: Voittojen nykyarvo hypoteettiselle synkän strategian noudattajalle ja siitä poikkeavalle yritykselle diskonttotekijän B = 1/(1 + r) funktiona tehtävässä 3b. 4. (a) Yhden kalastusaluksen voitot funktiona lähetettyjen alusten määrässä n ovat π(n) = q(n)p 32 = (160 n/2)8 32 Voitot ovat laskeva funktio lähetettyjen alusten määrästä, koska lisäalukset pienentävät yksittäisen aluksen saaliin määrää. Yksittäinen tuottaja ei voi valita kalastusalusten kokonaismäärää, joten kyseessä ei ole maksimointiongelma. Yksittäinen tuottaja päättää vain sen osallistuako kalastukseen vai ei. Tasapainossa lisäalus ei voisi tehdä positiivista voittoa, mutta olemassa olevat alukset saavat vähintään nollavoiton, eli täytyy päteä π(n ) 0 ja π(n + 1) < 0. Saadaan: (160 n/2) n 0 n = 312 Tarkistetaan ehdot: π(312) = 0 0 ja π( ) = 4 < 0. Kun aluksia on 312, voitot ovat ei-negatiivisa kaikille lähetetyille aluksille, mutta 313. lähetetetty alus aiheuttaisi sen, että kaikki kaikki alukset tekisivät tappiota. Aluksia lähetetään siis niin monta, että marginaalisen aluksen tuotto on sama kuin sen kustannus. Tonnikalan kokonaissaalis on tällöin ( /2) 312 = 1248 ja saalis alusta kohti on 4. (b) Ulkoisvaikutus mitataan tässä muille aluksille kertyvän kokonaisylijäämän vähenemisenä, joka aiheutuu yhden aluksen lähettämisestä. Kun aluksia on jo n kappaletta, niin n + 1:s aiheuttaa ulkoisvaikutuksen n[π(n) π(n + 1)] = n[8(160 n/2) 32 (8(160 (n + 1)/2) 32)] = 4n Tämä on siis ulkoisvaikutus yhteensä kaikille niille n:lle alukselle, jotka ovat tunturilla. Jos ulkoisvaikutus on suurempi kuin merialueelle lähettäjän saama hyöty, kokonaisylijäämä vähenee uuden tulokkaan myötä. (c) Tehokas määrä aluksia maksimoi kokonaishyödyn. Koska tonnikalan hinta on vakio, 3
4 Tuotantokustannus Tehokas määrä n Kuva 2: Tonnikalan ja kanan tuotantokustannukset alusten määrän funktioina. myös kuluttajan ylijäämä on kiinteä. Kokonaishyödyn laskemiseksi riittää, että tarkastellaan aluksen tuottamia voittoja. (Tonnikalan kalastuksen tuoma hyvinvointivaikutus perustuu siihen, että Lintukodon kuluttama valkoinen liha voidaan tuottaa alhaisemmilla kokonaiskustannuksilla, jos siitä osa tuotetaan tonnikalana, kuin jos tuotettaisiin vain kanaa.) Tonnikalan hinta vastaa sen täydellisen substituutin hintaa, eli P = 8. Kokonaisylijäämä on W (n) = nπ(n) = 8n(160 n/2) 32n Maksimoidaan tämä lähetettyjen alusten lukumäärän suhteen: W (n) n = n = 0 n = 156 Tehokas alusten lukumäärä on siis 156. Yksittäisen aluksen pyydystämä saalis on /2 = 82 ja kokonaissaalis on = (d) Lisenssimaksun tulisi olla niin korkea, että vain 156 alusta on kannattavaa lähettää merelle. Kalastajien näkökulmasta lisenssimaksu on kiinteä kustannus. Tehokas ratkaisu saavutetaan, kun lisenssimaksu vastaa voittoja, jotka yksittäinen alus tuottaa tehokkaassa ratkaisussa: Lisenssimaksu f = π(156) = = 624 Kun maksu on tällä tasolla, vain 156 alusta ostaa lisenssin, alusten voitot ovat nolla ja 4
5 valtio saa tulon n f = = Huomaa, että jos hallitus (tai taho, joka omistaa meren ja saa myydä lisenssejä) haluaa maksimoida lisenssien myynnistä aiheutuvat voitot, sen kannattaa valita juuri tehokas hinta. (Kaiken lisäksi näin kertyy valtiolle tuloa, jonka kerääminen ei aiheuta hyvinvointitappiota!) Lisähuomio Coasen teoreeman hengessä: Samaan kokonaisylijäämään ja valtion tuloihin päästäisiin, jos Lintukoto pystyisi myymään merialueensa yksityiselle voittoa maksimoivalle yritykselle. Sen voitot, vesistöstä maksamisen jälkeen, olisivat W (n), joten se maksimoisi voittonsa lähettämällä n = 156 alusta merelle. Niinpä Lintukodon merialueesta saama hinta olisi W (n ). Ulkoisvaikutus aiheutuu siitä, että kukaan ei omista aluetta, ei siitä, että harjoitetaan voittoa maksimoivaa toimintaa. 5
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on
LisätiedotA. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.
HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen
LisätiedotProf. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
Lisätiedot11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan
LisätiedotMikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus
LisätiedotProf. Marko Terviö Assist. Jan Jääskeläinen
Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries
LisätiedotMikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla
LisätiedotMS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
LisätiedotProf. Marko Terviö Assist. Jan Jääskeläinen. 1. (a) Jos voidaan asettaa vain yksi yksikköhinta, kannattaa käyttää perushinnoittelua.
Mallivastaukset 6. 1. (a) Jos voidaan asettaa vain yksi yksikköhinta, kannattaa käyttää perushinnoittelua. Tuotettu määrä ja hinta määräytyvät siis ehdosta MR = MC. Aggregoidaan ja käännetään asiakasryhmäkohtaiset
LisätiedotDynaaminen hintakilpailu ja sanattomat sopimukset
Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan
Lisätiedot4. www-harjoitusten mallivastaukset 2017
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
LisätiedotYhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
LisätiedotHUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012
HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä: 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. Muun muassa Yhdysvaltain
LisätiedotMikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 8. 1. Esimerkki 1: Peli on symmetrinen, joten riittää, että tarkastelemme, mikä on tasapaino
LisätiedotVoidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10
Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,
LisätiedotMIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
Lisätiedot4. www-harjoitusten mallivastaukset 2016
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
LisätiedotUusien keksintöjen hyödyntäminen
Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi
LisätiedotOsa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen
Lisätiedot12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
LisätiedotLuento 9. June 2, Luento 9
June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,
Lisätiedotsuurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille
KILPAILUMUODOT Kansantaloustieteen lähtökohta on täydellinen kilpailu. teoreettinen käsitteenä tärkeä Yritykset ovat tuotantoyksiköitä yhdistelevät tuotannontekijöitä o työvoimaa o luonnon varoja o koneita
LisätiedotHintakilpailu lyhyellä aikavälillä
Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:
LisätiedotSEKASTRATEGIAT PELITEORIASSA
SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer
LisätiedotTALOUSTIETEEN LUENTOJEN TEHTÄVÄT
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla
LisätiedotNollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
LisätiedotBayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
LisätiedotPELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA
PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli
LisätiedotPystysuuntainen hallinta 2/2
Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan
LisätiedotMonopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida
LisätiedotProf. Marko Terviö Assist. Jan Jääskeläinen
1C00100 Mallivastaukset 2. 1. Markkinahinnan aikasarja on esitetty kuvassa 1. Yksittäisten muutosten vaikutukset on kuvattu aikasarjan jälkeen. Hinta 2018 2019 2021 2022 2024 2025 Vuosi Kuva 1: Markkinahinnan
Lisätiedot1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä
A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus
LisätiedotInformaatio ja Strateginen käyttäytyminen
Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä
LisätiedotLuento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena
LisätiedotLuento 8. June 3, 2014
June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa
LisätiedotProf. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 5. 1. (a) Tarkastellaan uuden työntekijän palkkaamisen tuottoja ja kustannuksia eri skenaarioissa. Toimijat oletetaan aina riskineutraaleiksi, jos ei toisin mainita. Työntekijän tuottavuus
LisätiedotMikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 10. 1. (a) Tässä on kätevää mitata hyötyjä ja rahasummia tuhansissa euroissa. Kokonaisylijäämä
Lisätiedothttps://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ
06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria
LisätiedotSekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
LisätiedotPaljonko maksat eurosta -peli
Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan
LisätiedotMonopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
LisätiedotAsymmetrinen informaatio
Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,
LisätiedotA31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.
LisätiedotMainonta ja laatu tuotteiden erilaistamisessa
Mainonta ja laatu tuotteiden erilaistamisessa Samuel Aulanko Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Mainonta Tiedollinen ja ohjaileva mainonta Monopolistinen kilpailu Oligopolinen kilpailu
LisätiedotMikrotaloustiede 31C Syksy Monivalintatehtävät (39p) Vastauksien pisteytys: oikein +3p, väärin -1p, tyhjä 0p.
31C Syksy 17 Välikoe 7.. Monivalintatehtävät (39p) Laskukoneiden käyttö sallittu. Vastauksien pisteytys: oikein +3p, väärin -1p, tyhjä p. 1. Timo ja Pirjo väittelevät laittomien huumeiden käytön lisääntymisestä.
LisätiedotLuento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n
LisätiedotHaitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
Lisätiedot1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 3 1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla (i) Alla olevan kuvan kuluttaja A) on riskinkaihtaja B) on riskineutraali
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotMat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut
Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)
LisätiedotY56 laskuharjoitukset 6
Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.
Lisätiedot4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
LisätiedotDynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II
Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II Olavi Toivainen 12.3.2003 Sanattomien sopimusten mallintaminen ja kontrollointi, miksi? EU Artikla 81 yritysten välisistä kilpailua
LisätiedotLyhyen aikavälin hintakilpailu 2/2
Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta
LisätiedotPelien teoriaa: tasapainokäsitteet
Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen
Lisätiedot4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
LisätiedotPeliteoria luento 1. May 25, 2015. Peliteoria luento 1
May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.
LisätiedotOsa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
LisätiedotTaloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen
LisätiedotTU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset
TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste
LisätiedotPeliteoria ja kalatalous YE4
Peliteoria ja kalatalous YE4 Kansainväliset kalastussopimukset Tarve kansainväliselle yhteistyölle: Vain kestävillä kansainvälisillä sopimuksilla voidaan taata biologinen ja taloudellinen tehokkuus. Neuvottelujen
LisätiedotSopimusteoria: Salanie luku 3.2
Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat
LisätiedotProjektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
Lisätiedot1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
LisätiedotHarjoitusten 2 ratkaisut
Harjoitusten 2 ratkaisut Taloustieteen perusteet 31A00110 Tea Lönnroth tea.lonnroth(at)aalto.fi Teach a parrot the terms 'supply and demand' and you've got an economist. Thomas Carlyle 2 Tehtävä 1 Tarkastellaan
LisätiedotInstructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016
tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat
LisätiedotYhteistyötä sisältämätön peliteoria
Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari
LisätiedotLaskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4
Lisätiedotb) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.
2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5
LisätiedotOsa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista
Lisätiedot5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
Lisätiedot8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan
LisätiedotPelaajien lukumäärä: suositus 3 4 pelaajaa; peliä voi soveltaa myös muille pelaajamäärille
Heli Vaara ja Tiina Komulainen OuLUMA, sivu 1 MERIROSVOJEN AARTEENJAKOPELI Avainsanat: matematiikka, pelit, todennäköisyys Pelaajien lukumäärä: suositus 3 4 pelaajaa; peliä voi soveltaa myös muille pelaajamäärille
Lisätiedot, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
LisätiedotStrateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki
Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen
LisätiedotI MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '
LisätiedotTaloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
LisätiedotKilpailulliset markkinat. Taloustieteen perusteet Matti Sarvimäki
Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Johdanto Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä
LisätiedotPohdiskeleva ajattelu ja tasapainotarkennukset
Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen
LisätiedotReaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien
Lisätiedot3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
LisätiedotPilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu
Pilkeyrityksen liiketoimintaosaamisen kehittäminen Timo Värre Jyväskylän ammattikorkeakoulu 1 Talouden hallinnan keskeiset osat Tulevaisuus Pitääkö kasvaa? KASVU KANNATTAVUUS Kannattaako liiketoiminta?
LisätiedotPeliteoria luento 2. May 26, 2014. Peliteoria luento 2
May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky
LisätiedotYleinen tietämys ja Nashin tasapaino
Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä
Lisätiedothttp://www.nelostuote.fi/suomi/rummikubsaan.html
Sivu 1/5 Pelin sisältö 104 numeroitua laattaa (numeroitu 1-13) 2 laattaa kutakin neljää väriä (musta, oranssi, sininen ja punainen) 2 jokerilaattaa, 4 laattatelinettä, pelisäännöt Pelin tavoite Tavoitteena
LisätiedotTaloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
LisätiedotViime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto
Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto
LisätiedotPystysuuntainen ohjaus
Pystysuuntainen ohjaus Satu Vapaakallio satu.vapaakallio@hut.fi 19.2.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisällys Luku 4.1 Pystysuuntainen perusviitekehys Peruskäsitteitä Yleisimmät pystysuuntaiset
LisätiedotLuento 7. June 3, 2014
June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.
LisätiedotStrategiset valinnat. Taloustieteen perusteet Matti Sarvimäki
Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian
LisätiedotSUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.
SUBSTANTIIVIT 1/6 juttu joukkue vaali kaupunki syy alku kokous asukas tapaus kysymys lapsi kauppa pankki miljoona keskiviikko käsi loppu pelaaja voitto pääministeri päivä tutkimus äiti kirja SUBSTANTIIVIT
Lisätiedottalletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?
TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)
LisätiedotKuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä
Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =
LisätiedotMIKROTALOUSTIEDE A31C00100
MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi & Emmi Martikainen emmi.martikainen@kkv.fi Luennon sisältö Hintakilpailu ja tuotedifferentiaatio Peräkkäiset pelit (12.4-12.5) Alalle tulon estäminen Taloudellinen
LisätiedotKANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
LisätiedotNyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F
Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotTask list Submit code Submissions Messages Scoreboard View queue Edit contest
Jäätelö Edit task Translate 1.00 s Uolevi aikoo ostaa kaksi jäätelötötteröä: yhden Maijalle ja yhden itselleen. Tiedossasi on jokaisen myynnissä olevan jäätelötötterön hinta ja paino sekä suurin summa,
LisätiedotMat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.
Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun
Lisätiedot